• Keine Ergebnisse gefunden

The Austrian Geodynamic Reference Frame (AGREF) Motivation and Results

N/A
N/A
Protected

Academic year: 2022

Aktie "The Austrian Geodynamic Reference Frame (AGREF) Motivation and Results"

Copied!
7
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Paper-ID: VGI 199643

The Austrian Geodynamic Reference Frame (AGREF) Motivation and Results

Erhard Erker

1

, G ¨unter Stangl

2

, Peter Pesec

3

, Hans S ¨unkel

4

1

Abteilung K2, Bundesamt f ¨ur Eich- und Vermessungswesen, Schiffamtsgasse 1-3, A-1025 Wien

2

Abteilung K2, Bundesamt f ¨ur Eich- und Vermessungswesen, Schiffamtsgasse 1-3, A-1025 Wien

3

Abteilung Satellitengeod ¨asie, Institut f ¨ur Weltraumforschung der ¨ OAW, Lustb ¨uhelstraße 46, A-8042 Graz

4

Abteilung Satellitengeod ¨asie, Institut f ¨ur Weltraumforschung der ¨ OAW, Lustb ¨uhelstraße 46, A-8042 Graz

VGI – ¨ Osterreichische Zeitschrift f ¨ur Vermessung und Geoinformation 84 (3), S.

293–298 1996

BibTEX:

@ARTICLE{Erker_VGI_199643,

Title = {The Austrian Geodynamic Reference Frame (AGREF) Motivation and Results},

Author = {Erker, Erhard and Stangl, G{\"u}nter and Pesec, Peter and S{\"u}nkel , Hans},

Journal = {VGI -- {\"O}sterreichische Zeitschrift f{\"u}r Vermessung und Geoinformation},

Pages = {293--298}, Number = {3},

Year = {1996}, Volume = {84}

}

(2)

[6] Krarup T (1969): A contribution to the mathematical founda­

tion of physical geodesy. Danish Geodetic Institute, Co­

penhagen, vol 44.

[7] Li YC (1993): Optimized spectral geoid determination. Re­

ports of the Department of Geomatics Engineering of the University of Calgary, vol 20050.

[8] Moritz H (1980): Advanced physical geodesy. Wichmann, Karlsruhe.

[9] She 88 (1993): A PC-based unified geoid for Canada. Re­

ports of the Department of Geomatics Engineering of the University of Calgary, vol 2005 1 .

[1 0] Sideris MG, Schwarz KP (1985): Computation o f geoidal undulations and deflections of the vertical for Alberta. Al­

berta Bureau of Surveying and Mapping Contract Report No 84004, Edmonton, Alberta, Canada.

[1 1 ] Strang van Hees G (1990): Stokes formula using fast Fou­

rier techniques. Manuscripta geodaetica, 15: 235-239.

[1 2] Sünkel H (1983): Geoidbestimmung; Berechnungen an der TU Graz, 2. Teil. In: Österreichische Kommission für die In­

ternationale Erdmessung (ed): Das Geoid in Österreich.

Geodätische Arbeiten Österreichs für die Internationale Erdmessung, Neue Folge, Vol I I I : 1 25-143.

[1 3] Sünkel H, 8artelme N, Fuchs H, Hanafy M, Schuh W-0, Wieser M (1987): The gravity field in Austria. In: Austrian

Abstract

Geodetic Commission (ed): The gravity field in Austria.

Geodätische Arbeiten Österreichs für die Internationale Erdmessung, Neue Folge, vol IV: 47-75.

[14] Tscherning CC, Forsberg R, Knudsen P (1992): The GRAV­

SOFT package for geoid determination. In: Holota P, Ver­

meer M (eds): Proceedings of the First Continental Work­

shop on the Geoid in Europe, Prague, Czech Republic, May 1 1 -1 4, 327-334.

[15] Walach G (1987): A digital model of surface rock densities of Austria and the Alpine realm. In: Austrian Geodetic Com­

mission (ed): The gravity field in Austria. Geodätische Ar­

beiten Österreichs für die Internationale Erdmessung, Neue Folge, vol IV: 3-9.

Addresses of the authors:

Erhard Erker, Federal Office of Metrology and Sur­

veying Schiffamtsgasse 1 -3, A-1 025 Vienna, Austria;

Bernhard Hofmann-Wellenhof, Helmut Moritz, Hans Sünkel, Technical University Graz, Steyrergasse 30, A-801 O Graz, Austria.

