• Keine Ergebnisse gefunden

The Selection Mutation Equation

N/A
N/A
Protected

Academic year: 2022

Aktie "The Selection Mutation Equation"

Copied!
25
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

NOT FOR QUOTATION WITHOUT PERMISSION OF THE AUTHOR

THE SELECTION MUTATION EQUATION

J o s e f Hofbauer

J a n u a r y 1985 CP-85-2

CoZZaborative Papers r e p o r t work which h a s n o t been p e r f o r m e d s o l e l y a t t h e I n t e r n a t i o n a l I n s t i t u t e f o r A p p l i e d Systems A n a l y s i s and which h a s r e c e i v e d o n l y

l i m i t e d r e v i e w . V i e w s o r o p i n i o n s e x p r e s s e d h e r e i n d o n o t n e c e s s a r i l y r e p r e s e n t t h o s e o f t h e I n s t i t u t e , i t s N a t i o n a l Member O r g a n i z a t i o n s , o r o t h e r o r g a n i - z a t i o n s s u p p o r t i n g t h e work.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A - 2 3 6 1 Laxenburg, A u s t r i a

(2)
(3)

PREFACE

Fisher's Fundamental Theorem of Natural Selection is extended to the selection mutation model with mutation rates 'ij' €1, i.e. depending only on the target gene, by constructing a simple Lyapunov function. For other mutation rates stable limit cycles are possible. A basic tool is the description of some of the dynamical models as gradients with respect to a non- Riemann metric.

A. Kurzhanski Chairman

System and Decision Sciences Program

(4)
(5)

THE SELECTION MUTATION EQUATION Josef Hofbauer

Institut fur Mathematik, Universitat Wien, Austria

The c l a s s i c a l s e l e c t i o n model i n p o p u l a t i o n g e n e t i c s , due t o F i s h e r , Wright and Haldane, i s i n p r i n c i p l e w e l l u n d e r s t o o d . The b a s i c r e s u l t i s F i s h e r ' s "Fundamental Theorem of Natural S e l e c t i o n " s a y i n g t h a t t h e mean f i t n e s s of t h e p o p u l a t i o n i s s t e a d i l y i n c r e a s i n g , which i s t r u e f o r b o t h t h e d i s c r e t e t i m e and c o n t i n u o u s t i m e model ( s e e e . g . [ 4 , 5 , 6 , 1 1 , 1 3 ]

.

From t h i s one c a n c o n c l u d e t h a t t h e s t a t e of t h e p o p u l a t i o n t e n d s t o e q u i l i b r i u m [ 121

.

F o r more g e n e r a l s e l e c t i o n models, t a k i n g i n t o a c c o u n t e.g.

r e c o m b i n a t i o n , m u t a t i o n o r d i f f e r e n t f e r t i l i t i e s , t h e s t a t e o f knowledge i s l e s s s a t i s f y i n g . The b a s i c problem would be t o e x t e n d t h e "fundamental theorem" t o t h e s e more g e n e r a l models, i . e . t o prove t h a t mean f i t n e s s , o r some s u i t a b l e g e n e r a l i z a t i o n of i t , i s a Lyapunov f u n c t i o n . Then t h e dynamic b e h a v i o u r would a g a i n be reduced t o a s t u d y o f f i x e d p o i n t s . The main s u c c e s s i n t h i s d i r e c t i o n , and e s s e n t i a l l y t h e o n l y one ( b e s i d e s The- orem 1 below), w a s Ewens' g e n e r a l i z a t i o n t o m u l t i - l o c u s s y s t e m s w i t h a d d i t i v e f i t n e s s scheme [ 5 ]

.

I n c o n t r a s t t o t h i s Akin [ 1 , 2 ] proved a v e r y g e n e r a l theorem C~heorem 5 below) i m p l y i n g t h a t most o f t h e e x t e n s i o n s of t h e c l a s s i c a l s e l e c t i o n e q u a t i o n , i n p a r t i c u l a r t h o s e a l l o w i n g r e c o m b i n a t i o n o r m u t a t i o n , e x h i b i t a more c o m p l i c a t e d d y n a m i c a l b e h a v i o u r : o s c i l l a t i o n s ( p e r i o d i c o r b i t s , s t a b l e l i m i t c y c l e s ) a r e p o s s i b l e . Hence t h e u s u a l f i x e d p o i n t a n a l y s i s c a n n o t p r o v i d e a complete and a d e q u a t e p i c t u r e of t h e e v o l u t i o n of t h e p o p u l a t i o n . I n p a r t i c u l a r t h e s e a r c h f o r maximizing p r i n c i p l e s (= Lyapunov f u n c t i o n s ) i s a h o p e l e s s t a s k .

( S e e [ 9 ] f o r a r e c e n t s u r v e y on t h i s q u e s t i o n ) .

T h i s p a p e r i s d e v o t e d t o a s t u d y o f combined a c t i o n of s e l e c t i o n and m u t a t i o n . We w i l l show t h a t , d e s p i t e A k i n ' s g e n e r a l r e s u l t , f o r a s p e c i a l c l a s s of m u t a t i o n a l e f f e c t s , namely when m u t a t i o n r a t e s i-, j depend o n l y on t h e r e s u l t i n g

(6)

a l l e l e j , a s i m p l e g e n e r a l i z a t i o n of t h e Fundamental Theorem h o l d s ( $ 2 ) . T h i s r e s u l t was motivated by H a d e l e r ' s p a p e r [ 7 ] who proved maintenance of s t a b i l i t y p r o p e r t i e s of a polymorphism when e q u a l m u t a t i o n r a t e s a r e allowed. I n $ 3 we show t h a t t h e s e e q u a t i o n s a r e even g r a d i e n t s w i t h r e s p e c t t o a c e r t a i n Riemannian m e t r i c , i n t r o d u c e d by Shahshahani [ 151

. 5

4 c o n t a i n s a d i s c u s s i o n of A k i n ' s r e s u l t on c y c l i n g t o g e t h e r w i t h a c o n c r e t e example o f a s t a b l e l i m i t c y c l e i n a 3 - a l l e l i c system. We c o n c l u d e w i t h some r e s u l t s f o r t h e d i s c r e t e time model 1 s 5 ) .

