• Keine Ergebnisse gefunden

Linking Macroscopic Fracture Properties to Single Dislocation Processes

N/A
N/A
Protected

Academic year: 2022

Aktie "Linking Macroscopic Fracture Properties to Single Dislocation Processes"

Copied!
3
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Accepted manuscript – Final publication in Microsc. Microanal. 24 (Suppl 1), 2184, 2018 

 

Linking Macroscopic Fracture Properties to Single Dislocation Processes 

Inas Issa1,2, Markus Alfreider2, Darjan Kozic3, Otmar Kolednik1, Stefan Sandfeld4 and Daniel Kiener2 

1. Erich Schmid Institute, Austrian Academy of Sciences, Leoben, Austria. 

2. Department Materials Physics, Montanuniversität Leoben, Austria. 

3. Material Center Leoben, Forschung GmbH, Leoben, Austria. 

4. Chair of Micromechanical Materials Modelling, Institute of Mechanics and Fluid Dynamics, TU 

Bergakademie Freiberg, Germany. 

         

This manuscript version is made available under the CC‐BY‐NC‐ND 4.0 license  http://creativecommons.org/licenses/by‐nc‐nd/4.0/ 

Published version available at http://dx.doi.org/10.1017/S1431927618011406   

   

(2)

Understanding fracture processes in structural and functional materials is of utmost importance in order to improve material properties and design failure resistant components and systems. The challenge here lies in the fact that, while failure can destroy large structures in an instant, the underlying crack initiation and propagation processes occur on a very local scale.

In order to bridge these scales, we address brittle as well as elasto-plastic fracture processes in a combined scheme utilizing in-situ testing in electron microscopes along with numerical analysis. In fact, we combine miniaturized dynamical fracture testing in scanning electron microscopes (SEM) (e.g.

Figure 1) [1, 2] with in-situ transmission electron microscopy (TEM) [3]. The former allows to test representative bulk properties and at the same time monitor crack propagation, either directly from the in-situ images or from the continuously measured change in specimen stiffness upon crack propagation (e.g. Figure 2). The latter enables to identify the initial nucleation processes of individual dislocations at different slip systems at a crack tip. These experimental techniques are paired with finite element analysis (FEA) in order to determine valid geometry factors for the SEM experiments and discrete dislocation analysis to address the local stress and strain state at the crack tip and the connected crack driving forces in the in-situ TEM experiments.

This suite of techniques enables for the first time to bridge from macroscopic properties to individual dislocation processes at a crack tip. Notably, this approach is generally applicable to any material that can be exposed to vacuum conditions and tolerates an electron beam for imaging. Moreover, our analysis extends the current state-of-the-art from miniaturized testing of quasi-brittle materials towards the more general and more demanding case of elasto-plastic fracture processes.

To demonstrate the detailed insights achievable in order to understand global fracture processes on a local scale, selected examples are presented for brittle and quasi-brittle fracture processes in ceramic and metallic materials.

References:

[1] R Fritz et al, Measurement 110 (2017), p. 356.

[2] M Alfreider et al, Materials & Design (2018), submitted.

[3] E Hintsala et al, Experimental Mechanics 55, (2015), p. 1681.

[4] The authors acknowledge funding from the Austrian Science Fund FWF (P25325‐N20), the  Austrian Research Promotion Agency FFG within the framework of the COMET Funding Programme  (IC‐MPPE A1.25) and the European Research Council (ERC‐2017‐CoG 771146). 

 

(3)

 

Figure 1. Initial microstructure (top), FIB introduced crack (middle) and final failure mode (bottom) for nanocrystalline Cr tested in-situ in the SEM at RT (left) and 230°C (right), respectively. A change from grain boundary failure to crack blunting is evident. 2 μm scale marker applies to all images [1].

  Figure 2. Overview and detail of slip steps emitted from a crack during an in‐situ SEM fracture  experiment on single crystal tungsten (left), along with related load‐deflection and continuous crack  extension data (right) [2]. 

Referenzen

ÄHNLICHE DOKUMENTE

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted

Latter tests revealed the fact that dislocation emission from a sharp notch (radius #2 nm) and near GBs occurs before failure upon brittle intercrystalline fracture, which is

As one of the hits, an ethyl acetate extract from in fl orescences of Verbesina lanata showed signi fi cant inhibitory activity in vitro against grapevine downy mildew

A multifarious approach was used to address the following spe- cific questions: (a) How do the spatial structure, composition, and co- occurrences of soil archaeal, bacterial,

We provide detailed numerical tests (including a challenging test such as Example 4 with an asymmetrically notched three point bending setting) where our proposed scheme is employed

If ei is the probability that consumer i will purchase a given product, then a convenient and reasonable model is the beta model, in which case the distribution of nonstationari-

Although the absolute incidence of self-harm was low, we found that primary care patients with vertebral frac- tures are at increased risk of self-harm compared to matched

Examples of a micro tension specimen (a) and 2 notched micro-bending samples used for fracture tests (b) prepared by the FIB technique.. Example of an in situ micro fracture