• Keine Ergebnisse gefunden

Niklaus Berger

N/A
N/A
Protected

Academic year: 2022

Aktie "Niklaus Berger"

Copied!
114
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Searching for Lepton Flavour Violation with the

Mu3e Experiment

Niklaus Berger

Institut für Kernphysik, Johannes-Gutenberg Universität Mainz Physics Colloquium

Heidelberg, May 2015

(2)

Particle Physics:

What are the fundamental constituents of matter

and how do they interact?

(3)

The Standard Model of Elementary Particles

(4)

Niklaus Berger – Heidelberg, May 2015 – Slide 4

Hugely successful

Magnetic moment of the electron:

• Theory:

ge = -2.002 319 304 363 56 (154)

(Aoyama et al., PRL 109, 111807 (2012))

• Experiment:

ge = - 2.002 319 304 361 53 (53)

(Hanneke et al. PRL 100, 120801 (2008))

(5)

Open Questions?

(6)

Niklaus Berger – Heidelberg, May 2015 – Slide 6

Dark Matter

NASA: HST and Chandra

(7)

Dark Matter

NASA: HST and Chandra

(8)

Niklaus Berger – Heidelberg, May 2015 – Slide 8

Matter-Antimatter Asymmetry

10’000’000’000 Antimatter

10’000’000’001

Matter

(9)

Matter-Antimatter Asymmetry

1

Radiation Us

(10)

Niklaus Berger – Heidelberg, May 2015 – Slide 10

Gravity

(11)

The Structure of the Standard Model

(12)

Niklaus Berger – Heidelberg, May 2015 – Slide 12

The Structure of the Standard Model

τ

1 eV 1 KeV 1 MeV 1 GeV 1 TeV 10

3

TeV 10

6

TeV 10

9

TeV 10

12

TeV 10

15

TeV 10

18

TeV 1 meV

1 μeV

Neutrinos e u

d s

μ c

b W Z H t

Planck-Scale

(Gravity)

(13)

The Structure of the Standard Model

τ

1 eV 1 KeV 1 MeV 1 GeV 1 TeV 103 TeV 106 TeV 109 TeV 1012 TeV 1015 TeV 1018 TeV 1 meV

1 μeV

Neutrinos e u

d s μ c

b WZ Ht

Planck-Scale (Gravity)

(14)

Niklaus Berger – Heidelberg, May 2015 – Slide 14

The Structure of the Standard Model

τ

1 eV 1 KeV 1 MeV 1 GeV 1 TeV 103 TeV 106 TeV 109 TeV 1012 TeV 1015 TeV 1018 TeV 1 meV

1 μeV

Neutrinos e u

d s μ c

b WZ Ht

Planck-Scale (Gravity)

h h

t

t

(15)

The Structure of the Standard Model

τ

1 eV 1 KeV 1 MeV 1 GeV 1 TeV 10

3

TeV 10

6

TeV 10

9

TeV 10

12

TeV 10

15

TeV 10

18

TeV 1 meV

1 μeV

Neutrinos e u

d s

μ c

b W Z H t

Planck-Scale (Gravity)

LHC ? ?

(16)

Niklaus Berger – Heidelberg, May 2015 – Slide 16

Direct production

(17)

Indirect effects in quantum loops

(18)

Niklaus Berger – Heidelberg, May 2015 – Slide 18

Indirect effects in quantum loops

Large discovery reach if:

• Many incoming particles

• Long lifetime

• Little Standard Model background

(19)

Look at muons

Leptons

Large discovery reach if:

• Many incoming particles (108/s)

• Long lifetime (2.2 μs)

• Little Standard Model background

(20)

Niklaus Berger – Heidelberg, May 2015 – Slide 20

Lepton Flavour

(21)

Lepton Flavour

(22)

Niklaus Berger – Heidelberg, May 2015 – Slide 22

Lepton Flavour Violation!

(23)

Charged Lepton Flavour Violation?

(24)

Niklaus Berger – Heidelberg, May 2015 – Slide 24

Heavily suppressed in the SM by (Δm

ν2

/m

W2

)

2

Branching fraction < 10

-54

Charged Lepton Flavour Violation?