My s p e c i a l t h a n k s a r e due t o Pr0f.K. Sigmund. It was h i s paper [ 1 6 ] and h i s l e c t u r e s on Shahshahani g r a d i e n t s which l e d me t o f i n d t h e Lyapunov f u n c t i o n ( 2 . 6 ) .

1 . The Model

The s t a n d a r d s e l e c t i o n

+

m u t a t i o n model f o r s e p a r a t e d g e n e r a t i o n s i s as f o l l o w s ( c f . Crow-Kimura [ 4 ] ) . C o n s i d e r one gene l o c u s w i t h n a l l e l e s A 1 ,

...,

An and l e t x l ,

...,

x n be t h e i r r e l a t i v e f r e q u e n c e s i n t h e gene p o o l of t h e p o p u l a t i o n a t t i m e of mating. Assuming random m a t i n g , t h e r e l a t i v e number of gametes of ( o r d e r e d ) geno- t y p e A . A . w i l l be x i x j Due t o n a t u r a l s e l e c t i o n o n l y a p r o p o r t i o n

1 J

x x w i l l s u r v i v e i n t o p r o c r e a t i v e a g e ,

Of W i j i j where w i j = j i 2 0

a r e t h e f i t n e s s p a r a m e t e r s . So t h e number o f newly produced genes A. i s p r o p o r t i o n a l t o C w x . x = x .(Wx) Now l e t e i j be t h e

J k j k j k J j '

m u t a t i o n r a t e from A . t o Ai ( f o r i S j ) , t h e n J

n

' i j 2 0 and I: c i j = 1 f o r a l l j = 1

,. . .

, n ( 1 . 1 )

i = l

f o r s u i t a b l y d e f i n e d eii. Then t h e f r e q u e n c y x i of g e n e s Ai i n t h e gene p o o l of t h e new g e n e r a t i o n i s p r o p o r t i o n a l t o C e . x . (Wx)

j i~ J

More p r e c i s e l y , it i s g i v e n by j '

(7)

n - w x x t h e mean f i t n e s s o f t h e p o p u l a t i o n w i t h W(x) = X . W X = X ~ , ~ - , rs

,

as t h e u s u a l n o r m a l i z a t i o n f a c t o r . T h i s i s t h e d i s c r e t e time s e l e c t i o n m u t a t i o n e q u a t i o n . Since d i f f e r e n t i a l e q u a t i o n s a r e e a s i e r t o h a n d l e mathematically we r e p l a c e t h e d i f f e r e n c e xi-xi by x i = d x . / d t i n o r d e r t o o b t a i n t h e c o n t i n u o u s time s e l e c t i o n

1

mutation e q u a t i o n

This i s t h e e q u a t i o n s t u d i e d by Hadeler [ 7 ] . U s u a l l y , e.g. i n t h e c l a s s i c a l s e l e c t i o n e q u a t i o n which c o r r e s p o n d s t o t h e s p e c i a l c a s e s i i = l and e i j = O f o r

i d

j , t h e v e c t o r f i e l d (1 . 3 ) i s m u l t i - p l i e d by t h e p o s i t i v e f a c t o r W(x), which i s e q u i v a l e n t t o a change of v e l o c i t y . For our purpose t h i s i s n o t u s e f u l , however.

Crow and Emma [ 4 ] , p. 265 and Akin [ 1 ] c o n s i d e r a d i f f e r e n t model f o r o v e r l a p p i n g g e n e r a t i o n s : s e l e c t i o n a c t s i n t h e u s u a l way w i t h Malthusian f i t n e s s v a l u e s mi ; m u t a t i o n e f f e c t s , b e i n g

small i n g e n e r a l , change t h e gene f r e q u e n c i e s l i n e a r l y . Arguing t h a t s i m u l t a n e o u s a c t i o n o f s e l e c t i o n a l and m u t a t i o n a l f o r c e s i n a small time i n t e r v a l A t i s of s m a l l e r o r d e r ( p t

1 2 ,

t h e y a r r i v e a t a c o n t i n u o u s time model w i t h s e p a r a t e s e l e c t i o n and m u t a t i o n terms :

The t h r e e e q u a t i o n s ( 1 . 2 ) - ( 1 . 4 ) d e s c r i b e dynamical system on t h e p r o b a b i l i t y simplex

S n = ( x = ( x

,,...,

x ) E R " : x 2 0 and C n x i = l ) .

n i i = l

Rather t h a n g o i n g i n t o a d i s c u s s i o n o f which o f t h e models ( 1 . 3 ) and (1 . 4 ) i s t h e " c o r r e c t " o r a t l e a s t " b e t t e r " one, i t seems t o be more u s e f u l t o observe t h e f o l l o w i n g c o n n e c t i o n between them:

(8)

Rewrite (1 . 3 ) a s

and r e p l a c e

c i j 4 b e i j ( f o r

i 4

j ) and w i j 1 + L a i j t o o b t a i n

Thus a f t e r a r e s c a l i n g of time, t + t / b

,

Hadeler s e q u a t i o n (1 .3) w i t h ( 1 . 5 ) y i e l d s Akinf s uncoupled v e r s i o n (1 . 4 ) i n t h e l i m i t b + 0 . So f o r small s e l e c t i o n d i f f e r e n c e s and s m a l l mutation r a t e s both models a r e e s s e n t i a l l y e q u i v a l e n t .

2. S p e c i a l Mutation R a t e s

I n t h i s s e c t i o n we r e s t r i c t o u r s e l v e s t o t h e c a s e of s p e c i a l mutation r a t e s s a t i s f y i n g

' i j f o r i f j

i . e . mutation r a t e s depending only on t h e r e s u l t i n g a l l e l e s . It w i l l become c l e a r i n $ 3 ( s e e e s p e c i a l l y Theorem 4) t h a t t h i s c a s e d e s e r v e s a s e p a r a t e a n a l y s i s , (1.1) i m p l i e s h e r e

n ii = I c e i - € w i t h r = X

j=1 ' j ' and ( 1 . 3 ) s i m p l i f i e s t o

(9)

Hadeler [ 7 ] considered t h e case of equal mutation r a t e s e i = r / n . He posed t h e problem of f i n d i n g a Lyapunov f u n c t i o n i n t h i s c a s e , i n order t o g l o b a l i z e h i s s t a b i l i t y r e s u l t s . This w i l l now be done. We w r i t e (2.3) a s a r e p l i c a t o r equation [ 1 1 ,161

with

(WxIi e i n

f i ( x ) = ( 1 - 0 ) . W T ; ; T + ~ and ? ( x ) = E xifi(x) = 1 12-51

i i = l

Obviously t h e f u n c t i o n s f i ( x ) f u l f i l l t h e i n t e g r a b i l i t y c o n d i t i o n s bfi/bx = b f j / b x i . This i m p l i e s t h e e x i s t e n c e of an i n t e g r a l ~ ( x ) , w i t h f i ( x ) j = bV/bxi, which i s e a s i l y computed t o

Then

This proves

Theorem 1 : ~ ( x ) i s a g l o b a l Lyapunov f u n c t i o n f o r t h e continuous time s e l e c t i o n mutat i o n equation (1 . 3 ) w i t h s p e c i a l mutation r a t e s ( 2 . 1 ) .