The Austrian Geodynamic Reference Frame (AGREF) Motivation and Results Erhard Erker, Günter Stangl, Peter Pesec, Hans Sünkel, Vienna/Graz

A summary of the works an AGREF is presented and a review of the accuracy of the results is given. Some prospects of future related activities are mentioned.

Zusammenfassung

Die Arbeiten an AGREF werden zusammengefaßt, die Resultate in Hinblick auf ihre Genauigkeit durchleuchtet und die Zukunftsaussichten betrachtet.

1 . Preliminary Remarks

This contribution presents the complementary written summary to a poster presented at the IUGG XXI General Assembly, Boulder, July 2- 1 4, 1 995. A special monograph which will con­

tain details of the AGREF activities, including the final coordinates and station documenta­

tions, will be published in the course of 1 996.

2. Objectives

The objectives remained the same as men­

tioned in (1 ), namely to establish a 30 homoge­

neous reference frame with a total r.m.s. of bet­

ter than ± 1 .5 cm, to support the Austrian Geoid VGi 3/96

at the cm-level, to monitor regional crustal movements, and to link national and interna­

tional networks.

In future AGREF may also be used for further objectives, like t<;J provide base stations for DGPS and other real time applications.

3. Realization

3. 1 Concept

During the last years the accuracy of GPS-co­

ordinates derived from continuous observation periods of some days could be improved in such a way that it competes with SLRNLBI methods, without however replacing them for 293

(3)

global control and special applications like de­

termination of geocentric coordinates and polar motion. Cheap permanently observing GPS-sta­

tions are under way to replace fundamental sta­

tions, equipped with all kinds of measurement devices, at least for geodynamical applications.

The installation of the International GPS Geody­

namic Service (IGS) and of the Central Europe Geodynamic Reference Network (CEGRN) was a logical consequence. Austria, presently, contri­

butes with two permanent AGREF GPS-stations (Graz, Hafelekar/lnnsbruck) to IGS and CEGRN and, temporarily, operates the AGREF stations Reisseck and Hutbigl for CEGRN.

This development led to a revision of the initial concept of AGREF to use only fundamental sta­

tions for linking AGREF to international and glo­

bal networks by introducing a hierarchic struc­

ture. A subset of seven AGREF points (including Graz and Innsbruck) is planned to operate per­

manently, thus fulfi lling all objectives of AGREF mentioned above. A further subset will be moni­

tored periodically (about one week/year) mainly for geodynamic investigations. The remaining bulk of points should serve for national surveying objectives. lt is weil distributed over the whole national area with a spacing of about 50 km. Ex­

cept for the improvement of accuracy of some

"bad" points and the restitution of lost points no further activity is intended for the moment.

Furthermore, a dense network (distances about 20 km) has been installed in a special area of tectonic movements (Carinthia-Friuli-Slovenia).

There, measurements will be repeated periodi­

cally. Figure 1 presents the state of the art distri­

bution of all Austrian and associated AGREF points.

3.2 Monumentation

Based on the fact that most of the measure­

ment errors are introduced by the definition of the reference point and eccentricity problems of the antennas special brass bolts were used as a cheap and reliable monumentation, which allows for a plain re-occupation without using tripods.

All bolts were founded in bedrock, pillars or old buildings obeying the usual criteria for GPS-ob­

servations. Only very few points had to be ob­

served at eccenters. Presently the distribution is as follows:

Austria: 81 points (bedrock 48, pillars 1 2, others 21 )

Croatia: 1 1 points (bedrock 2, pillars 6, others 3) ltaly: 1 7 points (bedrock 8, pillars 4, others 5) Slovenia: 20 points (bedrock 1 4, pillars 4, others 2) 294

These numbers are temporarily changing due to the inclusion of of new areas of interest.

3.3. Measurements

During the years 1 990-1 995 99% of these points have been measured at least twice during several campaigns. Starting with Ashtech recei­

vers, Trimble and Rogue receivers have been used during the last 3 years. The occupation time could be extended from six hours in 1 990 to 24 hours in 1 994, mainly due to the upgrading of the GPS space segment. All data were stored at the Graz observatory. During the 1 992 cam­

paign 25% of the Croatian and German receivers showed malfunctions in L2. Since, unfortunately, the bulk of points was observed during that campaign, this was a major setback for deter­

mining an accurate solution of AGREF.