(25)

This

(charged lepton flavour violation) has never been seen

and not because we have not looked

(26)

Niklaus Berger – Heidelberg, May 2015 – Slide 26

History of LFV experiments

1940 1960 1980 2000 2020

Year

90%–CL bound

10–14 10–12 10–10 10–8 10–6 10–4 10–2 100

μ

μ 3e

μN eN

τ μγ

τ

10–16

SINDRUM SINDRUM II

MEG

MEG plan Mu3e Phase I

Mu3e Phase II Comet/Mu2e

(Updated from W.J. Marciano, T. Mori and J.M. Roney,

Ann.Rev.Nucl.Part.Sci. 58, 315 (2008))

(27)

New physics in μ

+

→ e

+

e

-

e

+

Tree diagrams

• Higgs triplet model

• Extra heavy vector bosons (Z’)

• Extra dimensions (Kaluza-Klein tower) Loop diagrams

• Supersymmetry

• Little Higgs models

• Seesaw models

• GUT models (leptoquarks)

• and much more...

(28)

Niklaus Berger – Heidelberg, May 2015 – Slide 28

New physics in μ

+

→ e

+

e

-

e

+

Muon decays at the 10

-16

level sensitive to new physics

at O (1000 TeV) scale for O (1) couplings!

(29)

New physics in μ

+

→ e

+

e

-

e

+

Muon decays at the 10

-16

level sensitive to new physics at O (1000 TeV) scale for O (1) couplings!

τ

1 eV 1 KeV 1 MeV 1 GeV 1 TeV 10

3

TeV 10

6

TeV 10

9

TeV 10

12

TeV 10

15

TeV 10

18

TeV 1 meV

1 μeV

Neutrinos e u

d s

μ c

b W Z H t

Planck-Scale

(Gravity)

(30)

Niklaus Berger – Heidelberg, May 2015 – Slide 30

Searching for

μ

+

→ e

+

e

-

e

+

at the 10

-16

level

(31)

• We want to find or exclude μ → eee at the 10-16 level

• 10-15 in phase I (existing beamline)

• 10-16 in phase II (new beamline)

• 4 orders of magnitude over previous experiment (SINDRUM 1988 - 10-12)

The Goal: 10

-16

1940 1960 1980 2000 2020

90%–CL bound

10–14 10–12 10–10 10–8 10–6 10–4 10–2 100

μ

μ 3e

μN eN

τ μγ

τ

10–16

SINDRUM SINDRUM II

MEG

MEG plan Mu3e Phase I

Mu3e Phase II Comet/Mu2e

(Updated from W.J. Marciano, T. Mori and J.M. Roney, Ann.Rev.Nucl.Part.Sci. 58, 315 (2008))

(32)

Niklaus Berger – Heidelberg, May 2015 – Slide 32

• Observe more than 1016 muon decays:

2 Billion muons per second

• Suppress backgrounds by more than 16 orders of magnitude

• Be sensitive for the signal

The Challenges

(33)

Muons from PSI

Paul Scherrer Institute in Villigen, Switzerland

(34)

Niklaus Berger – Heidelberg, May 2015 – Slide 34

Muons from PSI

Paul Scherrer Institute in Villigen, Switzerland World’s most intensive proton beam

2.2 mA at 590 MeV: 1.3 MW of beam power

(35)

• Rotating carbon wheel as target

• Hit with proton beam

• Produce pions

Pion production

(36)

Niklaus Berger – Heidelberg, May 2015 – Slide 36

Pion decay

• Pions decay to muons

• 2-body decay: Fixed muon momentum

• Currently: 108 muons/s, more possible

(37)

Building the

Mu3e Experiment

(38)

Niklaus Berger – Heidelberg, May 2015 – Slide 38

Stop muons, let them decay

muon beam

target

(39)

e +

e + e -

• μ+ → e+e-e+

• Two positrons, one electron

• From same vertex

• Same time

• Sum of 4-momenta corresponds to muon at rest

• Maximum momentum: ½ mμ = 53 MeV/c

The signal

(40)

Niklaus Berger – Heidelberg, May 2015 – Slide 40

• Combination of positrons from ordinary muon decay with electrons from:

- photon conversion, - Bhabha scattering, - Mis-reconstruction

• Need very good timing, vertex and momentum resolution

Accidental Background

e

+

e

+

e

-

(41)

• Allowed radiative decay with internal conversion:

μ

+

→ e

+

e

-

e

+

νν

• Only distinguishing feature:

Missing momentum carried by neutrinos

Internal conversion background

Branching Ratio

mμ - Etot (MeV)

0 1 2 3 4 5 6

10-12

10-16 10-18 10-13

10-17 10-15 10-14

10-19

• Need excellent μ3e

momentum resolution

(R. M. Djilkibaev, R. V. Konoplich, Phys.Rev. D79 (2009) 073004)

(42)

Niklaus Berger – Heidelberg, May 2015 – Slide 42

• Apply magnetic field (e.g. 1 Tesla)

• Measure curvature of particles in field

• Limited by detector resolution and scattering in detector

Momentum measurement

(43)

• Limited by detector resolution and scattering in detector

Momentum measurement

(44)

Niklaus Berger – Heidelberg, May 2015 – Slide 44

2 Billion Muon Decays/s

50 ns, 1 Tesla field

(45)

• High granularity (occupancy)

• Close to target (vertex resolution)

• 3D space points (reconstruction)

• Minimum material

(momenta below 53 MeV/c)

Detector Technology

(46)

Niklaus Berger – Heidelberg, May 2015 – Slide 46

High voltage monolithic active pixel sensors - Ivan Perić

• Use a high voltage commercial process (automotive industry)

Fast and thin sensors: HV-MAPS

P-substrate

N-well E field

(47)

High voltage monolithic active pixel sensors - Ivan Perić

• Use a high voltage commercial process (automotive industry)

• Small active region, fast charge collection via drift

Fast and thin sensors: HV-MAPS

P-substrate N-well

Particle

E field

(48)

Niklaus Berger – Heidelberg, May 2015 – Slide 48

High voltage monolithic active pixel sensors - Ivan Perić

• Use a high voltage commercial process (automotive industry)

• Small active region, fast charge collection via drift

Fast and thin sensors: HV-MAPS

P-substrate N-well

Particle E field

• Implement logic directly in N-well in the pixel - smart diode array

• Can be thinned down to < 50 μm

(I.Perić, P. Fischer et al., NIM A 582 (2007) 876 )

(49)

HV-MAPS

3 m m

(50)

Niklaus Berger – Heidelberg, May 2015 – Slide 50

HV-MAPS

3 m m

Pixels with amplifier

40 x 32 pixels

80 x 103 μm pixel size

(51)

HV-MAPS

3 m m

Pixels with amplifier

40 x 32 pixels

80 x 103 μm pixel size

Comparator and digital pixel logic

(52)

Niklaus Berger – Heidelberg, May 2015 – Slide 52

Tests done at

• CERN 250 GeV pions

• DESY 5 GeV electrons

• PSI 250 MeV pions

• Mainz 1.5 GeV electrons

• Thanks for all the beam time and support!

Beam tests

(53)

Introduction

Y

• X

(54)

Niklaus Berger – Heidelberg, May 2015 – Slide 54

Introduction

Y

• X

(55)

Introduction

Y

• X

(56)

Niklaus Berger – Heidelberg, May 2015 – Slide 56

Position resolution given by pixel size

Position Resolution

(57)

Hit efficiency above 99% without tuning

Efficiency

(58)

Niklaus Berger – Heidelberg, May 2015 – Slide 58

Hit timestamp resolution better than 17 ns

(significant setup contribution in the measurement)

Time resolution

-400 -200 0 400

500 1000 1500 2000 2500 3000

Difference between trigger and timestamp [ns]200

σ = 16.6 ns

Hits per 10 ns bin Timestamp frequency 100 MHz

(59)
(60)

Niklaus Berger – Heidelberg, May 2015 – Slide 60

Building a detector thinner than a hair

(61)

Introduction

Y

• X

(62)