Exponentiating ~ ( x ) we o b t a i n t h e more suggestive Lyapunov f u n c t i o n

For e = 0 , i . e . no mutation, v ( x ) reduces t o t h e mean f i t n e s s

f u n c t i o n W(x). So ( 2 . 7 ) i s a s u r p r i s i n g l y simple and s t r a i g h t f o r w a r d g e n e r a l i z a t i o n of F i s h e r ' s Fundamental Theorem of N a t u r a l S e l e c t i o n :

(10)

The change of t h e modified mean f i t n e s s f u n c t i o n v ( x ) i s pro-

p o r t i o n a l t o t h e v a r i a n c e of t h e s e l e c t i o n

+

mutation terms f i ( x ) . The p r e c i s e mathematical meaning of (2.7) ( i n terms of Shahshahani g r a d i e n t s ) w i l l be discussed i n $ 3. There we w i l l a l s o s e e t h a t t h i s r e s u l t cannot be extended t o mutation m a t r i c e s which do not s a t i s f y (2.1 ). When d e a l i n g with only n = 2 a l l e l e s however, (2.1 ) i s no r e s t r i c t i o n . This c a s e i s analyzed i n a n i c e way i n Roughgarden [ I 31 p. 1 1 7 f f , .also u s i n g t h e Lyapunov f u n c t i o n ( 2 . 8 ) .

R e c a l l i n g ( 1 - 5 ) t h e same r e s u l t c a r r i e s over t o Akin's equation ( 1 . 4 ) . Since l o g ( 1 + b m ) / b + m a s 6 4 0 , t h e above Lyapunov f u n c t i o n f o r Hadeler

'

s equations i s replaced by

1 n

v ( x ) = 2x.Mx+

z

ei l o g xi i= 1

and t h e fundamental r e l a t i o n (2.7) holds a g a i n , i f we s e t f i ( x ) = ( M x ) ~ + - and i ? ( x ) = x.Mx+e.

x 4 (Compare a l s o [ 2 , p. 57f] )

.

A s a consequence of (2.7) we o b t a i n

Corollary: A l l o r b i t s of t h e continuous time s e l e c t i o n mutation equations ( 1 . 3 ) and ( 1 . 4 ) converge t o t h e s e t of f i x e d p o i n t s . These a r e given by t h e s o l u t i o n s of t h e equations f i ( x ) = c o n s t .

The simple form of t h e Lyapunov f u n c t i o n (2.6) allows us t o g l o b a l i z e Hadeler

'

s r e s u l t [ 71

.

Theorem 2: Suppose t h e model without mutation ( i . e . ei = 0 f o r if j) admits a s t a b l e polymorphism (= i n t e r i o r e q u i l i b r i u m ) . Then f o r every choice of mutation r a t e s s a t i s f y i n g (2.1 ) with c = C e . S 1

,

t h e equations ( 1 2 )

,

( 1 - 3 ) and (1 - 4 ) have e x a c t l y one s t a t i o n a r y J

s o l u t i o n i n S n

.

This s o l u t i o n i s g l o b a l l y s t a b l e f o r t h e d i f f e r e n t i a l equations and a t l e a s t l o c a l l y s t a b l e f o r t h e d i f f e r e n c e equation.

(11)

Proof. Let pE i n t Sn be t h e ( e x p o n e n t i a l l y ) s t a b l e polymorphism

-

assumed t o e x i s t f o r t h e s e l e c t i o n equation. Then p i s a ( s t r i c t ) g l o b a l maximum of mean f i t n e s s W(x)=x.Wx: W(x)SW(p) f o r a l l x E Sn.

Since p.Wx=x.Wp=p.Wp, we o b t a i n (x-p).W(x- SO o r

( . W < S O f o r a l l 5 E R " o = { c E R ~ : ~ g i 5 0 }

(with e q u a l i t y only f o r 5 =O). Together w i t h t h i s well-known s t a b i l i t y c o n d i t i o n t h e parallelogram r u l e f o r t h e q u a d r a t i c form WCx) i m p l i e s

Hence mean f i t n e s s W(x) i s a ( s t r i c t l y ) concave f u n c t i o n on Sn and s o i s l o g W(x). The same holds f o r t h e l o g xi, and s o t h e Lyapunovfunctions V(x) i n (2.6) and (2.9) a r e s t r i c t l y concave

on Sn. But t h e n V(x) can have only one c r i t i c a l point which is a g l o b a l maximum. C o r o l l a r y l t h e n i m p l i e s t h e g l o b a l convergence.

The proof of t h e d i s c r e t e time case i s d e f e r r e d t o § 5 .

Remark. Although t h i s r e s u l t looks very plausible a n d c o i n c i d e s with i n t u i t i o n i t i s n o t t r u e f o r more g e n e r a l mutation r a t e s

t h a t do not s a t i s f y ( 2 . 1 ) , as we w i l l see i n

5

4. A l s o i f s e l e c t i o n a l o n e produces a g l o b a l l y s t a b l e s t a t i o n a r y s t a t e on t h e boundary of Sn, t h e conclusion does not hold. Even f o r n = 2 a l l e l e s mutation terms may produce a n a d d i t i o n a l s t a b l e f i x e d point on t h e opposite s i d e of t h e simplex. This somewhat unexpected e f f e c t was observed by Burger [ 31

.

3 .