4. Results 4. 1 Adjustment

The computations were carried out using the Bernese Software in its various versions (mainly 3.4), adopting ITRF92 at epoch 1 988.0 as the re­

ference frame. The results of the campaigns prior to 1 992 were transformed to this solution via identical points. The main complications were introduced by the 1 992 data, which had to be processed at least twice to get reasonable re­

sults for most of the points.

All sessions were computed independently.

The final coordinates and their r.m.s errors were computed from those daily solutions. All impor­

tant session products have been stored at the Graz observatory.

4.2 Results

During the last years the update of the satellite constellation and the availability of precise orbits and clocks provided by IGS led to a consider­

able increase of the accuracy of GPS-derived coordinates which is demonstrated by the fol­

lowing statistics:

46% of all points have an r.m.s. of below ± 1 cm;

27% of all points have an r.m.s. of between ± 1 and ± 2 cm;

27% of all points fail the required accuracy re­

quirements and need additional measure­

ments.

All points failing the required accuracy were determined during 1 990 or 1 992. The main pro­

blem concerns the height component, because 69% of all points have horizontal r.m.s. of below VGi 3/96

(4)

� �

Ol

1\) 9

Austria Frame

1 0

O UMAS

l l

WEIT 0

mic Re rence

tien

0 MOAH HUST O

I

O

LEND

0 WAfJ.Z 0

HUTBI

0 HAID

1

OSWA

O IAYB AGGS 0 O HOLL

OOBWG

0DAST OHOWZ O RADT 0 ZEDH

0 GUBG

TPLZ

0 PLAN

UNZ 0 0 OGDF

1

0 WIEN

HQPV

OuKAA

OjPOLK ,BG

OzlRK 0 ,ABL O TIRK

O EilZK

0 TEIA O KUL

0

0 HZBG

OGRMS O FLAT GRAZ

0 BZRG

0 FDST

RE1\/I 0 0 e� '

r�i:�

ft

1

ORAOO -PARA •O KMNK

1

0 MRZL

-ONA r.rmP r -, 1�,v

KUCEJ -ZG�NEru t

ZAGR

0 0 NP

T°\

0 VEND VE

(.__,;

1

1 2

J.--7 ""'.;;:;- )-.�I

/'l_ ORBN

1 1

'

\ OMONT �HO .L

PULA

1 I _ �"

) \

l i

1 3 1 4 1 5 1 6

Fig. 1 Distribution of AGREF points; status end of 1995.

49

48

47

46

45

1 7

(5)

GRMS

70 50

30

1 MICR093

I DOY 284-288

D NORTH liJ EAST

• UP

"

11

-

n

1

1

'� .r--t 1:·

f---

1 -

'

u

F

j II

ü

�.

u

� 1·

1 'U

J

fl

r

.�

1 � In � ' �

· �

'

1

f

1 10

(mm) -10

-30

1 EUREF94 1

-50

1 DOY 150-154 1

1 AGREF92 1 1 DOY 244-259 1

-70

Fig. 2 : AGREF Session Differences (Bad Example)

[mm]

AGREF90

DOY 3 14-319 AGREF92 DOY 244-259

GOLL

1 AGREF94 1 DOY 269-279

AGREF94 DOY 269-279

D NORTH EAST

• UP

Fig. 3 : AGREF Session Differences (Representative Example)

± 1 cm and only 27% horizontal r.m.s. between

± 1 cm and ± 2 cm, leaving 4 % with unsufficient horizontal accuracy.

Figure 2 shows a bad example, the site G RMS.

During 1 990 to 1 993 unstable horizontal compo­

nents are joined by considerable height differ­

ences. The earlier data did not allow for reason- 296

able tropospheric zenith delay estimations, which proved fatal for this point with an altitude of 2300 meters. Since 1 994 the horizontal com­

ponents remained stable, the height stil l showing some offshots of more than three centimeters.

During 1 995 (not shown in the figure) the situa­

tion improved to a resulting maximum height dif­

ference of below two centimeters.

VGi 3/96

(6)

<

G)

Ol

1\) (!)

