• Keine Ergebnisse gefunden

Andreas P. Schnyder

N/A
N/A
Protected

Academic year: 2022

Aktie "Andreas P. Schnyder"

Copied!
16
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Max-Planck-Institut für Festkörperforschung, Stuttgart

Andreas P. Schnyder

June 11-13, 2014!

!

Université de Lorraine

Introduction to topological aspects in !

condensed matter physics

(2)

1st lecture: !

- Topological band theory!

- Topological insulators in 1D (polyacetylene)!

- Topological insulators in 2D (IQHE, QSHE)

2nd lecture:!

- Topological insulators w/ TRS in 2D & 3D (Z

2

invariant)!

- BdG theory for superconductors!

- Topological superconductors in 1D and 2D!

- Majorana bound states

3rd lecture:!

- Topological superconductors in 2D and 3D w/ TRS!

- Periodic table of topological insulators and superconductors

Ten-fold classification of !

topological insulators and superconductors

4th lecture:!

- Topological crystalline insulators!

- Gapless topological materials

(3)

Books and review articles

Review articles:!

- M.Z. Hasan and C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)!

- X.L. Qi and S.C. Zhang, Rev. Mod. Phys. 83, 1057 (2011)!

- S. Ryu, A. P. Schnyder, A. Furusaki, A. Ludwig, New J. Phys. 12, 065010 (2010)!

- C. Beenakker, Annual Review of Cond. Mat. Phys. 4, 113 (2013)!

- J. Alicea, Rep. Prog. Phys. 75, 076501 (2012)!

- Y. Ando, J. Phys. Soc. Jpn. 82, 102001 (2013)!

Books:!

- Shun-Qing Shen, “Topological insulators”, Springer Series in Solid-State ! Sciences, Volume 174 (2012)!

- B. Andrei Bernevig, "Topological Insulators and Topological Superconductors”, ! Princeton University Press (2013)!

- Mikio Nakahara, "Geometry, Topology and Physics", Taylor & Francis (2003) ! - A. Bohm, A. Mostafazadeh, H. Koizumi, Q. Niu, J. Zwanziger, “The geometric 
 phase in quantum systems”, Springer (2003)!

- M. Franz and L. Molenkamp, “Topological Insulators”, Contemporary Concepts 
 of Condensed Matter Science, Elsevier (2013)!

(4)

1st lecture: Topological band theory

1. Introduction!

- What is topology?!

- Topological band theory

3. Topological insulators in 2D!

- Integer quantum Hall effect!

- Bulk boundary correspondence!

- Chern insulator on square lattice!

2. Topological insulators in 1D!

- Berry phase !

- Simple example: Two-level system!

- Polyacetylene (Su-Schrieffer-Heeger model)!

- Domain wall states

(5)

For example, consider two-dimensional surfaces in three-dimensional space

Genus can be expressed in terms of an integral of the Gauss curvature over the surface

What is topology?

The study of geometric properties that are insensitive to smooth deformations

Closed surface is characterized by its genus g = # holes

Festk¨ orperphysik II, Musterl¨ osung 11.

Prof. M. Sigrist, WS05/06 ETH Z¨urich

Gauss:

!

S

κ dA = 4π (1 − g ) (1)

Thermal Halll

κ

xy

T = π

2

k

B2

6h n (2)

start labels

4s 3p 3s E

gap

− π/a + π /a (3)

end labels

H( k ) (4)

and

W ( k

) = (5)

H

BdG

=

ε

k

− g

kz

+∆

s,k

+ ∆

t,k

ε

k

0 +∆

s,k

+ ∆

t,k

−ε

k

+ g

kz

0 −ε

k

ε

k

0 ε

k

+ g

kz

−∆

s,k

+ ∆

t,k

0 −ε

k

−∆

s,k

+ ∆

t,k

−ε

k

− g

kz

, (6)

and

λ

L

≫ ξ

0

ξ

0

= ! v

F

/(π ∆

0

) (7) (8)

λ

L

> L ≫ ξ

0

(9)

charge current operator

j

y

(x) = iek

F

/β 2π ! (

λ ˜

2

+ 1

)

n

+π/2

!

