• Keine Ergebnisse gefunden

Stochastic Programming in Water Resources System Planning: A Case Study and a Comparison of Solution Techniques

N/A
N/A
Protected

Academic year: 2022

Aktie "Stochastic Programming in Water Resources System Planning: A Case Study and a Comparison of Solution Techniques"

Copied!
44
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Working Paper

S T O C W C PROGRAMMING IN WATER RESOURCES

s!BTEM

PLANNING:

A

CASE

STUDY

AND A

COMPARISON OF SOLUTION TECHNIQUES

J. DupaEoviL A. G a i v o r o n s k i 2. Kos

T.

S z b n t a i

August 1986 WP-86-40

International Institute for Applied Systems Analysis

A-2361 Laxenburg, Austria

(2)

NOT FOR QUOTATION WITHOUT THE PERMISSION OF THE AUTHORS

STOCHASTIC PROGR4MMING IN WATER RESOURCES

SYSTEM

PLANNING:

A

CASE

STUDY

AND

A

COMPARISON OF SOLUTION TECHNIQUES

J. DupaEoviL A. Gaivoronski 2. Kos

T. Szbntai

August 1986 WP-06-40

Working Papers are interim r e p o r t s on work of t h e International Institute f o r Applied Systems Analysis and have received only limited review. Views or opinions e x p r e s s e d h e r e i n do not necessarily r e p r e s e n t those of t h e Institute o r of i t s National Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 Laxenburg, Austria

(3)

FOREWORD

Stochastic programming methodology is applied in this p a p e r to a c a p i t a l in- vestment problem in water r e s o u r c e s . The a u t h o r s introduce possible model formu- lations and t h e n find t h e solutions by using a number of specific solution tech- niques. These are p a r t l y based on t h e SDS/ADO t a p e f o r s t o c h a s t i c programming problems and also on s t a n d a r d l i n e a r and nonlinear programming packages. Such a n a p p r o a c h allows a thorough analysis of t h e solution as well as a comparison of t h e algorithmic p r o c e d u r e s used to obtain t h e s e solutions.

Alexander B. Kurzhanski Chairman System and Decision Sciences Program

(4)

AUTHORS

Dr. J i t k a ~ u p a C o v 6 , r e s e a r c h s c h o l a r at SDS in 1985-1986 i s p r o f e s s o r at t h e Department of S t a t i s t i c s , Faculty of Mathematics and Physics, Charles University, P r a g u e .

Dr. Alexei Gaivoronski, r e s e a r c h s c h o l a r at SDS i s s e n i o r r e s e a r c h e r of t h e V.

Glushnov Institute of Cybernetics, Kiev, USSR.

Ing. Dr. ~ d e n z k K o s , r e s e a r c h s c h o l a r at IIASA i n 1980, i s s e n i o r r e s e a r c h e r a t t h e Faculty of Engineering of t h e Technical University, Prague.

Dr. Tomds Szdntai i s p r o f e s s o r a t t h e Department of Operations R e s e a r c h of t h e Eotvos Lordnd University, Budapest.

(5)

ABSTRACT

To analyze t h e influence of increasing needs upon a given water r e s o u r c e s system in E a s t e r n Slovakia and to g e t a decision on t h e system development and ex- tension, s e v e r a l s t o c h a s t i c programming m o d e l s c a n b e used. The t w o s e l e c t e d models are based on individual probabilistic c o n s t r a i n t s f o r t h e minimum s t o r a g e and f o r t h e f r e e b o a r d volume supplemented by one joint probabilistic c o n s t r a i n t on releases or by a nonseparable penalty t e r m in t h e objective function. Suitable numerical techniques f o r t h e i r solution are applied to a l t e r n a t i v e design parame- ter values. As a r e s u l t , t h e p a p e r gives a n answer to t h e case study which i s based on multi modeling within t h e framework of s t o c h a s t i c programming and, at t h e s a m e time, i t gives a comparison of various solution techniques p a r t l y included in t h e SDS/ADO collection of s t o c h a s t i c programming codes.

-

vii

-

(6)

STOCHASTIC PROGRAMMING IN WATER RESOURCES

SWlXM

PLANNING:

n

CASE

SIVDY AND A

COWPARISON OF SOLUTION TECHNIQUES

J. h p a E ovk A. Gaivoronski, 2. Kos a n d T. S z h n t a i

1. mRODUCTION

Operation of r e s e r v o i r s in water r e s o u r c e s system i s a multistage s t o c h a s t i c control problem. Water r e s o u r c e s planning h a s to consider multiple u s e r s and ob- jectives, r e s e r v o i r operation policies need t o b e analyzed to obtain a n effective use of water r e s o u r c e s . In t h e planning p r o c e d u r e , a g r e a t v a r i e t y of water r e s o u r c e s systems designs or operation plans need t o be confronted and t h e i r economic, environmental and social impacts evaluated. Two basic t a s k s are often solved: (a) a new system i s developed o r an existing one i s enlarged by s o m e pro- posed investments in r e s e r v o i r s , pipes, canals, pumping stations, hydroelectric water plants, etc., or (b) t h e management and c o n t r o l of a n existing system h a s t o be a l t e r e d t o accommodate t o t h e new conditions. Analysis in both t h e s e c a s e s rests on mathematical modeling, t h e objectives and constraint of t h e problem have t o b e e x p r e s s e d mathematically. The mathematical models involve t h e selection of many engineering, design and operating variables. The optimization means t h e determi- nation of t h e best values of t h e s e variables regarding t h e constraints. A lot of t h e variables and p a r a m e t e r s o c c u r r i n g in t h e objective function and in t h e con- s t r a i n t s has t o b e taken as s t o c h a s t i c as they d e s c r i b e a s t o c h a s t i c real life prob- l e m .

Out of many possible goals, t h e water supply f o r industry and irrigation, flood control and r e c r e a t i o n purposes a r e considered in this study. The m o s t important decision variable is t h e s t o r a g e capacity of r e s e r v o i r s .

T h e r e were drawn up a lot of stochastic programming models f o r inventory control and water s t o r a g e problems by P r d k o p a (1973). One of t h e s e models w a s applied f o r designing s e r i a l l y linked r e s e r v o i r systems (Prdkopa e t a1 1978).

Another application of t h e s e models concerning t h e flood c o n t r o l r e s e r v o i r design

(7)

w a s described by P r d k o p a and Szdntai (1978). In Czechoslovakia where t h e analyzed system is located, t h e r e i s a n old tradition t o use c h a n c e constrained models f o r t h e considered t y p e of problems. Applications of t h e s e models were described by DupaEov6 and Kos (1979), Kos (T979) in conjunction with t h e l i n e a r decision r u l e o r with t h e d i r e c t control. Here, we shall follow t h i s tradition and in addition, we shall consider t h e possible use of a l t e r n a t i v e stochastic programming models.

I t i s t h e evident s t o c h a s t i c n a t u r e of inflows which causes t h e most of t h e sta- tistical and modeling problems and which causes t h e necessity of a detailed analysis of t h e d a t a and of t h e variables occurring in any of model formulations.

In water r e s o u r c e s modeling, f o u r types of variables o c c u r :

(1) constant coefficients and p a r a m e t e r s t h a t are used f o r design values (e.g., active s t o r a g e of t h e r e s e r v o i r , reliability, c o s t coefficients) o r variables with small variation (e.g., t h e withdrawal of water f o r t h e thermal power sta- tion);

(2) uncontrolled random v a r i a b l e s with a known o r estimated distribution (month- ly flows, meteorologic variables, e.g., precipitation, potential evaporation);

(3) p a r t l y controlable random variables with known distribution (e.g. irrigation water requirements with controlable a c r e a g e ) ;

(4) random variables with a n incomplete knowledge of distribution, such as t h e fu- t u r e demands, f u t u r e p r i c e s and costs.