Shahshahani Gradients

I n t h i s s e c t i o n I want t o e x p l a i n why it i s p o s s i b l e t o f i n d such a simple g e n e r a l i z a t i o n of t h e Fundamental Theorem f o r s p e c i a l mutation r a t e s . The main point i n t h e proof of Theorem 1 was, a f t e r w r i t i n g t h e d i f f e r e n t i a l equation i n " r e p l i c a t o r " form

(12)

t h a t t h e f , ( x ) have a common i n t e g r a l V. Thus t h e t r i c k w i l l

I

work whenever t h e r e l a t e d system

ii

= f i ( x ) on IRn i s t h e g r a d i e n t of some p o t e n t i a l V ( x ) . I n t h i s case ( 2 . 7 ) holds and V(x) i s a l s o a Lyapunov f u n c t i o n f o r t h e corresponding r e p l i c a t o r equation 13.1 )

.

For t h e c l a s s i c a l s e l e c t i o n equation t h e f i ( x ) a r e l i n e a r f u n c t i o n s : f i ( x ) = z W . .x and t h e symmetry w i j = w j i ensures t h e e x i s t e n c e of

1 5 j

t h e p o t e n t i a l ~ ( x ) = x.Wx.

The q u e s t i o n a r i s e s whether t h e r e i s more behind t h i s analogy.

I n f a c t Kimurals Maximum P r i n c i p l e claims t h a t f o r t h e s e l e c t i o n model t h e change of gene frequencies occurs i n such a way t h a t t h e i n c r e a s e i n mean f i t n e s s i s maximal ( s e e Crow and fimura [ 41

,

p. 230). A p r e c i s e mathematical i n t e r p r e t a t i o n of t h i s

statement could only mean t h a t t h e s e l e c t i o n equation

9

a g r a d i e n t w i t h mean f i t n e s s as p o t e n t i a l . But t h i s i s obviously not t r u e . The s i t u a t i o n was c l e a r e d up by. Shahshahani [ 1 51 and analyzed f u r t h e r i n g r e a t d e t a i l by Akin [ 1 ] and Sigmund [ 161

.

That a

d i f f e r e n t i a l equation i s a g r a d i e n t means e s s e n t i a l l y t h a t t h e v e c t o r f i e l d i s orthogonal t o t h e contour l i n e s of i t s p o t e n t i a l f u n c t i o n . So g r a d i e n t systems depend i n a n e s s e n t i a l way on t h e n o t i o n of o r t h o g o n a l i t y , o r angle, o r i n n e r product. And i n f a c t Crow and Kimura r e p l a c e t h e usual d i s t a n c e by a c e r t a i n v a r i a n c e i n t h e i r proof of t h e maximum p r i n c i p l e [ 4 ]

,

p. 230ff. So,

following Shahshahani, l e t us d e f i n e a new i n n e r product ( X , Y ) f o r v e c t o r s X , Y i n t h e tangent space T S = R: a t every p o i n t P

P n p E i n t Sn by

(13)

This i s a Riemannian metric f o r i n t Sn. I t i s easy t o check t h a t t h i s Riemannian manifold i s e s s e n t i a l l y i s o m e t r i c t o t h e p a r t of t h e (n-1) dimensional sphere l y i n g i n t h e p o s i t i v e

o r t h a n t ( w i t h t h e u s u a l Euclidean m e t r i c ) , by t h e simple change of c o o r d i n a t e s <= yi ( s e e [ 1 1 , p. 39,55 f o r d e t a i l s ) .

For a d i f f e r e n t i a b l e f u n c t i o n V on Sn, t h e Shahshahani g r a d i e n t Grad V i s then t h e unique v e c t o r E T S w i t h

P P n

(Grad V , Y ) = D V(Y) f o r a l l Y T . S

P P P P n' ( 3 . 2 )

where D V: T S R i s t h e d e r i v a t i v e of V a t p.

P P n

Gradients f = grad V w i t h r e s p e c t t o t h e ~ u c l i d e a n m e t r i c a r e e a s y t o recognize: Here t h e i n t e g r a b i l i t y c o n d i t i o n s bfi/bx = bf j/bxi,

o r e q u i v a l e n t l y t h e symmetry of t h e Jacobian matrix of j f a r e necessary and s u f f i c i e n t conditions. It would be u s e f u l t o have a similar c h a r a c t e r i z a t i o n f o r v e c t o r f i e l d s on Sn, which a r e given

A

i n form ( 3 . 1 ) , t o be Shahshahani g r a d i e n t s . I f t h e v e c t o r f i e l d f i n (3.1) i s defined i n a whole neighbourhood of i n t Sn we may compute

A

But s i n c e we a r e i n t e r e s t e d only i n Sn i t s e l f , only t h e a c t i o n on v e c t o r s i n T S = R: i s of relevance. So, following Akin [ 1 ]

,

P n

p. 173, we c o n s i d e r t h e b i l i n e a r form

A A

Hpf(Y,Z) = ( Y , ( D p f ) ( ~ ) ) p f o r Y , Z € T S = R o . n

P n (3.4)

Concrete e v a l u a t i o n g i v e s

A

(14)

with f i

.

= bfi/bx. f o r s h o r t . Since a t i n t e r i o r e q u i l i b r i a t h e

, J J

f i r s t sum d i s a p p e a r s t h i s l e a d s t o a considerable s i m p l i f i c a t i o n of t h e o r i g i n a l formula ( 3 . 3 ) . Now we can s t a t e

A

Theorem 3: For a v e c t o r f i e l d f i ( x ) = xi[ f i ( x )

-

? ( x ) ]

,

a s i n (3.1 ) defined i n a neighbourhood U of i n t

%,

t h e following c o n d i t i o n s a r e equivalent :

A

( a ) f i i s a Shahshahani gradient on i n t Sn.

(b) There e x i s t f u n c t i o n s V , $ : U + R such t h a t f i ( x )

=a,+$

b xi ( x )

holds on i n t Sn.

A

( c ) The Jacobian b i l i n e a r form H f i s symmetric a t every p E i n t Sn.

-

P

( a )

f i , + f j , k + f k , i - f i , k + f k , j . + f j , i holds on i n t Sn f o r a l l

A

Proof ( a )

*

( b )

.

I f f = Grad V, then (3.2) implies

-*

f o r a l l YER: and a l l xE i n t Sn. Choosing Yi = Zi

-

xi(Z Z . ) f o r

a r b i t r a r y Z E R n , we o b t a i n by equating c o e f f i c i e n t s J

Comparing w i t h (3.1) we conclude t h a t ( b ) holds.