−π/2

ν

sin θ

ν

×

* E

ν

u

ν

v

ν

+

a

heν,ν

+ a

ehν,ν

,

e

−2iqνx

-. . .

.

E→iωn

,

j

l,y

= + e

! t )

ky

sin k

y

c

lkyσ

c

lkyσ

− e

! α )

ky

cos k

y

/

c

lky

c

lky

+ c

lky

c

lky

0

(9) (10)

topological invariant

P er io dic Ta ble o f T op olo gic al In su la to rs an d S u pe rco n du ct or s

Anti-Unitary Symmetries : -Time Reversal : -Particle -Hole : Unitary (chiral) symmetry :

1 ()()12 ; HHkk

1 ()()12 ; HHkk 1 ()()HHkk ; Real K-theory

Complex K-theory Bott Periodicity d

Altland- Zirnbauer Random Matrix Classes Kitaev, 2008 Schnyder, Ryu, Furusaki, Ludwig 2008

8 antiunitary symmetry classes

Festk¨ orperphysik II, Musterl¨ osung 11.

Prof. M. Sigrist, WS05/06 ETH Z¨urich

1 frist chapter

Chern number g = 0, g = 1

n = !

bands

i 2π

"

F dk 2 (1)

γ C =

#

C A · d k (2)

First Chern number n = 0

n = !

bands

i 2π

"

dk 2

$% ∂ u

∂ k 1

&

&

&

&

∂ u

∂ k 2

'

% ∂ u

∂ k 2

&

&

&

&

∂ u

∂ k 1

'(

(3)

H ( k ) : H ( k , k ) k F > 1/ξ 0

sgn(∆ + K ) = − sgn(∆ K ) and l k antiparallel to l k e sgn(∆ + k ) = − sgn(∆ k )

σ xy = n e h

2

ρ xy = n 1 e h

2

n ∈

J y = σ xy E x

Symmetry Operations: E gap = ! ω c

Θ H ( k )Θ −1 = + H ( − k ); Θ 2 = ± 1 (4) Ξ H ( k )Ξ −1 = −H ( − k ); Ξ 2 = ± 1 (5) Π H ( k )Π −1 = −H ( k ); Π ∝ ΘΞ (6) Θ 2 Ξ 2 Π 2 (7)

P er io dic Ta ble o f T op olo gic al In su la to rs an d S u pe rco n du ct or s

Anti-Unitary Symmetries : -Time Reversal : -Particle -Hole : Unitary (chiral) symmetry :

1 ()()12 ; HHkk

1 ()()12 ; HHkk 1 ()()HHkk ; Real K-theory

Complex K-theory Bott Periodicity d

Altland- Zirnbauer Random Matrix Classes Kitaev, 2008 Schnyder, Ryu, Furusaki, Ludwig 2008

8 antiunitary symmetry classes

Festk¨ orperphysik II, Musterl¨ osung 11.

Prof. M. Sigrist, WS05/06 ETH Z¨urich

1 frist chapter

Chern number g = 0, g = 1

n = !

bands

i 2π

"

F dk 2 (1)

γ C =

#

C A · d k (2)

First Chern number n = 0

n = !

bands

i 2π

"

dk 2

$% ∂ u

∂ k 1

&

&

&

&

∂ u

∂ k 2

'

% ∂ u

∂ k 2

&

&

&

&

∂ u

∂ k 1

'(

(3)

H ( k ) : H ( k , k ) k F > 1/ξ 0

sgn(∆ + K ) = − sgn(∆ K ) and l k antiparallel to l k e sgn(∆ + k ) = − sgn(∆ k )

σ xy = n e h

2

ρ xy = n 1 e h

2

n ∈

J y = σ xy E x

Symmetry Operations: E gap = ! ω c

Θ H ( k )Θ −1 = + H ( − k ); Θ 2 = ± 1 (4) Ξ H ( k )Ξ −1 = −H ( − k ); Ξ 2 = ± 1 (5) Π H ( k )Π −1 = −H ( k ); Π ∝ ΘΞ (6) Θ 2 Ξ 2 Π 2 (7)

g is an integer topological invariant Gauss-Bonnet Theorem

In condensed matter physics:

Topology of insulating materials, topology of band structures

(6)

Band theory of solids and topology

Bloch’s theorem:

Topological equivalence:

Festk¨ orperphysik II, Musterl¨ osung 11.