In o u r p a p e r t h e type (3) of stochastic variables were incorporated into t h e model taking into account t h e i r joint probability distribution. In this way t h e in- t e r r e l a t i o n s between t h e succeeding months values of irrigation water require- ments could be considered. I t is t h e t h e o r y of logconcave measures developed by Prdkopa (1971) which gives t h e t h e o r e t i c a l background f o r t h e handling of joint probability c o n s t r a i n t s in s t o c h a s t i c programming problems.

W e pursued in this study two objectives. One i s t o develop optimization sto- chastic models t o determine t h e r e q u i r e d r e s e r v o i r capacity under increasing needs. The goal of t h e model i s t o show how t h e irrigation, flood c o n t r o l and r e - c r e a t i o n needs influence t h e r e s e r v o i r operation and t h e reliability in meeting t h e multiple goals of t h e water r e s o u r c e s system. This was done in section 2 , 3 and 6 which contain t h e description of the water r e s o u r c e s system, a s well a s s e v e r a l suitable s t o c h a s t i c programming models and a n application of one of them t o t h e basin of the Bodrog River in t h e E a s t e r n p a r t of Slovakia (Czechoslovakia), s e e

(8)

Figures 1 and 2.

Another of o u r objective was t o use this comparatively simple but meaningful and r e a l life problem t o t e s t various a p p r o a c h e s f o r solution of s t o c h a s t i c pro- gramming problems and coh,.pare various solution techniques which a r e implement- ed in IIASA and constitute SDS/ADO collection of s t o c h a s t i c programming codes.

The r e s u l t s of t h i s comparison c a n be found in sections 4 and 5.

2. THE WATER RESOURCES SYSTEM

The water r e s o u r c e s system consists of t h r e e r e s e r v o i r s , V., D., K., two of which are in operation (D., V.) and t h e t h i r d one is to be built o r not (K.)

-

s e e Fig- u r e 3. The main purposes of t h e water r e s o u r c e s system are t h e irrigation water supply, industrial uses

-

mainly water withdrawal f o r t h e thermal power station, flood control ( b e t t e r flood alleviation), environmental conservation and r e c r e a - tion. The subsystem of t h e Laborec r i v e r (see Figure 4) w a s originally designed f o r industrial water supply and flood control. During t h e operation of t h e r e s e r v o i r V., a n a c c e l e r a t e d development of t h e r e c r e a t i o n o c c u r r e d and t h e demands f o r maintenance of t h e minimum r e c r e a t i o n pool during t h e summer period were sup- ported by authorities. The area of irrigation grew and according to t h e plan will be increased substantially. The main questions f o r t h e decision-makers are:

-

Can the p r e s e n t e d water r e s o u r c e s system still m e e t a l l t h e requirements?

And if s o , with which reliability?

-

Is t h e construction of t h e r e s e r v o i r K. n e c e s s a r y and when it will b e neces- s a r y ?

The analysis of this problem w a s divided into two s t e p s . The f i r s t one comprises t h e screening modeling and i t is discussed in this p a p e r . Optimization models, however, cannot r e f l e c t all t h e details of t h e water r e s o u r c e s system operation. T h e r e f o r e t h e r e s u l t s of t h e stochastic optimization model a r e supposed t o be verified using t h e stochastic simulation model with t h e input g e n e r a t e d by t h e methods of stochastic hydrology. For t h e stochastic programming screening model, which i s t h e s u b j e c t of t h e p r e s e n t p a p e r , a n aggregated model w a s used and t h e monthly flows and t h e i r r i g a t i o n water requirements were aggregated into f o u r periods:

(9)

Prague

C Z E C H O S L O V A K I A 0

v-

Brno

FIGURE

1 Location of the water resources system of the Bodrog river.

(10)

POLAND

HUNGARY

FIGURE 2 The water r e s o u r c e system allocation.

(1) November till April of t h e following y e a r , (2) May and June,

(3) July and August,

(4) September and October.

The f i r s t period starts at t h e beginning of t h e hydrological y e a r and comprises t h e winter and t h e s p r i n g periods filling t h e r e s e r v o i r s . As t h e main i n t e r e s t of t h e i r - rigation i s c o n c e n t r a t e d on t h e vegetation period and r e c r e a t i o n season, t h e aggregation of t h e six months is acceptable. The second and f o u r t h periods in- clude i r r i g a t i o n and industrial demands, t h e t h i r d period includes in addition t h e r e c r e a t i o n demands. The requirements for t h e minimum pool due to environmental

(11)

Industry

Thermal Power Plant

v

Flood Control

FIGURE 3 Schematic r e p r e s e n t a t i o n of t h e water r e s o u r c e s system of t h e Bodrog r i v e r .

c o n t r o l a n d enhancement a n d flood c o n t r o l p e r t a i n to a l l t h e p e r i o d s .

3. THE MATHEMATICAL

YODELS

The models were designed f o r s c r e e n i n g a l t e r n a t i v e s on t h e cost basis.

Using probabilistic c o n s t r a i n t s , t h e r e s u l t identifies t h e c a p a c i t y z o of r e s e r v o i r V. t h a t should meet t h e needs with a p r e s c r i b e d reliability. The t a s k i s formulated as t h e cost of r e s e r v o i r V. minimization. As t h e cost i s a n i n c r e a s i n g

(12)

/

A

\ Reservoir K.

/

\

Laborec R.

Reservoir V . (Recreation)

Flood Control

FIGURE 4 Schematic r e p r e s e n t a t i o n of t h e subsystem of t h e Laborec r i v e r .

function of r e s e r v o i r c a p a c i t y zo, w e c a n evidently minimize t h e c a p a c i t y zo in- s t e a d of minimizing t h e cost.

The c o n s t r a i n t s involve exceeding of water supply need

pi +

di by t h e r e l e a s e d volume zi in periods 2, 3 and 4 (vegetation periods). The needs consist of t h e fixed demand d i (minimum flow and industrial water needs) and random demand

pi

(irrigation water requirements). A s to t h e f i r s t period, t h e fixed demand d l

(13)

(caused mainly by t h e needs of t h e thermal power station) should be met with such a high probability t h a t t h e deterministic constraint zl 2 d l w a s used. Taking into account t h e i n t e r c o r r e l a t i o n s of random demands

p i ,

i

=

2 , 3, 4, t h e constraint f o r t h e vegetation period, w a s formulated as follows

where a is t h e r e q u i r e d joint probability level.

The second type of c o n s t r a i n t s r e f l e c t s t h e environmental c o n t r o l and enhancement, fishing and r e c r e a t i o n needs. These requirements are e x p r e s s e d in t h e form of maintaining a minimum pool o r minimum r e s e r v o i r s t o r a g e m i . In periods 1 , 2 and 4 , t h e environmental and fishing needs a r e r e f l e c t e d , in period 3 t h e r e c r e a t i o n needs are added. This constrain1 i s t h e n as follows

where sf i s t h e r e s e r v o i r s t o r a g e , ai t h e r e q u i r e d individual probability t h r e s - holds in period i

.

The t h i r d t y p e of c o n s t r a i n t e x p r e s s e s t h e flood control t a r g e t assuming t h a t some flood control s t o r a g e v i will b e f r e e in t h e r e s e r v o i r operation during t h e whole period i with probability y i , i.e.,

The resulting optimization problem h a s t h e form minimize zo

and s u b j e c t t o additional c o n s t r a i n t s

(14)

which stem mostly from n a t u r a l hydrological and morphological situation. The u p p e r bounds u f , i

=

1,

. . .

, 4 , are given by t h e volume of flood with r e s p e c t i v e duration and probability of exceedance.