( b ) s ( c ) . Since t h e f i a r e of t h e form

f i ( x ) = bV/bxi

+ ) ( X I +

LC x .-I ) q i ( x ) f o r X E U,

J

t h e cpi being a r b i t r a r y f u n c t i o n s , t h e p a r t i a l s a r e given by

bfi 9

- = b

2v

b X +-+mi(x) f o r X E i n t Sn.

j b X j b x j

(15)

I n s e r t i n g t h i s i n t o ( 3 . 5 ) , t h e terms w i t h $

,mi

d i s a p p e a r by Z Y i = x Z = 0 . What remains i s a symmetric b i l i n e a r form.

j

A

( c ) o ( d ) . The symmetry of H ~ ( Y , z ) i m p l i e s z ( f i .-f ) Y . Z

=

0

P , J j , i 1 j

f o r a l l Y , Z E R:. With Y = ei-ek and Z = ej-ek ( e . b e i n g t h e u n i t v e c t o r s in ]Fin) w e obtain ( d ) . J

( d ) o ( b ) . Define f o r xl

+ ...

+ x ~ - ~ 4 , x i > 0

Then gi c o i n c i d e w i t h f i on S and gi n = f i , j

-

f i , n by t h e chain r u l e . So ( d ) i m p l i e s ( w i t h k = n! :

These a r e j u s t t h e i n t e g r a b i l i t y c o n d i t i o n s f o r gi-gn ( 1 S i L n-1 ) on R"-' Thus we f i n d an i n t e g r a l V = V(xl

, . .

, ) w i t h

R e c a l l i n g ( 3 . 6 ) t h i s i m p l i e s ( b ) with ( = g n . ( b ) o ( a ) . From l: Y i = O we compute

Thus ( 3 . 1 ) i s e s t a b l i s h e d .

Remark. ( a ) @ ( b ) i s taken from Sigmund [ 161

.

Condition ( c ) i s due t o Akin [ I ] , p. 175. The e x p l i c i t i n t e g r a b i l i t y c o n d i t i o n ( d ) which i s t h e most u s e f u l i n a p p l i c a t i o n s was motivated by t h e corresponding c y c l e c o n d i t i o n f o r l i n e a r f 's discovered by Sigmund [ 1 61

.

i

(16)

I n p a r t i c u l a r , c o n d i t i o n s ( b ) - ( d ) a r e obviously s a t i s f i e d i f f i = f

.

T h i s e x p l a i n s t h e analogy p o i n t e d o u t i n t h e

, j j , i

b e g i n n i n g of t h i s s e c t i o n and i m p l i e s

C o r o l l a r y : The s e l e c t i o n mutation e q u a t i o n s ( 1 . 3 ) and (1 .4) w i t h s p e c i a l m u t a t i o n r a t e s ( 2 . 1 ) a r e Shahshahani g r a d i e n t s w i t h

p o t e n t i a l V g i v e n by ( 2 . 6 ) and (2.9) r e s p e c t i v e l y .

That t h i s i s n o t t r u e f o r more g e n e r a l m u t a t i o n r a t e s b s a consequence o f t h e f o l l o w i n g theorem, which c o r r e c t s t h e s l i g h t mistake i n [ 1 1

,

p. 1 8 1 t h a t made t h i s paper p o s s i b l e ( s e e a l s o

P I ,

P* 5 7 ) .

Theorem

4:

The m u t a t i o n e q u a t i o n

i s a Shahshahani g r a d i e n t i f and only i f t h e mutation r a t e s s a t i s f y (2.1 )

.

Proof. W r i t i n g ( 3 . 7 ) i n r e p l i c a t o r form ( 3 . 1 ) , we have f i ( x )

= E r .

.x ./xi and hence f o r i h j ,

j 1~ J f i , = a j/xi. The i n t e g r a -

b i l i t y c e n d i t i o n ( d ) t h e n s a y s ( f o r i , j , k p a i r w i s e d i f f e r e n t )

15,

e ' j k I C k i =

-

' i k ; 'k.i

k b

x x x x x f o r a l l x E i n t Sn.

j k i k j

T h i s i m p l i e s , b y t a l d n g t h e l i m i t xi+ 0 , t h a t e i j

= r i k

f o r a l l jhk,

-

( i + j ) . T h e r e f o r e ( a i j ) i s of t h e s p e c i a l form and hence e i j - a i

(2.1 ).

Of c o u r s e t h i s theorem does n o t mean t h a t t h e g e n e r a l m u t a t i o n e q u a t i o n (3.7) behaves l e s s n i c e l y from t h e p u r e l y q u a l i t a t i v e p o i n t of view. ( 3 . 7 ) i s a l i n e a r e q u a t i o n and i f c i j > 0 h o l d s f o r s u f f i - c i e n t l y many i h j , t h e Perron-Frobenius theorem i m p l i e s t h e e x i s t e n c e , uniqueness and g l o b a l s t a b i l i t y of a polymorphic e q u i l i b r i u m ( s e e Akin [ I ] , p. 1 6 0 f f ) . So t h e Shahshahani m e t r i c i s j u s t n o t t h e r i g h t t o o l t o s t u d y m u t a t i o n . But Theorem 5 below shows t h a t it is s t i l l r e l e v a n t f o r t h e combined a c t i o n of s e l e c t i o n and m u t a t i o n .

(17)

4 . L i m i t Cycles

This s e c t i o n d e a l s w i t h more g e n e r a l m u t a t i o n r a t e s t h a n ( 2 . 1 ) . Our emphasis i s t o d e m o n s t r a t e t h a t t h e C o r o l l a r y of Theorem 1 i s no l o n g e r t r u e i n t h i s c a s e : The dynamic b e h a v i o u r i s i n g e n e r a l n o t g r a d i e n t - l i k e . The f o l l o w i n g s i m p l e example shows t h a t s t a b l e l i m i t c y c l e s may o c c u r .