Prof. M. Sigrist, WS05/06 ETH Z¨urich

we have

k

x

k

y

π /a − π /a (1)

majoranas

γ

1

= ψ + ψ

(2)

γ

2

= −i !

ψ − ψ

"

(3) and

ψ = γ

1

+ iγ

2

(4)

ψ

= γ

1

− iγ

2

(5)

and

γ

i2

= 1 (6)

i

, γ

j

} = 2δ

ij

(7)

mean field

γ

E =0

= γ

E=0

(8)

⇒ γ

k,E

= γ

k,−E

(9) Ξ ψ

+k,+E

= τ

x

ψ

k,−E

(10) Ξ

2

= +1 Ξ = τ

x

K (11)

τ

x

=

# 0 1

1 0

$

(12) c

c c

c ⇒ ⟨c

c

⟩c c = ∆

c c (13) weak vs strong

|µ| < 4t (14)

n = 1 (15)

Lattice BdG Hamiltonian ˆ

m ( k ) = m ( k )

| m ( k )| m ˆ ( k ) : m ˆ ( k ) ∈ S

2

π

2

(S

2

) = (16) H

BdG

= (2t [cos k

x

+ cos k

y

] − µ) τ

z

+ ∆

0

x

sin k

x

+ τ

y

sin k

y

) = m ( k ) · τ (17)

m

x

m

y

m

z

(18)

Festk¨ orperphysik II, Musterl¨ osung 11.

Prof. M. Sigrist, WS05/06 ETH Z¨urich

we have

k

x

k

y

π /a − π/a (1)

majoranas

γ

1

= ψ + ψ

(2)

γ

2

= −i !

ψ − ψ

"

(3) and

ψ = γ

1

+ iγ

2

(4)

ψ

= γ

1

− iγ

2

(5)

and

γ

i2

= 1 (6)

i

, γ

j

} = 2δ

ij

(7)

mean field

γ

E =0

= γ

E=0

(8)

⇒ γ

k,E

= γ

k,−E

(9) Ξ ψ

+k,+E

= τ

x

ψ

k,−E

(10) Ξ

2

= +1 Ξ = τ

x

K (11)

τ

x

=

# 0 1

1 0

$

(12) c

c c

c ⇒ ⟨c

c

⟩c c = ∆

c c (13) weak vs strong

|µ| < 4t (14)

n = 1 (15)

Lattice BdG Hamiltonian ˆ

m(k) = m ( k )

|m(k)| m(k) : ˆ m(k) ˆ ∈ S

2

π

2

(S

2

) = (16) H

BdG

= (2t [cos k

x

+ cos k

y

] − µ) τ

z

+ ∆

0

x

sin k

x

+ τ

y

sin k

y

) = m ( k ) · τ (17)

m

x

m

y

m

z

(18)

Festk¨orperphysik II, Musterl¨osung 11.

Prof. M. Sigrist, WS05/06 ETH Z¨urich

we have

kx ky π/a π/a (1)

majoranas

γ1 = ψ + ψ (2)

γ2 = −i!

ψ ψ"

(3) and

ψ = γ1 + 2 (4)

ψ = γ1 2 (5)

and

γi2 = 1 (6)

i,γj} = 2δij (7)

mean field

γE =0 = γE=0 (8)

γk,E = γk,−E (9) Ξψ+k,+E = τxψk,−E (10) Ξ2 = +1 Ξ = τxK (11)

τx =

#0 1

1 0

$

(12) cc cc ⟨cc⟩c c = c c (13) weak vs strong

|µ| < 4t (14)

n = 1 (15)

Lattice BdG Hamiltonian ˆ

m(k) = m(k)

|m(k)| m(k) :ˆ m(k)ˆ S2 π2(S2) = (16) HBdG = (2t[coskx + cosky] µ)τz + 0 x sinkx + τy sinky) = m(k) · τ (17)

mx my mz (18)

Festk¨orperphysik II, Musterl¨osung 11.

Prof. M. Sigrist, WS05/06 ETH Z¨urich

we have

kx ky π/a π/a (1)

majoranas

γ1 = ψ + ψ (2)

γ2 = −i !