STATION

RMS MM >

HSTATION

·

RMS :A®�:·:··::::·:·::·_:: :·:

AL

TF :·� �: 4 • 6 • 23 1 ----·�: f ·:···: : ·:�: ::9�§t_.::::···-·::·::·:: GUBG -···�z.1'.:-��:: :::::::::::: 3 • 0

ARTA 4 . 3 . 8 GUES 20 • 9 1

:::��:::::::::::::::::: BASO :::::6::7::�:-:::::::�l 4

j

2 l

j

:::::1:=:i:�:: 5 :�>:::::: :�::::::::::::::::::: HEMB :::::1:H:::�J 7 l 0 ::::::Jr:::::::::

1

BILH 1 13

1

4 • 3 1 1 HFLK 1 4

j

1 1 3

1��= : = m:=1n:=1f:?= = : Pf f :�f \�jlil

BZRG 3 j 2

l

3 HOWZ tsT8 27

--2�·---··· j ···-·---�--: ... �··l···i· i ···--· 1 -�w---···--- 1 ---·---�--f-·---�-- 1 ·--.J.�- j J1 ... .

··cNßL·-··· ... '3„r···--iT···-···4·· ... ·ooiä··· ..

.

. . . . 6T···2· .. .

.

.. . . 6 ... ,

CNVA

1 1 o :

0 HUTS- 6] 7 8

1) .

.P..A.§I DMBL . ..

..

.

..

.

...

..

..

. . .

. „

.

. P

4

.

. L

j ..

. .

.

..7..L 2

j

.

..

. .

.

. .

.

. 4

?.

.

.

.

..

. .

...

__ r.g1;3.Q . JOZE

. „ ...•... . •...

2..?.L. 3

! .

.

... 9.

1 3

..

.

..

. f..?.

.

. . .D

.

.

.

.l ,

·F:o-r:w-···--··----··· ····s-r-··· r····---3" ---··KMNI<··· ···-····r···ö---ö--···1

ERFH 17 j 13 • 14 KOES 5

1

6 6 .g_!Y.;.l'.;

.f.

�AI.. _____

.

. . .

.

. ..

...

. ..

.....

. . . . . .

..

.. . ..

.

.

..

.. .

....

..

.

.

..

. ?.L

2-

.

.: ... �.L ...

.

..

. J!

.

.

.....

. . . .

....

.

.

.

J.9 ...

? . .

... .

.

.

.

.

. .

.

.. .

..

. .

.

. .ß.9Y! .ß.9ßi\

...

. .. ..

.

.. . .. .

....

.

..

. . .

..

.. ...

..

····---�-L

..

. .

.

.f..L .

..

.

.

.

J .. ? .. .... . .

.... .

... 2. ...

1 ...

.

,

:

FLEX 4 • 8 j 8 KRAH 4

j

1 3 2) • FORC 7 • 2 j 0 KRAH94 3 1 0 0 2) l

FRAU 66 ! 10 • 36

KRGO

18 1 8 19 j

: �r :::::::::::::::: :::::::� n: ::::::::: n :::::::::::: � : ::::::::::: ::�Br�:::::::::::::::::::::::�::::::::l:::::::�:: ::::::.::·1 GERL 3: 3: 2 2) LEIB 4: 0 14 :

. .G��---··· ·ooLc···-··· ···4·:-···""3·T···j--··· t:orn··· ···0·r···c» ···---r ··· GOLA ... ?.! 6

j

.

..

.

.

. . .

..

.9J 4

j

. . .

.

.

.

.

.

.

.

. 1 1

. .9

.

. . �1 ..

.

.

-��@ LJUB ... --1.?.L 5

j .

...

?.

2 2

.

.. .J.? .

.

.

. „ ...

.

GRAZ 3 j 1 l 3 LOKA 10 • 7 10

:�@$.:::::::::::::::::l:::::::J:L:::::::�:L::: -- .. __ J:L<+���>:�:�J:::�:�::L::::5:+::�:::+1>J

Fig. 4 AGREF Stations : RMS of Mean Values X, Y,Z (/TRF92)

STATION T

! lWSr:MMF d Tl STA ! TIÖN } RM:sr.Moo• ,

1

-: ��$. ·: : . : : '. ·· · : .. p:.�-1 - '._-:·�-�:: ··· -t �'.f :·::

.

. :• 1 , ��-��,_r _ __ : _ : ____ .:r .

.

rr�: -j:� -f - _�s.:-1_: __ ::·:·-1

• MALI • 2 1 2 . 2) l SEBS • 1 1 • 0 .

i

j MALI92 • 1 13 2 j 2) • SEGO j 0 0 j 2 . 1

j

MATE j

5 3 5

j j

SEXT l 20 7

j

3 j

1

l:MA;X'.$.::::::::::::::::r::::::::::�: ·::::::::::�:i::::::::::::::zr::::::::L$.(. A � t::::::::::::::::r:::::t:: ::::::::n:::::::üü:::l

• MEDI l 624 12i°] 629 • 2) • SNBG

j

16 17 l 25 j 1) ·1

j MOAR j 17 9

!