Using t h e d i r e c t (zero-order) decision r u l e and neglecting losses due to eva- poration, t h e r e s e r v o i r s t o r a g e s sf c a n b e e x p r e s s e d via t h e water inflows and r e l e a s e s in t h e r e l e v a n t periods. Let r j denote t h e water inflow in t h e j - t h period and l e t

ti

denote t h e cumulated water inflow,

Denote f u r t h e r by s o t h e initial r e s e r v o i r s t o r a g e at t h e beginning of t h e hydro- logical y e a r . A s a r u l e , w e c a n p u t s o

=

m 4, i.e., t h e r e s e r v o i r s t o r a g e i s supposed t o b e at i t s minimum a f t e r t h e vegetation period. Repeated use of t h e continuity equation gives

Substituting into (2) and (3) yields

Using t h e corresponding lOOpX quantiles z k ( p ) of t h e distribution of t h e random v a r i a b l e s t k , k

=

1 , 2, 3, 4 , w e c a n r e w r i t e t h e individual probabilistic c o n s t r a i n t s (7) and (8) in t h e form

(15)

Unfortunately, t h i s simple d e v i c e d o e s not a p p l y to t h e joint p r o b a b i l i s t i c con- s t r a i n t (1).

The resulting optimization problem minimize z o

c a n b e solved e.g. by s p e c i a l t e c h n i q u e s developed by P r d k o p a et al. (1978), see S e c t i o n 4.

Alternatively, s t o c h a s t i c programming decision models c a n b e built solely o n t h e evaluation a n d minimization of t h e o v e r a l l e x p e c t e d c o s t s , which contain not only t h e cost of t h e r e s e r v o i r of t h e c a p a c i t y s o b u t a l s o t h e losses c o n n e c t e d with t h e f a c t t h a t t h e n e e d s were not fulfilled a n d / o r t h e r e q u i r e m e n t s on t h e minimum r e s e r v o i r s t o r a g e a n d o n t h e flood c o n t r o l s t o r a g e were not met. This t y p e of models i s called mostly stochastic programs w i t h recourse or w i t h penalties.

Suppose f i r s t t h a t t h e c o n s t r a i n t s o n w a t e r supply, minimum w a t e r s t o r a g e a n d flood c o n t r o l s t o r a g e d o not c o n t a i n random v a r i a b l e s , i.e., w e h a v e (besides of t h e u p p e r a n d lower bounds (5))

(16)

In case of random p i , i

=

2 , 3, 4 a n d

t k ,

k

=

1,

. . .

, 4, t h e c h o s e n decision z o , z

. . .

, z need n o t fulfill c o n s t r a i n t s (12) f o r t h e a c t u a l ( o b s e r v e d ) values of p i ,

t k .

If t h i s i s t h e c a s e , costs evaluating losses o n c r o p s (not being i r r i g a t e d o n a sufficiently high level), o n t h e d e c r e a s e of r e c r e a t i o n (due to t h e lower r e s e r v o i r pool) a n d t h e economic losses d u e to flood c a n b e a t t a c h e d to t h e d i s c r e p a n c i e s .

L e t c ( z o ) d e n o t e t h e cost of r e s e r v o i r of t h e c a p a c i t y z o , let t h e penalty functions b e of t h e t y p e

2 0 a n d n o n d e c r e a s i n g if y

>

0

.

Denote by v:, v 2 ,

vz

t h e p e n a l t y functions c o r r e s p o n d i n g to t h e c o n s i d e r e d t h r e e t y p e s of c o n s t r a i n t s in (12), i

=

2, 3 , 4 , k

=

1,

. . .

, 4. W e try to find s u c h a deci- sion f o r which t h e t o t a l e x p e c t e d cost will b e minimal s u b j e c t to inequality con- s t r a i n t s (5):

4

minimize c ( z o )

+

E v,'(@i + di

-

zi )

s u b j e c t t o i o S z o 5 U O

The c h o i c e of t h e p e n a l t y functions should b e b a s e d on a d e e p economic a n d environmental a n a l y s i s of t h e underlying problem. On t h e o t h e r hand, f o r a s c r e e n i n g s t u d y , i t s e e m s s a t i s f a c t o r y to r e s t r i c t t h e c h o i c e to piece-wise l i n e a r or piece-wise q u a d r a t i c p e n a l t y functions.

(17)

a ) piece-wise l i n e a r p e n a l t y (simple r e c o u r s e model) All penalty functions 9 are of t h e form

~ ( y )

=

qy', where q 2 0 a n d y'

=

max (0, y )

.

The coefficient q h a s t o b e given by t h e decision maker; i t c o r r e s p o n d s t o t h e unique costs f o r t h e d i f f e r e n t c o n s i d e r e d d i s c r e p a n c i e s . A s a r e s u l t , w e h a v e t o

s u b j e c t t o t h e c o n s t r a i n t s (5).

The solution method i s mostly based on approximation of t h e marginal d i s t r i - butions of

P i , t

by d i s c r e t e o n e s a n d , i n case of c ( z o ) l i n e a r , t h e resulting p r o - g r a m c a n b e solved by simplex method with u p p e r bounded v a r i a b l e s ( s e e e.g. t h e SPORT p r o g r a m (by N a z a r e t h ) contained in t h e ADO/SDS t a p e ) . F o r o t h e r t y p e s of piece-wise l i n e a r p e n a l t i e s see e.g. DupaEov& (1980).

b ) If t h e c o s t function c ( z o ) i s s t r i c t l y q u a d r a t i c on t h e c o n s i d e r e d i n t e r v a l

<lo, u O > , a s p e c i a l t y p e of piece-wise q u a d r a t i c p e n a l t y function was suggested by R o c k a f e l l a r a n d Wets (1985), namely,

~ ( y ) = O f o r y S O

= - y 2 / p 1

2 f o r 0 5 y 5 p q

( s e e Figure 5).

F o r solving problem (15) with p e n a l t y functions of t h e mentioned t y p e , p r o - g r a m LFGM (by King) implementing R o c k a f e l l a r a n d Wets' Lagrangian Finite Gen- e r a t i o n Method i s at disposal on t h e ADO/SDS t a p e . The p a r a m e t e r s p , q of t h e in- dividual penalty functions h a v e t o b e given by t h e decision m a k e r .

The use of t h e s t o c h a s t i c p r o g r a m (15) with p e n a l t i e s d o e s n o t r e q u i r e t h e knowledge of t h e joint d i s t r i b u t i o n of t h e random n e e d s f o r i r r i g a t i o n water. I t means, t h a t d u e t o t h e assumed s e p a r a b i l i t y of t h e penalty functions (i.e., d u e t o t h e f a c t t h a t s h o r t a g e in i r r i g a t i o n w a t e r i s penalized in e a c h of t h e t h r e e vegeta- tion p e r i o d s s e p a r a t e l y a n d t h e t o t a l penalty is t a k e n as t h e sum o v e r t h e t h r e e

(18)

FIGURE 5

p e r i o d s ) , n o i n t e r c o r r e l a t i o n s are considered. Alternatively, we c a n a t t a c h a penalty cost to t h e s i t u a t i o n , when t h e t o t a l needs f o r water i r r i g a t i o n in t h e vege- tation p e r i o d as a whole w e r e not met. In t h a t c a s e , w e c a n t a k e e.g.

with p of t h e form (12) a n d minimize

s u b j e c t to c o n s t r a i n t s (5).

Finally, i t i s possible to combine t h e p r o b a l i s t i c c o n s t r a i n t s a n d t h e penaliza- tion: o n e c a n define t h e set of admissible decisions by means of p r o b a b i l i s t i c con- s t r a i n t s (4) and inequalities (5) a n d , at t h e same time penalize t h e o c c u r r e n c e of t h e d i s c r e p a n c i e s in (12) by c o r r e s p o n d i n g penalty terms in t h e o b j e c t i v e function.