Niklaus Berger – Heidelberg, May 2015 – Slide 62

• 50 μm silicon

• 25 μm Kapton™ flexprint with aluminium traces

• 25 μm Kapton™ frame as support

• Less than 1‰ of a radiation length per layer

Mechanics

(63)
(64)
(65)
(66)

Niklaus Berger – Heidelberg, May 2015 – Slide 66

• Add no material:

Cool with gaseous Helium (low scattering, high mobility)

• ~ 150 mW/cm2 - total 2 kW

• Simulations: Need ~ several m/s flow

Cooling

• Full scale heatable prototype built

• 36 cm active length

• No visible vibrations

• Can add local cooling

(67)

Introduction

Y

• X

(68)

Niklaus Berger – Heidelberg, May 2015 – Slide 68

Cooling tests

Global helium stream

Local helium stream

(69)

• 1 T magnetic field

• Resolution dominated by multiple scattering

• Momentum resolution to first order:

Σ

P

/P ~ θ

MS

• Precision requires large lever arm (large bending angle Ω) and low multiple scattering θMS

Momentum measurement

Ω MS

θ

MS

B

(70)

Niklaus Berger – Heidelberg, May 2015 – Slide 70

Precision vs. Acceptance

50 MeV/c 25 MeV/c 12 MeV/c B

33 cm

(71)

Precision vs. Acceptance

50 MeV/c 25 MeV/c 12 MeV/c B

(72)

Niklaus Berger – Heidelberg, May 2015 – Slide 72

Precision vs. Acceptance

50 MeV/c 25 MeV/c 12 MeV/c B

(73)

Precision vs. Acceptance

50 MeV/c 25 MeV/c 12 MeV/c B

(74)

Niklaus Berger – Heidelberg, May 2015 – Slide 74

Precision vs. Acceptance

50 MeV/c 25 MeV/c 12 MeV/c B

Ω ~ π MS

θMS

B

(75)

Detector Design

muon beam

target

(76)

Niklaus Berger – Heidelberg, May 2015 – Slide 76

Detector Design

muon beam

target

(77)

Detector Design

muon beam

target

inner pixel layers

(78)

Niklaus Berger – Heidelberg, May 2015 – Slide 78

Detector Design

outer pixel layers

muon beam

target

inner pixel layers

(79)

Detector Design

outer pixel layers

muon beam

target

inner pixel layers recurl pixel

layers

recurl pixel layers

(80)

Niklaus Berger – Heidelberg, May 2015 – Slide 80

Performance Simulations: Mass reconstruction

2] Reconstructed Mass [MeV/c

96 98 100 102 104 106 108 110

0 10000 20000 30000 40000 50000 60000 70000

Mu3e Phase Ib; 3 recurling tracks Mu3e Phase Ib; 3 recurling tracks Efficiency 13.44 %

Efficiency 13.44 % RMS 0.91 MeV/c22

RMS 0.91 MeV/c 0.56 MeV/c2

σ 0.56 MeV/c2 σ

Work in progress

(81)

Need suppression of accidental background:

Timing

(82)

Niklaus Berger – Heidelberg, May 2015 – Slide 82

Pixels: O(50 ns)

Timing measurements

Scintillating fibres O(1 ns);

Scintillating tiles O(100 ps)

(83)

Detector Design

scintillating fibres

outer pixel layers

muon beam

target

inner pixel layers

(84)

Niklaus Berger – Heidelberg, May 2015 – Slide 84

Detector Design

outer pixel layers

muon beam

target inner pixel layers recurl pixel

layers

recurl pixel layers

scintillating fibres

Scintillating tiles

(85)

• 3-5 layers of 250 μm scintillating fibres

• Read-out by silicon photomultipliers (SiPMs) and custom ASIC (STiC)

• Timing resolution O(1 ns)

(measured with sodium source)

Timing Detector: Scintillating Fibres

Single photon Efficiency > 98%

(≥ 2 photons)

(86)

Niklaus Berger – Heidelberg, May 2015 – Slide 86

Timing Detector: Scintillating tiles

• ~ 0.5 cm3 scintillating tiles

• Read-out by silicon photomultipliers (SiPMs) and custom ASIC (STiC)

• KIP Heidelberg

Scin ator Tiles

SiPM Readout

Electronics

(87)