7

j

j SNEZ j 10 7 j 8 j

j

MONT j 10 7 3 j j SOBO • 8 2

1

7 •

1:�::::::::::::::::::::::::��:: :::::::I�:: :::::::::::::�:r:::::::n��r:::::::::::::::::r:::::i:�: .:::::::�r::::::�+:::::::::

j NEDJ • 2 4 13

j

! TEIA

j

10 5 j 1 1 j

t:®.�:::::::::::::::::f:::::::�1: ·::::::x: ::::::::::x�:1::::::::::H�:::::::::::::::::::r::::::1:: :::::::H::::::H::::::::::

j

OBBD

j

6 2 4

j j

TMVO

j

1

C

1

j

j OBGL j 1 ' 7 1 1 j

j

TPLZ

1

3 3 j 6

j

!lf f = : j : ?g:!�:= IijnjUI= : f R :;H �I= 1

. PALM • 3 2 4 j j UMAS • 19 14 ! 20 !

! PARA

!

1 0 2 ,

! UPAD

! 3 1 ! 3 !

t:�:f@{::::::::::::::::t::::::::I :::::::::A:.::::::::::::::i::::::::::::::::y�::::::::::::::::t:::::s.:: ::::::}t:::::�t::::::::1

j

PLAN

j

4 3 4

j j

VDBG

j

4 6

j

2

! 1

• POLK j 44 31 48 j

i

VEKO • 17 2 1 2 j l PSTJ

j

3 2 0

l l

VELI l 24 3 l 16 l

·

II��::::::::::::::::::.::::::::��::::::::::��:: ::::::::::�n:::::::::r:��:::::::::::::::r:::.:1I: ::::::::�r::::::n:�:�:::::1

! RADO 1 7 7

l

j • WANS • 7 12 1 8 ! j RADS

j

6 1 1

j j

WETT

j

2 2 l 4

1

r: �� f·:::::::::::::::i::::::: �� : .:::::::::: � :i::::::::::: � : i r �:� :::::: ����: ::::::::::::::::r::: + :::::::n::::::n:::::::::1

j REVI

1

14 6 32 . • zIMM

1

2 3 1 2 1

j

RIEG l 7 8 10

l !

ZIRK

i

9 19 l 13 l

'--1y·sti1r0;;:-�ä:i��s·rr0� H'ehlieri·r;:�f'c;��tiöil.(ilö.e:;cteffiät · c:ileck)„ ... , . . .

.

. . . . .. .. , . .

.

. . .

.

.

.

. .

2) Eccenter Determination Pending

(7)

Figure 3 presents the normal case (except the abundance of sessions) at the site GOLL. The differences are much less, but sti ll, until 1 994, all components show an unstable behaviour.

Figure 4 gives an overview of the accuracy of AGREF based on data up to end of 1 994. Gross errors have been omitted, where possible. Con­

siderable improvements have been attained in some regions since that time. lt seems quite lo­

gical that each forthcoming weil designed cam­

paign may improve the values of some points.

5. Conclusions

The coordinates of AGREF are available now, but yet still unpublished. The horizontal compo­

nents show a repeatability of below 1 0 mm with an r.m.s. of the mean tending weil below 5 mm.

The height can now repeated within 20 mm, the r. m.s. of the mean already remaining below 1 0 mm. Only points with occupations older than 1 994 show worse accuracies. Therefore, the re­

sults of AGREF can now be used for several ob­

jectives.

AGREF provides a pretty good national repre­

sentation of the international reference frame. lt can be used for purposes of national surveying very weil. lt also can support geoid computa-

tions, but still an i mprovement in height determi­

nation would be desirable. This is even more de­

manding for geodynamic investigations. Having small tectonic movements in Austria the present accuracy will be the minimum for their fast and precise determination.

The next targets should be the replacements of older results by more precise ones. Addition­

ally, the combination of measured values of the troposphere with its conventional estimation should be investigated to improve the determi­

nation of the height component.

References:

[1] G. Stangl, Hofmann-Wellenhof 8„ Pesec P„ Sünke/, H.:

Austrian GPS Reference Network - Concept, Realization, and First Results. XX General Assembly of IUGG in Vienna, Austria, August 1 1 -24, 1 991 .