I n o r d e r t o make c o m p u t a t i o n s t r a c t a b l e we t a k e t h e s i m p l e s t n o n t r i v i a l c a s e : We assume t h a t a l l homozygotes AiAi have t h e same f i t n e s s and a l s o a l l h e t e r o z y g o t e s A;A; ( i b j ) . When working w i t h t h e s i m p l e r e q u a t i o n ( 1 . 4 ) t h i s means m i j = s b i j , where s measures t h e s e l e c t i v e a d v a n t a g e of t h e homozygotes. M o t i v a t e d by t h e s u c c e s s f u l t r e a t m e n t of t h e h y p e r c y c l e and s i m i l a r systems i n S c h u s t e r e t a l . [ 141

,

we assume m u t a t i o n r a t e s t o be c y c l i c symmetric, i . e . e i j

-

- e j-i. Then Xi=0 n-1 c! = 1 , where t h e i n d e x i o f e i i s now c o n s i d e r e d as a r e s i d u e modulo n. Then ( 1 . 4 ) r e a d s

--

xi = sxi ( x i - Q ( x ) )

+ L

c x

-

x

j=1 j - i j i

w i t h Q ( x ) = C i = l n x 2 i ' Obviously t h e b a r y c e n t e r m =

-

(;;, 1

. . . ,

n 1 -) of t h e s i m p l e x i s a s t a t i o n a r y s o l u t i o n of (4.1 )

.

We compute t h e J a c o b i a n of 1 4 . 1 ) :

The d i v e r g e n c e of t h e v e c t o r f i e l d i s t h e t r a c e of t h e J a c o b i a n

S i n c e t h e flow i s r e s t r i c t e d t o Sn we have t o s u b t r a c t t h e

e i g e n v a l u e t r a n s v e r s a l t o Sn, g i v e n by - ? ( x ) = - s Q ( x ) , t o o b t a i n t h e d i v e r g e n c e d i v w i t h i n Sn:

0

(18)

2 1 2 1

Since Q ( x ) = Z x i 2 ;;(EX.) 1 = n '

-

we have f o r p o s i t i v e s

So t h e divergence i s n e g a t i v e on Sn\{g} whenever

Now we s p e c i a l i z e t o n = 3 a l l e l e s . Then t h e eigenvalues

X,r

a t g w i t h i n S a r e e a s i l y computed as 3

with o = e x p ( & i / 3 ) . They a r e complex i f c l

+

e 2 and t h e i r r e a l p a r t i s

For s = $ ( e

+

e ) t h e eigenvalues a r e purely imaginary and a Hopf b i f u r c a t i o n o c c u r s , t a k i n g s a s parameter. Since f o r a l l

s s q ( r l + e 2 ) d i v o c O h o l d s on 9 Sj\(~l by ( 4 . 4 ) and ( 4 . 5 ) ,

Bendixsonls n e g a t i v e c r i t e r i o n i m p l i e s t h a t t h e r e a r e no p e r i o d i c o r b i t s i n t h i s c a s e , i . e . a s long as g i s s t a b l e ( s e e F i g . l a ) . Hence t h e b i f u r c a t i o n i s s u p e r c r i t i c a l and stable. l i m i t c y c l e s appear i f s i s s l i g h t l y l a r g e r t h a n q ( r l

+

c 2 ) , i . e . when 2

becomes an u n s t a b l e f o c u s . (Fig. 1 b ) . I f s i n c r e a s e s f u r t h e r , 3 p a i r s of f i x e d p o i n t s a r e c r e a t e d simultaneously and t h e l i m i t c y c l e , whose period t e n d s t o i n f i n i t y , d i s a p p e a r s i n a t r i a n g l e of h e t e r o c l i n i c o r b i t s . ( T h i s i s sometimes c a l l e d a " b l u e sky b i f u r c a t i o n v , s e e F i g . I c , d ) .

(19)

F i g u r e 1 : Phase p o r t r a i t s of t h e t h r e e - a l l e l i c s e l e c t i o n m u t a t i o n e q u a t i o n ( 4 . 1 ) w i t h s = 1 , e l = e , c 2 = 0 .

( a ) e = 0.28. S t r o n g m u t a t i o n ( c / s ~ 2/9) l e a d s t o g r a d i e n t - l i k e b e h a v i o u r w i t h g as g l o b a l l y s t a b l e f o c u s .

( b ) c = 0.2. F o r moderate m u t a t i o n r a t e s (1 / 6 < c / s a 2/9) t h e r e e x i s t s a s t a b l e l i m i t c y c l e .

( c ) e = 1/6. A t t h i s c r i t i c a l v a l u e t h r e e f i x e d p o i n t s , c y c l i c a l l y j o i n e d by h e t e r o c l i n i c o r b i t s

,

a r e c r e a t e d . I d ) c = 0.14. G r a d i e n t - l i k e b e h a v i o u r f o r weak mutation

(E/s* 1 / 6 ) . The t h r e e s t a b l e f i x e d p o i n t s P1, 2 ,

S

correspond t o t h e well-known s e l e c t i o n - m u t a t i o n b a l a n c e . I am i n d e b t e d t o Dr.F. Kemler f o r producing t h e computer p l o t s

.

(20)

So we s e e t h a t t h e i n t e r a c t i o n of m u t a t i o n and s e l e c t i o n

may l e a d t o s t a b l e l i m i t c y c l e s . Maybe t h i s i s n o t t o o s u r p r i s i n g f o r t h e above example s i n c e t h e f i x e d p o i n t f o r t h e m u t a t i o n

f i e l d ( s = 0 ) i s a l r e a d y a f o c u s which i s t h e n d e s t a b i l i z e d by t h e s e l e c t i o n p a r t . But one can a l s o c o n s t r u c t examples of Hopf b i f u r c a t i o n s when t h e s e l e c t i o n f i e l d has a s t a b l e polymorphism

(compare t h e remark i n 2 ) . Moreover t h e same b i f u r c a t i o n behaviour a p p e a r s f o r any mutation r a t e s t h a t a r e n o t of t h e s p e c i a l form ( 2 . 1 )

.

T h i s i s a consequence of t h e f o l l o w i n g b a s i c theorem of Akin [ 1 ]

,

p. 186 :

Theorem 5 : Let f (x) be a v e c t o r f i e l d on Sn which i s

not

a

Shahshahani g r a d i e n t (e.g. any mutation f i e l d (3.7) w i t h m u t a t i o n r a t e s n o t of t h e form (2.1 ) )

.

Then t h e r e e x i s t s a f a m i l y of

s e l e c t i o n m a t r i c e s

.