In t h i s case s t u d y , t h e set of admissible solutions w a s defined by t h e individual p r o b a b i l i s t i c c o n s t r a i n t s on a minimum pool a n d o n t h e flood c o n t r o l s t o r a g e , i.e., by t h e system of inequalities (9), ( l o ) , a n d by inequalities (5). Instead of t h e joint p r o b a b i l i s t i c c o n s t r a i n t on t h e water supply needs, o n e penalty t e r m of t h e form

(19)

i ( B i +

d i

-

x 2 . i

=

2 . 3 . 4 )

=

c [ m a r ( B i + d i - x i ) + ]

i = 2 , 3 , 4

0, max

( B f +

d i

-

X i )

i = 2 , 3 , 4

w a s used. The resulting problem

minimize x o

+

i = 2 , 3 , 4 max

( B i +

d i

-

Z*

1 +}

k

s u b j e c t t o

z

xi S z k ( l

-

a k )

+

m 4

-

m k , k

=

1 ,

. . .

, 4 ,

i = l

c a n be solved by t h e s t o c h a s t i c quasigradient method Ermoliev ( 1 9 7 6 ) o r by tech- niques designed t o solution of t h e complete r e c o u r s e problem; s e e Section 4 . For t h e optimal solution of ( 1 7 ) , t h e values of t h e joint probability

were computed.

Observe t h a t in ( 1 7 ) , t h e c o s t c ( x o ) of t h e r e s e r v o i r of capacity z o is sup- posed t o be l i n e a r in t h e i n t e r v a l L o S z 0 S u o and t h a t t h e coefficient c of t h e penalty t e r m evaluates unit losses due to water s h o r t a g e r e l a t i v e t o t h e c o s t p e r unit capacity of t h e r e s e r v o i r .

4. SOLUTION TECHNIQUES USED TO SOLYE THE

PROBLEM

In this section we shall d e s c r i b e briefly the solution techniques used f o r nu- merical experiments with models ( 1 1 ) and ( 1 7 ) described in t h e previous section.

We could choose among s e v e r a l stochastic optimization programs from t h e SDS/ADO stochastic optimization l i b r a r y available at IIASA.

(20)

F o r solving problem (11) with t h e joint p r o b a b i l i t y c o n s t r a i n t , nonlinear p r o - gramming t e c h n i q u e s c a n b e used. The c h o i c e among them d e p e n d s on t h e p r o p e r - t i e s of t h e set of f e a s i b l e solutions. F o r log-concave p r o b a b i l i t y m e a s u r e s , which i s t h e case of multidimensional normal, gamma, un:form, D i r i c h l e t d i s t r i b u t i o n s of

8,

t h e set d e s c r i b e d b y

i s convex and among o t h e r s , t h e method of f e a s i b l e d i r e c t i o n s , s u p p o r t i n g h y p e r - plane method a n d p e n a l t y methods supplemented b y a n e f f i c i e n t r o u t i n e f o r comput- ing t h e values of t h e function p ( z ) a n d i t s d e r i v a t i v e s c a n b e applied. (For a s u r - vey see P r d k o p a (1978), (1986).) F o r multinormal d i s t r i b u t i o n , t h e s u p p o r t i n g hy- p e r p l a n e method was implemented at IIASA by Szdntai as PCSP c o d e .

F o r solving problem ( 1 7 ) , o n e possibility i s to a p p r o x i m a t e t h e o r i g i n a l d i s t r i - bution of

8

by a s e q u e n c e of discrete distributions. The penalty c a n b e given im- plicitly via so c a l l e d second stage program: f o r f i x e d values of z , ,

pi,

d , , i

=

2 , 3 , 4 ,

? ( p i +

d ,

-

x i , i

=

2 , 3 , 4 ) e q u a l s to t h e optimal value of t h e o b j e c t i v e func- tion in t h e following l i n e a r p r o g r a m

minimize c y

so t h a t t h e problem (17) c a n b e c o n s i d e r e d as t h e complete r e c o u r s e problem a n d solved accordingly. F o r d i s c r e t e d i s t r i b u t i o n t h e a p p r o a c h l e a d s to l i n e a r pro- gramming p r o b l e m s of s p e c i a l s t r u c t u r e which should b e e x p l o i t e d by a d e q u a t e solution techniques. One s u c h t e c h n i q u e i s L-shaped algorithm by Van S l y k e a n d Wets (1969) implemented at IIASA by Birge in NDSP code. F o r f u r t h e r exposition see e.g. Kall (1979), Wets (1983).

Finally, to s t o c h a s t i c programming models of e x p e c t a t i o n t y p e s u c h as (17).

s t o c h a s t i c q u a s i g r a d i e n t (SQG) method c a n b e applied, see Ermoliev (1976), Ermo- l i e v a n d Gaivoronski (1984). The s t o c h a s t i c optimization s o l v e r ST0 based on t h i s method s o l v e s t h e following problem

minimize E, f ( z , w )

=

F ( z )

(21)

s u b j e c t to c o n s t r a i n t s

where f ( z , o ) i s a functic? which depends on decision v a r i a b l e s z a n d random p a r a m e t e r s o. The u s e r h a s to p r o v i d e a n algorithmic d e s c r i p t i o n of t h i s function.

The set X i s t h e set of c o n s t r a i n t s a n d in t h e c u r r e n t implementation, i t would b e t h e set defined by l i n e a r c o n s t r a i n t s , s a y ,

The optimal solution of (18)-(19) i s r e a c h e d i t e r a t i v e l y s t a r t i n g from a n initial point z 0 by applying t h e following i t e r a t i v e p r o c e d u r e :

w h e r e p, i s t h e s t e p s i z e ,

CS -

s t e p d i r e c t i o n ,

9 -

p r o j e c t i o n o p e r a t o r o n t h e set X:

The p r o j e c t i o n in t h e ST0 i s p e r f o r m e d using QPSOL q u a d r a t i c programming pack- a g e , see Gill et a l . (1983).

The s t e p d i r e c t i o n

CS

should, roughly s p e a k i n g , b e in a v e r a g e c l o s e to t h e g r a d i e n t of t h e o b j e c t i v e function F ( z )

=

E,j'(z, o ) at point z S , although indivi- dual

CS

may b e f a r from a c t u a l values of t h e g r a d i e n t . This i s e x p r e s s e d with t h e h e l p of conditional e x p e c t a t i o n s :

where a, i s some vanishing t e r m . Each p a r t i c u l a r s t r a t e g y of choosing s e q u e n c e of s t e p s i z e s p, a n d s t e p d i r e c t i o n s l e a d to p a r t i c u l a r algorithm a n d many s u c h s t r a t e g i e s are implemented in t h e p r o g r a m ST0 some of them are f a i r l y sophisticat- e d . I t i s a l s o possible to c h a n g e s t r a t e g i e s i n t e r a c t i v e l y during optimization pro- c e s s . Detailed d e s c r i p t i o n of t h i s p r o g r a m i s given in Ermoliev a n d Gaivoronski (1984), f o r t h e o r e t i c a l b a c k g r o u n d a n d f u r t h e r r e f e r e n c e s see Ermoliev (1976).

H e r e w e s h a l l d e s c r i b e only f e a t u r e s r e l e v a n t to t h e numerical e x p e r i m e n t s con- d u c t e d with water r e s o u r c e models.

(22)

F i r s t of all i t w a s n e c e s s a r y t o put t h e problem in t h e f o r m (18)-(19). Observe t h a t t h e model with t h e joint probabilistic c o n s t r a i n t cannot b e easily put in t h e frame-work (18)-(19) while t h e expectation models (14), (15). (16) and (17) are al- r e a d y fc-mulated in t h e r e q u i r e d fashion. But expectation models d o not give t h e value of probability

which i s important f o r decision making. T h e r e f o r e w e conducted numerical e x p e r i - ment in t w o s t a g e s .

1 Solve t h e problem based on t h e expectation model:

minimize

E f l ( z , 8 ) = z o + c E m a x max

[pi

+ d i - z i j

i = 2 , 3 , 4

I

s u b j e c t to c o n s t r a i n t s

and additional c o n s t r a i n t s (5) (see (17)). Program ST0 g e n e r a t e s c e r t a i n ap- proximation z to

*

t h e optimal solution.