ψ ψ"

(3) and

ψ = γ1 + 2 (4)

ψ = γ1 2 (5)

and

γi2 = 1 (6)

i,γj} = 2δij (7)

mean field

γE=0 = γE=0 (8)

γk,E = γk,−E (9) Ξ ψ+k,+E = τxψk,−E (10) Ξ2 = +1 Ξ = τxK (11)

τx =

#0 1

1 0

$

(12) cc cc ⟨cc⟩c c = c c (13) weak vs strong

|µ| < 4t (14)

n = 1 (15)

Lattice BdG Hamiltonian ˆ

m(k) = m(k)

|m(k)| mˆ (k) : mˆ (k) S2 π2(S2) = (16) HBdG = (2t[coskx + cosky] µ)τz + 0 x sinkx + τy sinky) = m(k) · τ (17)

mx my mz (18)

Festk¨orperphysik II, Musterl¨osung 11.

Prof. M. Sigrist, WS05/06 ETH Z¨urich

we have

kx ky π/a π/a (1)

majoranas

γ1 = ψ + ψ (2)

γ2 = −i!

ψ ψ"

(3) and

ψ = γ1 + 2 (4)

ψ = γ1 2 (5)

and

γi2 = 1 (6)

i,γj} = 2δij (7)

mean field

γE =0 = γE=0 (8)

γk,E = γk,−E (9) Ξψ+k,+E = τxψk,−E (10) Ξ2 = +1 Ξ = τxK (11)

τx =

#0 1

1 0

$

(12) cc cc ⟨cc⟩c c = c c (13) weak vs strong

|µ| < 4t (14)

n = 1 (15)

Lattice BdG Hamiltonian ˆ

m(k) = m(k)

|m(k)| mˆ (k) : mˆ (k) S2 π2(S2) = (16) HBdG = (2t [coskx + cosky] µ)τz + 0 x sinkx + τy sinky) = m(k) · τ (17)

mx my mz (18)

Festk¨orperphysik II, Musterl¨osung 11.

Prof. M. Sigrist, WS05/06 ETH Z¨urich

we have

kx ky π/a π/a (1)

majoranas

γ1 = ψ + ψ (2)

γ2 = −i!

ψ ψ"

(3) and

ψ = γ1 + 2 (4)

ψ = γ1 2 (5)

and

γi2 = 1 (6)

i,γj} = 2δij (7)

mean field

γE=0 = γE=0 (8)

γk,E = γk,−E (9) Ξψ+k,+E = τxψk,−E (10) Ξ2 = +1 Ξ = τxK (11)

τx =

#0 1

1 0

$

(12) cc cc ⟨cc⟩c c = c c (13) weak vs strong

|µ| < 4t (14)

n = 1 (15)

Lattice BdG Hamiltonian ˆ

m(k) = m(k)

|m(k)| m(k) :ˆ m(k)ˆ S2 π2(S2) = (16) HBdG = (2t[coskx + cos ky] µ)τz + 0 xsinkx + τy sinky) = m(k) · τ (17)

mx my mz (18)

=

Bloch Hamiltonian

Festk¨ orperphysik II, Musterl¨ osung 11.

Prof. M. Sigrist, WS05/06 ETH Z¨urich

we have

k

x

k

y

π /a − π/a k ∈ Brillouin Zone (1)

majoranas

γ

1

= ψ + ψ

(2)

γ

2

= −i !

ψ − ψ

"

(3) and

ψ = γ

1

+ iγ

2

(4)

ψ

= γ

1

− iγ

2

(5)

and

γ

i2

= 1 (6)

i

, γ

j

} = 2δ

ij

(7)

mean field

γ

E =0

= γ

E=0

(8)

⇒ γ

k,E

= γ

k,−E

(9) Ξ ψ

+k,+E

= τ

x

ψ

k,−E

(10) Ξ

2

= +1 Ξ = τ

x

K (11)

τ

x

=

# 0 1

1 0

$

(12) c

c c

c ⇒ ⟨c

c

⟩c c = ∆

c c (13) weak vs strong

|µ| < 4t (14)

n = 1 (15)

Lattice BdG Hamiltonian ˆ

m(k) = m(k)

| m ( k )| m(k) : ˆ m(k) ˆ ∈ S

2

π

2

(S

2

) = (16) H

BdG

= (2t [cos k

x

+ cos k

y

] − µ) τ

z

+ ∆

0

x

sin k

x

+ τ

y

sin k

y

) = m ( k ) · τ (17)

m

x

m

y

m

z

(18)

Band structure defines a mapping:

Hamiltonians!

with energy gap Brillouin zone

Festk¨ orperphysik II, Musterl¨ osung 11.