Timing Detector: Scintillating tiles

• Test beam with tiles, SiPMs and readout ASIC

• Timing resolution ~ 80 ps

Time Difference [ps]

-7500 -500 -250 0 250 500 750

2000 4000 6000 8000 10000

σ = 79.2 ps

Front

Back

3.5 cm

(88)

Niklaus Berger – Heidelberg, May 2015 – Slide 88

Performance Simulations: Signal & Background

2] Reconstructed Mass [MeV/c

96 98 100 102 104 106 108 110

2 Events per 100 keV/c

10-4

10-3

10-2

10-1

1

10 Internal Conversion Background

eee at 10-12

µ

eee at 10-13

µ

eee at 10-14

µ

eee at 10-15

µ

µ/s on Target; 108 15 µ

⋅ 10

Mu3e Phase Ib; 1 ⋅ 1015 µ on Target; 108 µ/s Mu3e Phase Ib; 1

+ Michel e+

e-

Bhabha e+

Work in progress

(89)

Performance Simulations: Signal & Background

2] Reconstructed Mass [MeV/c

96 98 100 102 104 106 108 110

2 Events per 100 keV/c

10-4

10-3

10-2

10-1

1 10

102 Internal Conversion Background

eee at 10-12

µ

eee at 10-13

µ

eee at 10-14

µ

eee at 10-15

µ

eee at 10-16

µ

µ/s on Target; 108 16 µ

⋅ 10

Mu3e Phase Ib; 1 ⋅ 1016 µ on Target; 108 µ/s Mu3e Phase Ib; 1

+ Michel e+

e-

Bhabha e+

Work in progress

(90)

Niklaus Berger – Heidelberg, May 2015 – Slide 90

Data Acquisition

(91)

• 280 Million pixels (+ fibres and tiles)

• No trigger

• ~ 1 Tbit/s

• Need to find and fit billions of tracks/s

Data Acquisition

(92)

Niklaus Berger – Heidelberg, May 2015 – Slide 92

• PCs with Graphics Processing Units (GPUs)

• Online track and event reconstruction

• 109 3D track fits/s achieved

• Data reduction by factor ~1000

• Data to tape < 100 Mbyte/s

Online filter farm

(93)

Sensitivity

Phase IA: Starting 2017

Target Inner pixel layers

Outer pixel layers μ Beam

(94)

Niklaus Berger – Heidelberg, May 2015 – Slide 94

Target Inner pixel layers

Scintillating fibres

Outer pixel layers Recurl pixel layers

Scintillator tiles

μ Beam

Sensitivity

Phase IB: 2018+

1∙108 μ/s

(95)

Sensitivity

Phase II: 2020+

New Beam Line

Target Inner pixel layers

Scintillating fibres

Outer pixel layers Recurl pixel layers

Scintillator tiles

μ Beam

(96)

Niklaus Berger – Heidelberg, May 2015 – Slide 96

• Mu3e aims for μ → eee at the 10-16 level

• First large scale use of HV-MAPS

• Build detector layers thinner than a hair

• Timing at the 100 ps level

• Reconstruct 2 billion tracks/s in 1 Tbit/s on ~50 GPUs

• Start data taking in 2017

• 2 billion muons/s not before 2020

Conclusion

1940 1960 1980 2000 2020

Year

90%–CL bound

10–14 10–12 10–10 10–8 10–6 10–4 10–2 100

μ

μ 3e

μN eN

τ μγ

τ

10–16

SINDRUM SINDRUM II MEG

MEG plan Mu3e Phase I

Mu3e Phase II

(97)

Backup Material

(98)

Niklaus Berger – Heidelberg, May 2015 – Slide 98

Radiation Hardness

• Requirements not as strict as at LHC

• Irradiation at PS

• After 380 MRad (8×1015 neq/cm2)

• Chip still working

(Courtesy Ivan Perić, RESMDD 2012)

(99)

MUPIX electronics

(100)

Niklaus Berger – Heidelberg, May 2015 – Slide 100

A general effective Lagrangian

Tensor terms (dipole)