2 Evaluate t h e value of probability c o n s t r a i n t , t h a t i s compute

This w a s done using t h e g e n e r a t o r of multivariate normal distribution from IMSL l i b r a r y which w a s a l s o used on t h e f i r s t s t a g e . If p ( z * ) a p p e a r e d to b e less than admissible level a then w e i n c r e a s e d t h e penalty coefficient c from (21) and solved t h e problem (21)-(22) again. This p r o c e s s w a s r e p e a t e d until d e s i r a b l e value of ( z

*

) w a s r e a c h e d . Clearly, p ( z * ) 4 1 when c w.

N o w w e s h a l l discuss s t r a t e g i e s which w e r e used f o r solving (21)-(22). In t h i s case i t i s possible t o compute subgradients j',(zS, p S ) of function f ( z , 8 ) f o r given values of z

=

z S and random p a r a m e t e r s

8 = pS,

t h e components are

(23)

and t a k e

tS

= f , ( z S ,

PS)

in method ( 2 0 ) . W e decided, however, to use a method which i s based only on values of f ( z S ,

PS)

and i s applicable t h e r e f o r e f o r m o r e complex models. Various t y p e s of random s e a r c h techniques and finite d i f f e r e n c e s are implemented in STO. For t h i s model t h e following analog of random s e a r c h w a s used:

-

G e n e r a t e L random v e c t o r s ?fl,

. . .

, tlSL : tlSi

=

(adi,.

.

,

a

f ' ) where tl;i are uniformly and independently distributed on [- 6 , , 6 , ] .

-

G e n e r a t e 1 independent random v e c t o r s p l ,

. . .

,

pSL, psi =

( @ i f ,

@ti)

with multivariate normal distribution.

-

Compute

p :

f z i ( z s ,

B S ) =

During computations w e took 1 S L S 5 . - c if @;

+

d i - 2 ;

=

=

maxto, max

18; +

d i - z ; j j i

0 otherwise

-

S e l e c t p, and p e r f o r m o n e s t e p in ( 2 0 ) .

The value of s e a r c h s t e p w a s t a k e n constant 6 ,

=

1 0 . Stepsize p, w a s updated interactively, but a f t e r s e v e r a l t r i a l s t h e following p a t t e r n emerged, which w a s re- peated a f t e r w a r d s :

1 S s S 5 0 5 0 S s S 1 5 0 1 a f t e r w a r d s

In o r d e r to g e t e x a c t solution i t is n e c e s s a r y to t a k e 6 , --, 0 . But in t h i s particu- l a r case i t a p p e a r e d t h a t sufficiently good approximation w a s obtained even with fixed 6 , . Usually i t took 200-300 i t e r a t i o n s to g e t solution. The r e s u l t s obtained by t h i s method for solving water r e s o u r c e problems with d i f f e r e n t p a r a m e t e r s are discussed f r o m t h e application point of view in t h e section 6. One of t h e sets of problem p a r a m e t e r s w a s used to compare performance of various models and solu- tion techniques d e s c r i b e d at t h e beginning of this section.

(24)

5. COMPARISON OF THE SOLUTION TECHNIQUES

This i s t h e p a r t i c u l a r problem of t h e type (17) which w a s used f o r comparison:

minimize F ( z )

= EJ

( z , o )

=

zo

+

C E ,

[ [

max 0 , max 1=2,3,4 toi

+

di

-zii

s u b j e c t to c o n s t r a i n t s

where di

=

12.7, i

=

2, 3, 4. The random v e c t o r o

=

( o l , o z , u3) i s distributed nor- mally with

expectations e

=

(20.2, 27.37, 10.65) s t a n d a r d deviations q

=

(8.61. 10.65. 6.00)

0.360 0.125 and c o r r e l a t i o n matrix 0.360 1. 0.571 ,

[::I25 0.571 1.

1

penalty coefficient c was equal 100. This problem i s t h e same as discussed in t h e case study in Section 6 , only t h e u p p e r bound u o

=

500 mil. m3 was used instead of u o

=

334 mil. m 3 and t h e reliabilities T k

=

0.75 were t a k e n instead of y k

=

0.4.

The convenient f e a t u r e of t h i s problem i s t h a t we c a n easily obtain v e r y good lower bound f o r solution by minimizing zo s u b j e c t to c o n s t r a i n t s s t a t e d above. This gives F ( z * ) 2 494.88 where z * i s t h e optimal point.

(25)

5.1. A p p r o z i m a t i o n s of s t o c h a s t i c problem b y Large s c a l e Linear p r o g r a m m i n g problem

To use this a p p r o a c h i t i s necessary to approximate initial continuous distri- bution by d i s c r e t e distribution consisting of N points. Various ways of doing this are described in Birge, Wets (1986). H e r e w e used t h e following two schemes:

1 "Intelligently"

-

variance matrix w a s computed from t h e given c o r r e l a t i o n matrix and variances;

-

eigenvalues r i and eigenvectors v i , i

=

1, 2 , 3 of t h e variance matrix were computed;

-

number k w a s chosen and f o r one-dimensional normal distribution points bi , i

=

1,

. . .

, k were s e l e c t e d such t h a t

f o r i

=

1,

...

k

-

1

-

approximating d i s c r e t e distribution consisted of all points

f o r a l l i = l , .

. .

, k , j = l , .

. .

, k , 1 = l , .

. .

, k and

These points were t a k e n with equal probability l / ( k 3 ) . Approximating distri- bution chosen in t h i s way i s symmetric and h a s t h e same expectation and vari- a n c e matrix as original distribution.

2 J u s t throwing specific number N of points distributed according t o original distribution and assign t o e a c h of them probability 1 / N .

After such discretization i s performed, t h e original problem becomes equivalent t o t h e following stochastic optimization problem with complete r e c o u r s e :

C N minimize z o

= - vj

j = l

(26)

s u b j e c t to c o n s t r a i n t s

and c o n s t r a i n t s (24).

where uj E j

=

1,

. . .

,

N ,

are t h e points where t h e d i s c r e t e distribution i s concentrated.

This i s l i n e a r programming problem which could b e of v e r y high dimension be- cause l a r g e N i s needed f o r a c c u r a t e approximation. W e did not, however, make v e r y accurate approximations and t h e r e f o r e were a b l e to use a g e n e r a l purpose l i n e a r programming tool, namely l i n e a r programming p a r t of MINOS 4.0, see Mur- tagh and S a u n d e r s (1983).

The r e s u l t s are summarized in t h e Table 1. To e a c h e n t r y in t h e l e f t column of this t a b l e c o r r e s p o n d t w o rows of numbers in t h e columns 2-4. The u p p e r number c o r r e s p o n d s to "intelligent" approximation and t h e lower to "just throwing". The column marked ST0 p r e s e n t s r e s u l t s obtained by t h e v a r i a n t of SQG d e s c r i b e d in section 4 a f t e r 100 i t e r a t i o n s , e a c h i t e r a t i o n r e q u i r e d 40 observations of random function. I t i s amazing t h a t f o r much bigger problem of 1331 points in case of "in- telligent" approximation MINOS found solution much f a s t e r t h a n f o r 343 points. I t i s a l s o worth noting what a big difference makes "intelligent" approximation as com- p a r e d with "just throwing": approximation which u s e s only 125 points is b e t t e r than one with 1331 points. The estimate of t h e value of t h e objective function in Table 1 w a s made using a sample of 10000 points g e n e r a t e d by subroutine f o r multivariate normal distribution from t h e IMSL l i b r a r y .

W e complete t h e discussion by comparison of t h e empirical expectation and c o r r e l a t i o n matrix computed using t h e s a m e 10000 random numbers with t h e corresponding preasigned p a r a m e t e r values. I t gives a n idea how a c c u r a t e t h e es- timates a r e :

expectations of random v e c t o r o e

=

(20.2000, 27.3700, 10.6500)

empirical expectations from 10000 points (20.2855, 27.3912, 10.6841) 0.360 0.125

'

c o r r e l a t i o n matrix of o 0.360 1. 0.571 1 2 0.571 1.