Prof. M. Sigrist, WS05/06 ETH Z¨urich

1 frist chapter

Ξ H BdG ( k ) Ξ −1 = − H BdG ( − k ) "−→ (1)

∆n

Chern number g = 0, g = 1

n = !

bands

i 2π

"

F dk 2 (2)

γ C =

#

C A · d k (3)

First Chern number n = 0 n = !

bands

i 2π

"

dk 2

$% ∂ u

∂ k 1

&

&

&

&

∂ u

∂ k 2

'

% ∂ u

∂ k 2

&

&

&

&

∂ u

∂ k 1

'(

(4) H ( k ) :

H ( k , k )

k F > 1/ξ 0

sgn(∆ + K ) = − sgn(∆ K ) and l k antiparallel to l k e sgn(∆ + k ) = − sgn(∆ k )

σ xy = n e h 2 ρ xy = n 1 e h 2 n ∈

J y = σ xy E x

Symmetry Operations: E gap = ! ω c

Θ H ( k )Θ −1 = + H ( − k ); Θ 2 = ± 1 (5) Ξ H ( k )Ξ −1 = −H ( − k ); Ξ 2 = ± 1 (6) Π H ( k )Π −1 = −H ( k ); Π ∝ ΘΞ (7)

Θ 2 Ξ 2 Π 2 (8)

Festk¨ orperphysik II, Musterl¨ osung 11.

Prof. M. Sigrist, WS05/06 ETH Z¨urich

we have

H ( k ) k

x

k

y

π/a − π/a k ∈ Brillouin Zone (1) majoranas

γ

1

= ψ + ψ

(2)

γ

2

= −i !

ψ − ψ

"

(3) and

ψ = γ

1

+ iγ

2

(4)

ψ

= γ

1

− iγ

2

(5)

and

γ

i2

= 1 (6)

i

, γ

j

} = 2δ

ij

(7)

mean field

γ

E =0

= γ

E=0

(8)

⇒ γ

k,E

= γ

k,−E

(9) Ξ ψ

+k,+E

= τ

x

ψ

k,−E

(10) Ξ

2

= +1 Ξ = τ

x

K (11)

τ

x

=

# 0 1

1 0

$

(12) c

c c

c ⇒ ⟨c

c

⟩c c = ∆

c c (13) weak vs strong

|µ| < 4t (14)

n = 1 (15)

Lattice BdG Hamiltonian ˆ

m ( k ) = m ( k )

| m ( k )| m ˆ ( k ) : m ˆ ( k ) ∈ S

2

π

2

(S

2

) = (16) H

BdG

= (2t [cos k

x

+ cos k

y

] − µ) τ

z

+ ∆

0

x

sin k

x

+ τ

y

sin k

y

) = m ( k ) · τ (17)

m

x

m

y

m

z

(18)

Band structures are equivalent if they can be continuously ! deformed into one another without closing the energy gap Electron wavefunction in crystal

crystal momentum

Festk¨orperphysik II, Musterl¨osung 11.

Prof. M. Sigrist, WS05/06 ETH Z¨urich

we have

kx ky π/a π/a (1)

majoranas

γ1 = ψ + ψ (2)

γ2 = −i!