= , such t h a t t h e combined f i e l d

1J

( t h i s i s t h e n (1.4) ) undergoes a Hopf b i f u r c a t i o n and p e r i o d i c o r b i t s occur.

I n t h i s g e n e r a l form, however, Akin1 s theorem d o e s n o t s a y a n y t h i n g on t h e s t a b i l i t y of t h e p e r i o d i c o r b i t s . It could happen t h a t t h e Hopf b i f u r c a t i o n s a r e always s u b c r i t i c a l o r c r i t i c a l . The p e r i o d i c o r b i t s would t h e n be of l e s s b i o l o g i c a l r e l e v a n c e s i n c e t h e y would n o t be observable. But t h e above example j u s t shows t h a t s t a b l e l i m i t c y c l e s a r e indeed p o s s i b l e .

By t h e approximation argument (1 .5) t h e same r e s u l t h o l d s f o r H a d e l e r ' s v e r s i o n ( 1 . 3 ) , a t l e a s t a f t e r t h e m u t a t i o n r a t e s E~~ a r e r e s c a l e d t o b e i j by some small f a c t o r b > 0 . With t h e r e s c a l i n g W + 1

+

bW t h e d i f f e r e n c e e q u a t i o n ( 1 . 2 ) t u r n s out t o behave e s s e n t i a l l y l i k e E u l e r t s d i s c r e t i z a t i o n of t h e d i f f e r e n t i a l e q u a t i o n ( 1 . 3 ) , w i t h 6W/(1 + 6 W ) as s t e p l e n g t h . Thus Akin1 s Hopf b i f u r c a t i o n r e s u l t a l s o c a r r i e s over t o t h e d i s c r e t e time model, and s t a b l e l i m i t c y c l e s (= a t t r a c t i n g i n v a r i a n t c u r v e s ) . a l s o occur i'n ( 1 . 2 ) f o r n o n s p e c i a l mutation r a t e s . ( F o r a p r e c i s e

t r e a t m e n t of t h , i s i d e a s e e [ I 01 ) .

(21)

Akin a l s o a p p l i e d hi8 t h e o r e m t o o t h e r e q u a t i o n % i n p a r t i c u l a r t o m u l t i l o c u s s y s t e m s . He proved t h a t t h e v e c t o r f i e l d on Sn t h a t models t h e e f f e c t s of r e c o m b i n a t i o n between two l o c i i s never a g r a d i e n t w i t h r e s p e c t t o S h a h s h a h a n i ' s m e t r i c . Thus Hopf b i -

f u r c a t i o n s occur. The a c t u a l computations p r o v i n g t h a t even s t a b l e l i m i t c y c l e s a r e p o s s i b l e a r e more d i f f i c u l t i n this c a s e , however;

s e e A k i n ' s memoir [ 2 ] . I t i s tempting t o c o n j e c t u r e t h a t even more complicated dynamic b e h a v i o u r , i . e . c h a o t i c motion, i s p o s s i b l e f o r t h e s e two e x t e n s i o n s o f t h e s e l e c t i o n m o d e l , a l l o w i n g e i t h e r m u t a t i o n s o r recombination.

We conclude w i t h a c r i t i c a l remark. I t i s n o t q u i t e c l e a r how r e l e v a n t t h i s c y c l i n g r e s u l t i s f o r r e a l b i o l o g i c a l p o p u l a t i o n s . Indeed m u t a t i o n r a t e s a r e u s u a l l y much s m a l l e r t h a n s e l e c t i o n r a t e s . The s e l e c t i o n

+

m u t a t i o n f i e l d c a n t h e n be t r e a t e d as a p e r t u r b a t i o n o f t h e s e l e c t i o n e q u a t i o n . S i n c e t h e l a t t e r i s s t r u c t u r a l l y s t a b l e i n g e n e r a l , small m u t a t i o n s w i l l n o t change t h e s i t u a t i o n v e r y much: Only t h e boundary e q u i l i b r i a w i l l move inwards t h e simplex Sn, if t h e y a r e s t a b l e , and some of t h e u n s t a b l e ones w i l l move outwards. I t would be u s e f u l t o f i n d

c o n c r e t e e s t i m a t e s .of how l a r g e t h e m u t a t i o n r a t e s may b e (compared e . g . w i t h t h e v a r i a n c e o f t h e w i j ) i n o r d e r t o r e t a i n a g r a d i e n t - l i k e behaviour.

5 .

The D i f f e r e n c e E q u a t i o n

I n t h i s l a s t s e c t i o n I want t o c o l l e c t a few r e s u l t s on t h e d i f f e r e n c e e q u a t i o n ( 1 . 2 ) . It would be d e s i r a b l e t o show t h a t o u r f u n c t i o n V from ( 2 . 6 ) s e r v e s as a Lyapunov f u n c t i o n f o r t h e d i s c r e t e time model t o o , . if m u t a t i o n r a t e s a r e s p e c i a l . But t h i s seems t o be a much h a r d e r problem which I h a v e n ' t y e t managed t o s o l v e . So I c o n f i n e myself t o some p a r t i a l r e s u l t s which i n d i c a t e t h a t t h e d i f f e r e n c e e q u a t i o n behaves s i m i l a r l y t o t h e d i f f e r e n t i a l e q u a t i o n .

(22)

In order to generalize Hadeler's theorem [7] to the difference equation we have to exclude overshooting effects. This is done by means of the following lemma, which is essentially contained in Losert and Akin [12].

Lemma: All eigenvalues of the derivative of the discrete time

-

selection equation at any point p E Sn (which need not be an

equilibrium point) are nonnegative. For interior p all eigenvalues corresponding to directions within Sn are even strictly positive

(if all wii> 0).

Proof. The derivative is given by

-

Since the selection equation is a Shahshahani gradient, Theorem 3(c) applies and D is selfadjoint with respect to the Shahshahani

inner product. Thus it is sufficient to consider the quadratic form

Now Dp= 0 and so the eigenvalue corresponding to the (irrelevant) direction orthogonal to Sn is zero. Substituting y=x-(x.Wp/p.Wp)p the corresponding one-dimensional degeneracy of the quadratic form (5.2) can be eliminated:

(23)

w i t h e q u a l i t y only f o r y = O ( s i n c e wii> 0 ) . T h e r e f o r e ( 5 . 2 )

i s a p o s i t i v e d e f i n i t e q u a d r a t i c form on If?: and s o a l l e i g e n v a l u e s of D a r e p o s i t i v e . F o r boundary p t h e a d d i t i o n a l e i g e n v a l u e s

p o i n t i n g i n t o t h e i n t e r i o r of Sn a r e g i v e n by ( ~ p ) ~ / p . w p and a r e obviously nonnegative.