,

empirical c o r r e l a t i o n matrix

1. 0.354429 0.107631 0.354429 1. 0.572717 .0.107631 0.572717 1.

1

(27)

TABLE 1

- -

Total n u m b e r of points

in approximating d i s t r i b u t i o n

Optimal value of t h e complete r e c o u r s e o b j e c t i v e function Estimate of t h e value of o r i g i n a l o b j e c t i v e function Number of MINOS i t e r a t i o n s MINOS u s e r time

5.2. Stochastic q u a s i g r a d i e n t method

In t h e ST0 implementation t h e u s e r c a n c h o o s e between two options: i n t e r a c - t i v e a n d automatic. In t h e i n t e r a c t i v e option t h e u s e r c h o o s e s t h e s t e p s i z e p, from ( 2 0 ) himself, h i s judgment i s b a s e d on s u c h notions as "oscillatory b e h a v i o r " of v a r i a b l e s o r "visible t r e n d " a i d e d by some additional "measures of p r o c e s s s quali- ty". These are displayed on t h e terminal along with c u r r e n t point and u s e r c a n in- t e r r u p t i t e r a t i v e p r o c e s s s a n d c h a n g e t h e value of s t e p s i z e . In o r d e r to use t h i s possibility e f f e c t i v e l y t h e u s e r h a s to b e q u i t e e x p e r i e n c e d . However, as p r a c t i c e shows e v e n a n i n e x p e r i e n c e d u s e r c a n quickly g e t n e c e s s a r y skills. All t h i s i s d e s c r i b e d in more d e t a i l in Gaivoronski (1986).

In e x p e r i m e n t s with i n t e r a c t i v e mode t h e s t e p d i r e c t i o n from ( 2 0 ) was com- p u t e d using c e r t a i n a n a l o g u e of random s e a r c h : g e n e r a t e random v e c t o r h

=

( h l , h 2 , h 3 ) w h e r e hi a r e independent random v a r i a b l e s uniformly d i s t r i b u t e d on [ - G , G ] a n d G i s c h o s e n i n t e r a c t i v e l y from t h e i n t e r v a l [I, 201, compute llh

I(

corn-

p u t e v e c t o r u

=

( u l , up, u g ) s u c h t h a t

(28)

where oi a r e independent o b s e r v a t i o n s of o

r e p e a t t h e f i r s t two s t e p s L times with d i f f e r e n t independent o b s e r v a t i o n s of r a n - dom v a r i a b l e s w a n d h , o b t a i n 1 v e c t o r s u and t a k e as s t e p d i r e c t i o n s

t s

a v e r a g e of t h e s e v e c t o r s (in example given below 1

=

10).

S t e p s i z e w a s c h o s e n i n t e r a c t i v e l y . A t f i r s t sufficiently l a r g e s t e p s i z e c h o s e n (10.0) which w a s r e d u c e d if i r r e g u l a r b e h a v i o r of t h e z v a r i a b l e s w a s o b s e r v e d . The r e s u l t s a r e in Table 2.

TABLE 2

S t e p S t e p s i z e zo z 1 2 2 2 3 z 4 F(z)

number

The value of s t e p G in random s e a r c h w a s s e t 10.0

A t t h i s point t h e s t e p in random s e a r c h w a s c h a n g e d t o 5.0

During a c t u a l computations information was displayed more f r e q u e n t l y and, of c o u r s e , without l a s t column which c o n t a i n s t h e e s t i m a t e s of t h e values of t h e objec- tive function f (z) at t h e c u r r e n t points using t h e same 10000 o b s e r v a t i o n s of t h e

(29)

random v e c t o r o which were used f o r estimations of MINOS r e s u l t s . These estimates were obtained a f t e r w a r d s (and consumed a lot of computer time!). From t h e table i t i s evident t h a t v e r y good solution ( b e t t e r than 1331 points approximate scheme) w a s obtained a f t e r 20 i t e r a t i o n s , t h a t is a f t e r 800 function evaluations and a l l sub- sequent points oscillated in close vicinity.

The major disadvantage of t h e i n t e r a c t i v e option is t h a t i t r e q u i r e s too much from t h e u s e r . T h e r e f o r e automatic option w a s developed in which computer simu- l a t e s behavior of a n e x p e r i e n c e d u s e r . F o r experiment with automatic option w e choose t h e simplest version of SQG: o n e which uses f o r s t e p d i r e c t i o n t h e values of

I,

( z , o ) , which are v e r y e a s y to compute h e r e : f * ( z , o )

=

I l . , o., - c t i , - c t 2 , - c t 3 j where t j

=

1 if

O j + d j t i - z j + I =maxIO, i =2,3,4 max I o i - l + d i - z i j j and t j

=

0 otherwise, c

=

100

-

penalty coefficient.

On e a c h i t e r a t i o n only o n e observation of

I,

( z S , o ) w a s computed, which w a s used as s t e p direction.

Stepsize ps w a s computed automatically according to t h e simple rule:

-

on e a c h i t e r a t i o n o n e observation

I

( z S , oS ) was made and t h e s e observations were used to compute estimate F ( s ) of t h e c u r r e n t value of t h e objective function:

c u r r e n t p a t h length L ( s ) w a s computed also:

S

L ( s )

= C

J J z i

+'

-zil(

i =1

-

initial stepsize p i w a s chosen sufficiently l a r g e (in examples below i t w a s 5.0) and e a c h M i t e r a t i o n s t h e condition f o r reducing stepsize w a s c h e c k e d (in ex- amples below M

=

20, t h a t is conditions were c h e c k e d on i t e r a t i o n s number 20, 40, 60,.

. .

). This condition i s t h e following:

p s + l = D p s if ( F ( s - K ) - F ( s ) ) / ( L ( s ) - L ( S -K)) S A PS + I

=

PS otherwise

In examples below D

=

0.5, K

=

20, A

=

0.01, s t a r t i n g point was (1000, 100, 100, 100, 100). Each i t e r a t i o n r e q u i r e d one observation of random function f ( z , 0 ) and one observation of i t s gradient. Below t h e r e are two r u n s with dif-

(30)

f e r e n t sequences of random v e c t o r s o. One i s "very good" a n o t h e r

-

"not as good but quite reasonable". When c u r r e n t point a p p r o a c h e s optimum t h e e v e n t It,

=

1 j becomes less and l e s s likely. T h e r e f o r e t h e method spends much of i t e r a t i o n s standing at t h e same point ( f o r instance i t e r a t i o n s 260-400 in Tables 3 and 4). The l a s t column again w a s obtained a f t e r w a r d s using t h e same 1 0 0 0 0 observations of w as in t h e previous tests. I t shows t h a t t h e algorithm r e a c h e s quite good vicinity of solution a f t e r 120 i t e r a t i o n s (except a slight jump on i t e r a t i o n 420). In Table 4 w e have a big jump on i t e r a t i o n number 220, t h e method, however, quickly r e a c h e s t h e vicinity of solution again. This jump is due to too big stepsize. After i t e r a t i o n number 240 everything is OK again.

The problem with SQG i s t h e stopping c r i t e r i o n and c u r r e n t l y t h e c r i t e r i o n implemented i s based o n assumption t h a t if stepsize becomes'too small w e are in t h e vicinity of optimum. This of c o u r s e i s not n e c e s s a r i l y t r u e but e x p e r i e n c e shows t h a t n e v e r t h e l e s s t h i s c r i t e r i o n is quite r e l i a b l e if coupled with r e p e a t e d runs.

The same input d a t a were used f o r solving t h e problem (11) with joint proba- bility constraint. N e w v a r i a b l e s S o

=

z o

-

L o and

=

z 1

-

d l were introduced t o eliminate t h e individual lower bounds. For t h e resulting program

minimize S o

O S ~ o S ~ O - ~ O ; O S ~ l S ~ ~ - d ~ ; O S ~ ~ S ~ ~ ; O S ~ ~ S ~ ~ ; O S ~ ~ S ~ ~ ,

t w o solution techniques were implemented:

s u b j e c t to

P

z Z S 0 1

+

d 2 z 3 2 0 2 + d 3

2 o3

+

d 4

2 a

(31)

TABLE 3 "Very good".