ψ ψ"

(3) and

ψ = γ1 + 2 (4)

ψ = γ1 2 (5)

and

γi2 = 1 (6)

i,γj} = 2δij (7)

mean field

γE=0 = γE=0 (8)

γk,E = γk,−E (9) Ξψ+k,+E = τxψk,−E (10) Ξ2 = +1 Ξ = τxK (11)

τx =

#0 1

1 0

$

(12) cc cc ⟨cc⟩c c = c c (13) weak vs strong

|µ| < 4t (14)

n = 1 (15)

Lattice BdG Hamiltonian ˆ

m(k) = m(k)

|m(k)| m(k) :ˆ m(k)ˆ S2 π2(S2) = (16) HBdG = (2t[coskx + cosky] µ)τz + 0 x sinkx + τy sinky) = m(k) · τ (17)

mx my mz (18)

Festk¨orperphysik II, Musterl¨osung 11.

Prof. M. Sigrist, WS05/06 ETH Z¨urich

we have

kx ky π/a π/a (1)

majoranas

γ1 = ψ + ψ (2)

γ2 = −i!

ψ ψ"

(3) and

ψ = γ1 + 2 (4)

ψ = γ1 2 (5)

and

γi2 = 1 (6)

i,γj} = 2δij (7)

mean field

γE=0 = γE=0 (8)

γk,E = γk,−E (9) Ξψ+k,+E = τxψk,−E (10) Ξ2 = +1 Ξ = τxK (11)

τx =

#0 1

1 0

$

(12) cc cc ⟨cc⟩c c = c c (13) weak vs strong

|µ| < 4t (14)

n = 1 (15)

Lattice BdG Hamiltonian ˆ

m(k) = m(k)

|m(k)| m(k) :ˆ m(k)ˆ S2 π2(S2) = (16) HBdG = (2t[coskx + cosky] µ)τz + 0 x sin kx + τy sinky) = m(k) · τ (17)

mx my mz (18)

Energy

Momentum

Festk¨ orperphysik II, Musterl¨ osung 11.

Prof. M. Sigrist, WS05/06 ETH Z¨urich

homotopy

ν = # kx (1)

±k = ∆s ± ∆t |dk| (2)

s > ∆ts ∼ ∆t ν = ±1 for ∆t > ∆s (3) and

π3[U(2)] = q(k) : ∈ U(2) (4)

Lattice BdG HBdG

h(k) = εkσ0 + αgk · σ (5)

∆(k) = (∆sσ0 + ∆tdk · σ) iσy (6)

hex Iy ≃ e

!

! kF,−

kF,+

dky

2π sgn

"

#

µ

Hexµ ρµ1(0, ky)

$%

− t sin ky + λ

Lx/2

#

n=1

ρxn(0, ky) cos ky

& . (7) and

jn,ky = −t sin ky '

cnkycnky + cnkycnky(

(8) + λ cos ky '

cnkycnky + cnkycnky(

(9) The contribution jn,k(1)y corresponds to nearest-neighbor hopping, whereas jn,k(2)y is due to SOC. We calculate the expectation value of the edge current at zero temperature from the spectrum El,ky and the wavefunctions )

l,ky*

of Hk(10)y , Iy = −e

! 1 Ny

#

ky

Lx/2

#

n=1

#

l,El<0

⟨ψl,ky|jn,kyl,ky⟩ (10) We observe that the current operators presence of the superconducting gaps or the edge;

these only enter through the eigenstates |ψl,ky⟩.

Momentum dependent topological number:

3

#

µ=1

Hexµ ρµ1(E, ky) ρx1 (11) NQPI(ω, q) = − 1

πIm +

#

k

G0(k, ω)T(ω)G0(k + q, ω) ,

∝ -

S⃗f) )

) T(ω) ) )

)S⃗i.

(12)

a (13)

ξk± = εk ± α |(14)gk|

Festk¨ orperphysik II, Musterl¨ osung 11.

Prof. M. Sigrist, WS05/06 ETH Z¨urich

Bloch theorem

[T(R), H] = 0 |ψn⟩ = eikr |un(k)⟩ (1) (2) H(k) = e−ikrHe+ikr (3) (4) H(k) |un(k)⟩ = En(k) |un(k)⟩ (5) we have

H(k) kx ky π/a − π/a k ∈ Brillouin Zone (6) majoranas

γ1 = ψ + ψ (7)

γ2 = −i !