Adresses of the authors:

Dipl.-Ing. Dr. Erhard Erker, Abteilung K2, Bundesamt für Eich- und Vermessungswesen, Schiffamtsgasse 1 -3, A- 1 025 Wien.

Mag. Dipl.-Ing. Günter Stangl, Abteilung K2, Bundes­

amt für Eich- und Vermessungswesen, Lustbühelstraße 46, A-8042 Graz.

Dr. Peter Pesec, o.Univ.-Prof. Dipl.-Ing. Dr. Hans Sünkel, Abteilung Satellitengeodäsie, Institut für Welt­

raumforschung der ÖAW, Lustbühelstraße 46, A-8042 Graz.

Veranstaltungskalender

Datenqualität und Metainformation in Geo-lnforma­

tionssystemen

7.-8. Oktober 1 996 in Rostock

Informationen: Institut für Geodäsie und Geoinformatik, Fachbereich Landeskultur und Umweltschutz, Universi­

tät Rostock, Justs-von-Liebig-Weg 6, 1 8051 Rostock, Fax: 0381/49821 88

33. Sitzung der Arbeitsgruppe „Automation in der Kartographie"

8.-9. Oktober 1 996 in Bonn-Bad Godesberg, Lan­

desvermessungsamt Nordrhein-Westfalen SYMPOSIUM ÜBER GEOGRAPHISCHE NAMEN 10. Oktober 1 996 in Wien

Informationen: Österreichisches Statistisches Zentral­

amt, Hintere Zollamtstraße 2b, A-1 033 Wien, Tel.:

0043/1 /71 1 28/7393, Fax: 0043/1 /71 1 28/7088.

VI National Congress on Topography and Cartogra-

phy \

14.-18. Oktober 1 996 in Madrid, Spanien

Informationen: Organising Committee TOP-GART '96, Avda. Reina Victoria, 66, 2C, 28003 Madrid, Spanien, Tel.: 34 (1 ) 553 8965, Fax.: 34 (1 ) 533 4632.

298

GIS/LIS FOR SUSTAINABLE DEVELOPMENT GIS/LIS AND THE FUTURE

FIG Commission 3

28.-30. Oktober 1 996 in Kopenhagen, Dänemark

Informationen: FIG-COMMISSION 3, Jes Ryttersgaard, National Survey and Cadastre, Denmark, Bjerggade 6, DK 6200 Aabenraa, Dänemark

MIS/UDMS '96

2nd International Conference on Municipal Informa­

tion Systems and Urban Data Management 1 8.-21 . November 1 996 in Prag, Tschechische Re­

publik

Informationen: Secretariat of MIS/UDMS '96, Institut mestske informatlky hl. M. Prahy, Zatecka 2, 1 1 001 Praha 1 , Tschechische Republik, Tel.: +42 2 24485201 , +42 2 24485301 , Fax: +42 2 2481 1 902, E-Mail: pra­

gimlp@imip.anst.cz

Remote Topographie Mapping for Geoscience 1 6.-17. Dezember 1 996 in Nottingham, England

Informationen: Dr. S.H. Marsh, British Geological Sur­

vey, Keyworth, Nottingham, N G 1 2 5GG, UK, Tel.: + 44 VGi 3/96

Referenzen

ÄHNLICHE DOKUMENTE

Findings showed that, having formulated this implementation intention, ADHD children managed to inhibit the behavior in question just as well as a control group

Sequence Name of a sequence or string variable containing a sequence name. Object Name of an object or string variable containing an object name. The object must exist in the

AngleEnable Property, AngleMaxIncrement Property, AngleOffset Property, AngleTolerance Property, Blob Object, Correlation Object, Frame Object, Geometric Object, Line

The same effect was not observed elther In a group of partlclpants who had only formulated a goal Intention wlthout furnlshlng It wlth Implementatlon Intentions, or In

Similar to the rotated magnetic data, the rotated gravity data conrm the initial seaoor spreading of oceanic basins in the northern North Atlantic and in the Arctic Ocean.. It does

The first inventory of the glaciers of the Eastern Alps was evaluated by Richter ( 1 8 8 8 ) who had at his disposal the official topographical maps showing the state of glaciers i

By the IHRS definition, the IHRF geopotential C IHRF

Honkasalo (1964) pointed out that the time average c ls of the routine tidal correction to gravity observations was not zero.. That is not the case with the contemporary