S t e p Stepsize 20 Z 1 Z~ 2 3 z 4 F(z

1

number

TABLE 4 "Not as good as previous but quite reasonable".

S t e p Stepsize

Z o

Z 1 2 2 3 4 F(z

1

number

(32)

5.3. The PCSPcode b y SzdLntai

The p r o g r a m s o l v e s problems of s t o c h a s t i c programming with joint p r o b a b i l i t y c o n s t r a i n t s u n d e r assumption of multinormal distribution of random right-hand s i d e s ( o f

= pi,

i

=

2, 3 , 4 in o u r c a s e ) . I t i s based on Veinott's s u p p o r t i n g i . 1 ~ - p e r p l a n e algorithm ( s e e Veinott (1967)). The individual u p p e r bounds on v a r i a b l e s a r e handled s e p a r a t e l y a n d t h e p a r a m e t e r s of t h e multinormal distribution are used t o g e t a s t a r t i n g f e a s i b l e i n t e r i o r solution. F o r c o n s t r u c t i n g t h e n e c e s s a r y l i n e a r a n d s t o c h a s t i c d a t a f i l e s , o n e c a n t u r n t o t h e brief documentation by Ed- wards (1985). Some computational r e s u l t s of t h e test problem with d a t a given at t h e beginning of t h i s S e c t i o n are given in Table 5.

TABLE 5 Results of t h e calculations by using t h e PCSP code.

zo 1

Zz

3 4 P r o b . lev. CPU time No. of

cutting planes

5.4. The a p p l i c a t i o n of t h e n o n l i n e a r v e r s i o n of t h e MINOS s y s t e m

F o r t h i s p u r p o s e o n e h a s t o write a s e p a r a t e s u b r o u t i n e named CALCON which c a l c u l a t e s t h e value of t h e p r o b a b i l i s t i c c o n s t r a i n t s a n d i t s g r a d i e n t . The s u b r o u - t i n e s are contained in t h e PCSP code. They w e r e coded on t h e b a s e of a n improved simulation technique by Szdntai (1985). Computational r e s u l t s given in t h i s s e c t i o n show t h a t t h e d i r e c t a p p l i c a t i o n of t h e MINOS system f o r t h e solution of t h e optim- ization problem (11) i s l e s s comfortable t h a n t h e use of t h e PCSP code. We obtained t h a t without giving a good initial s e t t i n g on t h e values of t h e nonlinear v a r i a b l e s t h e MINOS system failed t o find a f e a s i b l e solution.

Finally in Table 7 t h e r e i s t h e summary of experiments.

In t h e f i r s t column t h e r e i s a s h o r t d e s c r i p t i o n of e x p e r i m e n t including name of t h e p r o g r a m , number of approximating points a n d t y p e of approximation ( f o r MINOS, I a n d R mean t h e same as b e f o r e ) , number of i t e r a t i o n s a n d indication of in- t e r a c t i v e or automatic mode ( f o r STO), value of p r o b a b i l i t y c o n s t r a i n t ( f o r PCSP).

(33)

TABLE 6 Results of t h e calculations by using t h e nonlinear MINOS system d i r e c t - ly. (We applied t h e z 2

=

63.035, z3 =77.345, z 4

=

30.0 initial s e t t i n g s . F o r t h e s e initial values t h e p r o b a b i l i s t i c c o n s t r a i n t is infeasible with value 0.866.)

2 3 z 4 P r o b . lev. CPU time No. of major i t e r a t i o n s

In t h e column 7 t h e r e are values of o b j e c t i v e function (24) computed by a v e r a g i n g 1 0 000 o b s e r v a t i o n s g e n e r a t e d by IMSL s u b r o u t i n e f o r multivated normal distribu- tion. In t h e column 8 are t h e values of probability c o n s t r a i n t computed using t h e same random numbers a n d in t h e l a s t column c p u time of t h e VAX 780. F o r i n t e r a c - t i v e mode of ST0 c p u time i s not included b e c a u s e t h e c r u c i a l f a c t o r t h e r e w a s u s e r ' s r e s p o n s e .

Experiments s u g g e s t t h a t both c o n s i d e r e d models g i v e c o m p a r a b l e r e s u l t s and t h a t t h e methods ST0 a n d PCSP contained in t h e ADO/SDS l i b r a r y of s t o c h a s t i c p r o - gramming c o d e s p e r f o r m e d b e t t e r on t h i s p a r t i c u l a r problem t h a n t h e d i r e c t u s e of s t a n d a r d LP o r NLP p a c k a g e s . To s o l v e t h e c a s e s t u d y , t h e s t o c h a s t i c q u a s i g r a - d i e n t method w a s c h o s e n as i t s implementation i s n o t essentially limited by t h e as- sumed t y p e of d i s t r i b u t i o n a n d t h r o u g h i n c r e a s i n g t h e penalty coefficient value a n a p p r o x i m a t e optimal solution which fulfills t h e joint p r o b a b i l i t y c o n s t r a i n t c a n b e achieved.

6.

THE CASE STUDY

In t h e c a s e s t u d y of t h e water r e s o u r c e s system in t h e Bodrog R i v e r basin t h e model (17) w a s used with a d d e d c o n s t r a i n t s ( s e e discussion):

The input values of t h e 3-dimensional multinorrnal distribution of were as follows (with e x c e p t i o n of c o r r e l a t i o n matrix in mil. m3)

(34)

TABLE 7 Experiment

MINOS MINOS MINOS MINOS MINOS MINOS ST0 I ST0 I ST0 A 1 ST0 A2 PCSP PCSP PCSP PCSP PCSP PCSP PCSP

Function value

Prob.

value

CPU time

(35)

C o r r e l a t i o n m a t r i x

The p a r a m e t e r s of t h e m a r g i n a l normal d i s t r i b u t i o n s of c u m u l a t e d monthly inflows

< i w e r e

As t h e v a l u e s a k

=

O.g, k

=

1, 2, 3, 4 a n d y k

=

0.4, k

=

1, 2, 3, 4 w e r e used ( s e e d i s c u s s i o n ) t h e following v a l u e s of q u a n t i l e s zk w e r e o b t a i n e d (in mil. m3

T h e v a l u e s di w e r e as follows (mil. m3) P e r i o d k

zk (1.

-

0.9)

zk (0+4>

The minimum a n d maximum r e s e r v o i r c a p a c i t y z o was: l o

=

100 mil. m3 a n d u,,

=

334 mil. m3. (In t h e a l t e r n a t i v e d i s c u s s e d in t h e p r e v i o u s s e c t i o n a less r e a l i s t i c v a l u e u O

=

500 mil. m3 was u s e d . ) The u p p e r bounds f o r v a r i a b l e s w e r e 252 mil. m3 ( u i = 252, i

=

1 , 2, 3, 4 in mil. m3) t h a t i s t h e volume of a long-term flood. This c o n s t r a i n t was n o t e f f e c t i v e a n d t h e r e f o r e i t was n o t a n a l y s e d .

1 2 3 4

146.8 205.0 252.9 283.0 272.5 342.1 397.1 446.1

(36)

Due to r e c r e a t i o n p u r p o s e s , t h e a c c e p t a b l e minimum s t o r a g e in t h e 3-rd p e r i o d i s m 3

=

1 9 4 mil. m3. However, t h e comparison of t h e t h i r d inequality of (9), t h e t h i r d inequality of (10) t o g e t h e r with z o S 334 g i v e s a n u p p e r b o u n d of 1 8 9 , 4 fc; t h e sum m 3

+

v3, so t h a t t h e p a r a m e t e r v a l u e m 3

=

1 9 4 would l e a d to c o n t r a d - i c t o r y c o n s t r a i n t s . T h a t s why t h e minimum s t o r a g e v a l u e m 3 h a s b e e n p u t up to 1 3 7 mil. m3 ( s e e a l t e r n a t i v e C) a n d t h e s t o r a g e v a l u e s m k , k

=

1 , 2, 3, 4 h a v e b e e n k e p t f i x e d o v e r a l l p e r i o d s ( s e e a l t e r n a t i v e s A a n d B). The r e l i a b i l i t y of maintaining t h e summer r e s e r v o i r pool h a s b e e n e v a l u a t e d e x p o s t .