L

μ → eee

= 2 G

F

( m

μ

A

R

μ

R

σ

μν

e

L

F

μν

+ m

μ

A

L

μ

L

σ

μν

e

R

F

μν

+ g

1

R

e

L

) (e

R

e

L

) + g

2

L

e

R

) (e

L

e

R

)

+ g

3

R

γ

μ

e

R

) (e

R

γ

μ

e

R

) + g

4

L

γ

μ

e

L

) (e

L

γ

μ

e

L

)

+ g

5

R

γ

μ

e

R

) (e

L

γ

μ

e

L

) + g

6

L

γ

μ

e

L

) (e

R

γ

μ

e

R

) + H. C. )

e.g. supersymmetry

Four-fermion terms scalar

vector

e.g. Z’

(Y. Kuno, Y. Okada,

Rev.Mod.Phys. 73 (2001) 151)

(101)

Comparison with μ

+

→ e

+

γ

L

LFV

= A m

μ R

μ

R

σ

μν

e

L

F

μν

+ (μ

L

γ

μ

e

L

) (e

L

γ

μ

e

L

) (κ+1)Λ

2

κ (κ+1)Λ

2

• One loop term and one contact term

• Ratio κ between them

• Common mass scale Λ

• Allows for sensitivity comparisons between μ → eee and μ → eγ

• In case of dominating dipole couplings (κ = 0):

B(μ → eee) = 0.006 (essentially αem) B(μ → eγ)

(102)

Niklaus Berger – Heidelberg, May 2015 – Slide 102

Detector Design

outer pixel layers

muon beam

target inner pixel layers recurl pixel

layers

recurl pixel layers

scintillating fibres

Scintillating tiles

(103)

The hunt for

charged lepton flavour violation in μ-decays

(104)

Niklaus Berger – Heidelberg, May 2015 – Slide 104

LFV Muon Decays: Experimental Situation

μ

+

→ e

+

γ μ

-

N → e

-

N μ

+

→ e

+

e

-

e

+

MEG (PSI) SINDRUM II (PSI) SINDRUM (PSI)

B(μ

+

→ e

+

γ) < 5.7 ∙ 10

-13

(2013) B(μ

-

Au → e

-

Au) < 7 ∙ 10

-13

(2006) B(μ

+

→ e

+

e

-

e

+

) < 1.0 ∙ 10

-12

(1988)

(105)

LFV Muon Decays: Experimental Situation

μ

+

→ e

+

γ μ

-

N → e

-

N μ

+

→ e

+

e

-

e

+

MEG (PSI) SINDRUM II (PSI) SINDRUM (PSI)

B(μ

+

→ e

+

γ) < 5.7 ∙ 10

-13

(2013) B(μ

-

Au → e

-

Au) < 7 ∙ 10

-13

(2006) B(μ

+

→ e

+

e

-

e

+

) < 1.0 ∙ 10

-12

(1988)

upgrading Mu2e/Comet Mu3e

(106)

Niklaus Berger – Heidelberg, May 2015 – Slide 106

LFV Muon Decays: Experimental signatures

μ

+

→ e

+

γ μ

-

N → e

-

N μ

+

→ e

+

e

-

e

+

Kinematics

• 2-body decay

• Monoenergetic e+, γ

• Back-to-back

Kinematics

• Quasi 2-body decay

• Monoenergetic e-

• Single particle detected

Kinematics

• 3-body decay

• Invariant mass constraint

• Σ pi = 0

(107)

LFV Muon Decays: Experimental signatures

μ

+

→ e

+

γ μ

-

N → e

-

N μ

+

→ e

+

e

-

e

+

Kinematics

• 2-body decay

• Monoenergetic e+, γ

• Back-to-back Background

• Accidental background

Kinematics

• Quasi 2-body decay

• Monoenergetic e-

• Single particle detected Background

• Decay in orbit

• Antiprotons, pions, cosmics

Kinematics

• 3-body decay

• Invariant mass constraint

• Σ pi = 0 Background

• Radiative decay

• Accidental background

(108)