ψ − ψ"

(8) and

ψ = γ1 + iγ2 (9)

ψ = γ1 − iγ2 (10)

and

γi2 = 1 (11)

i, γj} = 2δij (12)

mean field

γE =0 = γE=0 (13)

⇒ γk,E = γk,−E (14) Ξ ψ+k,+E = τxψ k,−E (15) Ξ2 = +1 Ξ = τxK (16)

τx =

#0 1

1 0

$

(17) cc cc ⇒ ⟨cc⟩c c = ∆c c (18) weak vs strong

|µ| < 4t (19)

n = 1 (20)

Festk¨ orperphysik II, Musterl¨ osung 11.

Prof. M. Sigrist, WS05/06 ETH Z¨urich

Bloch theorem

[T(R), H] = 0 |ψn⟩ = eikr |un(k)⟩ (1) (2) H(k) = e−ikrHe+ikr (3) (4) H(k) |un(k)⟩ = En(k) |un(k)⟩ (5) we have

H(k) kx ky π/a − π/a k ∈ Brillouin Zone (6) majoranas

γ1 = ψ + ψ (7)

γ2 = −i !

ψ − ψ"

(8) and

ψ = γ1 + iγ2 (9)

ψ = γ1 − iγ2 (10)

and

γi2 = 1 (11)

i, γj} = 2δij (12)

mean field

γE =0 = γE=0 (13)

⇒ γk,E = γk,−E (14) Ξ ψ+k,+E = τxψ k,−E (15) Ξ2 = +1 Ξ = τxK (16)

τx =

#0 1

1 0

$

(17) cc cc ⇒ ⟨cc⟩c c = ∆c c (18) weak vs strong

|µ| < 4t (19)

n = 1 (20)

Festk¨ orperphysik II, Musterl¨ osung 11.

Prof. M. Sigrist, WS05/06 ETH Z¨urich

Bloch theorem

[T ( R ), H ] = 0 |ψ

n

⟩ = e

ikr

|u

n

( k )⟩ (1) (2) H ( k ) = e

−ikr

He

+ikr

(3) (4) H (k) |u

n

(k)⟩ = E

n

(k) |u

n

(k)⟩ (5) we have

H ( k ) k

x

k

y

π/a − π /a k ∈ Brillouin Zone (6) majoranas

γ

1

= ψ + ψ

(7)

γ

2

= −i !

ψ − ψ

"

(8) and

ψ = γ

1

+ iγ

2

(9)

ψ

= γ

1

− iγ

2

(10)

and

γ

i2

= 1 (11)

i

, γ

j

} = 2δ

ij

(12)

mean field

γ

E =0

= γ

E=0

(13)

⇒ γ

k,E

= γ

k,−E

(14) Ξ ψ

+k,+E

= τ

x

ψ

k,−E

(15) Ξ

2

= +1 Ξ = τ

x

K (16)

τ

x

=

# 0 1

1 0

$

(17) c

c c

c ⇒ ⟨c

c

⟩c c = ∆

c c (18) weak vs strong

|µ| < 4t (19)

n = 1 (20)

Bloch wavefunction!

has periodicity of potential

gap

consider electron wavefunction in periodic crystal potential

Referenzen

ÄHNLICHE DOKUMENTE

&gt;&gt; Since his democratic victory in 2010, Ukrainian President Viktor Yanukovych has asserted his control over Ukraine’s political system by arresting leaders of the

An intense pump pulse with negative chirp leads to a considerably larger coherent A 1 amplitude than observed for positively chirped excitation.. The overall decrease in coher-

Higher overcommitment to work is associated with higher plasma cortisol but not ACTH responses in the combined dexamethasone/CRH test in apparently.. healthy men

● Excitation of vacuum ground state leads to existence of a new particle, characterized by very peculiar coupling structure, needed to preserve the symmetry of the system:.

(2013), Iron fertilization enhanced net community production but not downward particle flux during the Southern Ocean iron fertilization experiment LOHAFEX, Global

In the Introduction we postulated that the sensitization to apo in pigeons does not arise from a non-associative sensitization process, but rather, that it is

Transport spectrum of the suspended quantum dot and conductance near zero bias: (a) Single electron resonances taken at an electron temperature of 100 mK and a perpendicu- lar

A few directives were also adopted in the 1990s to reduce double taxation in the field of corporate taxation, but the current debate in the member states seems to suggest that