6.1. C h o i c e of r e l i a b i l i t y v a l u e s

The v e r y i m p o r t a n t p a r a m e t e r s of t h e model are t h e r e q u i r e d p r o b a b i l i t i e s a , 7 2 a n d a i . The v a l u e a i s t h e r e q u i r e d joint p r o b a b i l i t y of t h e water s u p p l y . The tests with t h e model h a v e shown t h a t i t i s n e c e s s a r y to a d d t h e d e t e r m i n i s t i c con- s t r a i n t (25) in o r d e r to s e c u r e t h e r e q u i r e d v a l u e s of c o n s t a n t i n d u s t r i a l water demands. The p e n a l t y t e r m i s o f t e n so weak t h a t t h e c o n s t r a i n t (25) may b e violat- ed. Using t h e d e t e r m i n i s t i c c o n s t r a i n t (25) a r e l a t i v e l y low v a l u e a, e.g. a

=

0.85 may b e a c c e p t a b l e . However, t h e v a l u e of joint p r o b a b i l i t y (1) i s t h e o u t p u t of t h e model; t h e r e f o r e t h e condition (1) i s t e s t e d a n d if i t c a n n o t b e fulfilled, t h e a l t e r - n a t i v e i s r e j e c t e d .

The v a l u e s a i r e f e r to t h e r e l a t i v e l y s t r o n g environmental a n d t e c h n i c a l re- q u i r e m e n t s f o r maintaining t h e minimum r e s e r v o i r pool. T h e r e f o r e a f = 0.9, i

=

1, 2 , 3, 4 w a s c h o s e n .

The c h o i c e of t h e v a l u e s 7 * w a s r a t h e r difficult. They r e f e r to t h e i m p o r t a n t c o n s t r a i n t s imposed o n t h e r e s e r v o i r V o p e r a t i o n t h a t a r i s e from flood c o n t r o l re- q u i r e m e n t s t h a t s t i p u l a t e t h a t a c e r t a i n s p a c e

-

flood c o n t r o l s t o r a g e , b e held empty. This r e q u i r e m e n t c a n n o t b e e a s i l y e x p r e s s e d i n t h e model d u e to i t s a g g r e - g a t e d c h a r a c t e r . The p r o b a b i l i t y t h a t t h e f r e e b o a r d s t o r a g e i s empty means a l s o t h a t t h e r e i s n o s p i l l during t h i s p e r i o d . If t h e p e r i o d i s s h o r t , e.g. o n e d a y , t h e p r o b a b i l i t y 7 may c o r r e s p o n d to t h e r e q u i r e d r e l i a b i l i t y . F o r l o n g e r p e r i o d s e . g . o n e month, t w o months, half a y e a r , e x t r e m e l y l a r g e s t o r a g e c a p a c i t i e s will b e n e c e s s a r y if n o s p i l l s h a l l t a k e p l a c e d u r i n g t h i s p e r i o d with p r o b a b i l i t y e q u a l 0.75. (This v a l u e h a s b e e n used in t h e p r e v i o u s s e c t i o n a n d t h e t o t a l r e s e r v o i r c a p a c i t y z o as high as a p p r o x . 5 0 0 mil. m3 w a s n e c e s s a r y . ) T h e r e f o r e t h e flood c o n t r o l p r o b l e m s are o f t e n t r e a t e d in a s e p a r a t e model a n d t h e r e q u i r e d p r o b a b i l i -

(37)

t i e s 7 a r e a d a p t e d to t h e r e s u l t i n g v a l u e s of t h i s s e p a r a t e model. I t i s n e c e s s a r y t o i n t e r p r e t p r o p e r l y t h e meaning of t h e s e p r o b a b i l i t i e s . F o r i n s t a n c e t h e p r o b a b i l i t y 7

=

0.4 of maintaining t h e f r e e b o a r d s t o r a g e d o e s n o t s a y t h a t t h e flood c o n t r o l i s on a low level b u t t h a t t h e f r e e b o a r d s p a c e will b e filled (and possibly some spill may o c c u r ) with t h i s p r o b a b i l i t y during t h e p e r i o d c h o s e n . With t h i s f a c t in mind and a c c o r d i n g to t h e r e s u l t s of t h e s e p a r a t e flood c o n t r o l model t h e value yi

=

0.4 i

=

1, 2 , 3, 4 w a s c h o s e n in t h i s s e c t i o n .

6.2. R e s u l t s

In t h e f i r s t r e s u l t i n g a l t e r n a t i v e A of t h e r e s e r v o i r V design a n d o p e r a t i o n t h e i n p u t p a r a m e t e r s were:

mk = 5 7 mil. m3, k

=

1, 2 , 3, 4

-

minimum r e s e r v o i r s t o r a g e ,

v k

=

7 0 mil. m3, k

=

1 , 2 , 3, 4 - flood c o n t r o l s t o r a g e ( f r e e b o a r d s t o r a g e ) ,

which g a v e

x o

=

291.6 mil. m3

-

t h e t o t a l r e s e r v o i r c a p a c i t y x I

=

107.9 mil. m3

-

t h e t o t a l r e l e a s e in t h e 1-st p e r i o d x 2

=

6 9 . 6 mil. m3

-

t h e t o t a l r e l e a s e in t h e 2-nd p e r i o d x 3 = 69.8 mil. m3

-

t h e t o t a l r e l e a s e in t h e 3-rd p e r i o d x 4

=

35.7 mil. m3

-

t h e t o t a l r e l e a s e in t h e 4-th p e r i o d .

S t a r t e d at s o

=

m 4

=

5 7 mil. m3, using t h e computed optimal r e l e a s e s and t h e cumulated monthly inflows e q u a l to t h e q u a n t i l e s zk (1

-

0.9) and zk (0.4) we c a n compute t h e c o r r e s p o n d i n g s t o r a g e s si (in mil. m3):

P e r i o d i

I

1 2 3

The underlined v a l u e s are c r i t i c a l , i . e . , t h e c o r r e s p o n d i n g inequalities in (9) and (10) a r e fulfilled as e q u a t i o n s . A s t h e existing t o t a l r e s e r v o i r c a p a c i t y i s 304 mil.

m3, we o b s e r v e from t h e a c t i v e c o n s t r a i n t s

I

min s t o r a g e s i m a x s t o r a g e s i

5 7 9 5 . 9 84.5 62.6 57.0 5 7 221.6 221.6 206.8 219.9

Referenzen

ÄHNLICHE DOKUMENTE

in the model structure made to reflect the aforementioned water supply model. The main objective of the water demand model is to make a comprehensive analysis of factors

[r]

The literature on cost allocation suggests a number of such principles, including: simplicity, reasonable information requirements, adaptabil- ity (which

AS surface water resources are scarce in Skane (small rivers and few lakes) it is evident that a fairly large proportion of the water used for irrigation must be groundwater. It

This paper presents a review o f attempts to refine water demand forecasting techniques, particularly in connection with residential, industrial, agricultural and recreational

This paper examines some of the available methods from both sources in the context of a concrete example: a cost sharing problem among a group of municipalities in Sweden developing

This paper, the sixth in the IIASA water demand series, reports on a price coordination method proposed for the solution of a complex demand-supply problem in

AN ENERGY GENERATION WATER USE AND DEMAND MODEL Local Water Use and Demand Forecasting Hydroelectric Energy C Input from Industrial ' Generati on Component of National