Niklaus Berger – Heidelberg, May 2015 – Slide 108

LFV Muon Decays: Experimental signatures

μ

+

→ e

+

γ μ

-

N → e

-

N μ

+

→ e

+

e

-

e

+

Kinematics

• 2-body decay

• Monoenergetic e+, γ

• Back-to-back Background

• Accidental background

Kinematics

• Quasi 2-body decay

• Monoenergetic e-

• Single particle detected Background

• Decay in orbit

• Antiprotons, pions

Kinematics

• 3-body decay

• Invariant mass constraint

• Σ pi = 0 Background

• Radiative decay

• Accidental background

Con tinuous Be am

Con tinuous Be am Pul sed Be

am

(109)

• DPNC, Geneva University

• Physics Institute, Heidelberg University

• KIP, Heidelberg University

• IPE, Karlsruhe Institute of Technology

• Paul Scherrer Institute

• Physics Institute, Zürich University

• Institute for Particle Physics, ETH Zürich

• Institute for Nuclear Physics, JGU Mainz

The Mu3e Collaboration

(110)

Niklaus Berger – Heidelberg, May 2015 – Slide 110

Muons from PSI

DC muon beams at PSI:

• πE5 beamline: ~ 108 muons/s

(MEG experiment, Mu3e phase I)

• Surface muons, p = 29.7 MeV/c Stopped in < 1 mm of plastic

(111)

Muons from PSI

DC muon beams at PSI:

• πE5 beamline: ~ 108 muons/s

(MEG experiment, Mu3e phase I)

• Surface muons, p = 29.7 MeV/c Stopped in < 1 mm of plastic

• The μ → eee experiment (final stage) requires 2 × 109 muons/s focused and collimated on a ~2 cm spot

(112)

Niklaus Berger – Heidelberg, May 2015 – Slide 112

Muons from PSI

DC muon beams at PSI:

• πE5 beamline: ~ 108 muons/s

(MEG experiment, Mu3e phase I)

• Surface muons, p = 29.7 MeV/c Stopped in < 1 mm of plastic

• The μ → eee experiment (final stage) requires 2 × 109 muons/s focused and collimated on a ~2 cm spot

• More than ~ 1011 muons/s are produced;

bring magnetic elements closer to cap- ture them:

High intensity muon beamline (HiMB) study currently ongoing

(113)

Performance Simulations: Background

2] Reconstructed Mass [MeV/c

96 98 100 102 104 106 108 110

2 Events per 100 keV/c

10-4

10-3

10-2

10-1

1

Internal Conversion Background

eee at 10-12

µ

eee at 10-13

µ

eee at 10-14

µ

µ/s on Target; 107 14 µ

⋅ 10

Mu3e Phase Ia; 1 ⋅ 1014 µ on Target; 107 µ/s Mu3e Phase Ia; 1

+ Michel e+

e-

Bhabha e+

Work in progress

(114)

Niklaus Berger – Heidelberg, May 2015 – Slide 114

Performance Simulations: Background

2] Reconstructed Mass [MeV/c

96 98 100 102 104 106 108 110

2 Events per 100 keV/c

10-4

10-3

10-2

10-1

1 10

Internal Conversion Background

eee at 10-12

µ

eee at 10-13

µ

eee at 10-14

µ

eee at 10-15

µ

µ/s on Target; 108 15 µ

⋅ 10

Mu3e Phase Ia; 1 ⋅ 1015 µ on Target; 108 µ/s Mu3e Phase Ia; 1

+ Michel e+

e-

Bhabha e+

Work in progress

Referenzen

ÄHNLICHE DOKUMENTE

Niklaus Berger – Flavour &amp; Dark Matter, Karlsruhe, September 2018 – Slide 3.. Standard Model branching

High voltage monolithic active pixel sensors - Ivan Perić. • Use a high voltage commercial process

Niklaus Berger – Lepton Moments 2014 – Slide 3.. The

Niklaus Berger – IRTG Intelligent Detectors, May 2012 – Slide 2?. How is an

High voltage monolithic active pixel sensors - Ivan Perić. • Use a high voltage commercial process

Paul Scherrer Institute in Villigen, Switzerland World’s most intensive proton beam.. 2.2 mA at 590 MeV: 1.3 MW of

[r]

[r]