Proof of Theorem 2 f o r d i s c r e t e t i m e .

( 1 . 2 ) r e d u c e s f o r s p e c i a l mutation r a t e s ( 2 . 1 ) t o

We know a l r e a d y from Theorem 2 t h a t t h e r e i s a unique e q u i l i b r i u m p C S which i s s t a b l e f o r t h e d i f f e r e n t i a l e q u a t i o n ( 2 . 3 ) . Now t h e d e r i v a t i v e s of (1 n . 2 ) and of ( 1 . 3 ) d i f f e r only by t h e i d e n t i % y matrix. T h i s i m p l i e s t h a t a l l e i g e n v a l u e s of ( 5 . 4 ) have r e a l p a r t l e s s t h a n 1 . Since t h e d e r i v a t i v e of ( 5 . 4 ) d i f f e r s from t h a t of t h e ' p u r e s e l e c t i o n e q u a t i o n only by t h e f a c t o r 1 -c 2 0 , i t s e i g e n v a l u e s a r e r e a l and nonnegative, a c c o r d i n g t o t h e lemma.

Thus t h e y a r e a l l l o c a t e d w i t h i n t h e u n i t c i r c l e and p i s s t a b l e f o r t h e dynamics ( 5 . 4 ) .

F o r g e n e r a l m u t a t i o n r a t e s we c a n view t h e d i f f e r e n c e e q u a t i o n ( 1 . 2 ) as t h e composition of t h e s e l e c t i o n map

T : x + x . ( W X ) ~ / X . W X and t h e l i n e a r s t o c h a s t i c map x

-. Px,

i 1

(Ar), = Z . e Now t h e i n v e r s i o n theorem of L o s e r t and Akin 'j l j i h e n e v e r w i j

[ I 21 s a y s t h a t > 0 f o r a l l i , j ) t h e s e l e c t i o n map T

---

i s a diffeomorphism of Sn, i . e . a b i j e c t i v e smooth map Sn -+ Sn

- -

whose i n v e r s e f u n c t i o n i s a l s o smooth.

h he

l o c a l i n v e r t i b i l i t y -- - - - .

corresponds t o t h a t p a r t o f t h e l e k a c l a i m i n g t h a t - 0 i s n o t a n ' e i g e n v a l u e of t h e d e r i v a t i v e ) . A s l o n g as mutation r a t e s a r e n o t t o o l a r g e we have d e t P > 0 . Then mutation maps Sn onto a s m a l l e r simplex P ( S n ) i n s i d e Sn. Thus t h e combined map ( 1 . 2 ) i s a

diffeomorphism from. Sn o n t o P (3,)

,

whenever a l l wi > 0 and d e t

P>

0 . T h i s r e s u l t s u g g e s t s t h a t (1 . 2 ) w i l l n o t behave much worse t h a n

t h e d i f f e r e n t i a l e q u a t i o n ( 1 . 3 ) . I n p a r t i c u l a r i t c o m p l e t e l y s e t t l e s t h e n = 2 a l l e l i c c a s e , as no o v e r s h o o t i n g e f f e c t s a r e p o s s i b l e a s l o n g as d e t P = 1 -c -e 2

-.

0 and s o o r b i t s converge monotonically towards t h e e q u i l i b r i u m s t a t e s .

(24)

References

1 . Akin, E.: The Geometry of Population Genetics.

Lecture Notes i n Biomathematics, v o l . 31. B e r l i n - Heidelbergaew York: Springer 1979 *

2. Akin, E.: Hopf b i f u r c a t i o n i n t h e two l o c u s g e n e t i c model.

Memoirs Amer .Mat h. Soc

. 284

( 1 983 )

.

3. Burger, R.: On t h e e v o l u t i o n of dominance modifiers.

J . Theor.Biology

101,

285-298 (1983).

4. Crow, J . F . , Kimura, M.: An I n t r o d u c t i o n t o Population Genetics Theory.

New York: Harper & Row 1970.

5. Ewens, W.J.: Mathematical Population Genetics.

Berlin-Heidelberg-New York: Springer 1979.

6. Hadeler, K.P.: Mathematik fiir Biologen.

Berlin-Heidelberg-New York: Springer 1 974.

7. Hadeler, K.P.: S t a b l e polymorphisms i n a s e l e c t i o n model w i t h mutation.

SIAM J.Appl.Math.

41,

1-7 ( 1 981 ).

8. Hassard, B.D., K a z a r i n o f f , N.D., Wan, Y.H.: Theory and A p p l i c a t i o n s of Hopf B i f u r c a t i o n .

London Math.Soc. Lecture Notes

41,

Cambridge

U n i v e r s i t y P r e s s 1981

.

9. Hofbauer, J.: Gradients versus c y c l i n g i n g e n e t i c s e l e c t i o n models.

IIASA Working Paper 84-89 ( 1 984). To appear.

10. Hofbauer, J.; I o o s s , G.: A Hopf b i f u r c a t i o n theorem f o r d i f f e r e n c e equations a p p r o x i m a t i n g . a d i f f e r e n t i a 1

equation.

Monatsh.Math.

98,

99-1 13 ( 1 984).

(25)

1 1 . Hofbauer, J . , Sigmund, K.: E v o l u t i o n s t h e o r i e und dynamische Systeme. Mathematische Aspekte d e r S e l e k t i o n . Berlin-Hamburg: Parey 1 984.

12. L o s e r t ,

V.,

Akin, E . : Dynamics of games and genes: d i s c r e t e v e r s u s continuous time.

J.Math. Biology

17,

241 -251 ( 1 983).

13. Roughgarden, J . : Theory of Population Genetics and Evolutionary Ecology : An I n t r o d u c t i o n .

New York: Macmillan 1979.

14. S c h u s t e r , P., Sigmund, K., Wolff, R., Hofbauer, J . : Dynamical systems under c o n s t a n t o r g a n i z a t i o n . P a r t 2 :

Homogeneous growth f u n c t i o n s of degree 2.

SIAM J.Appl.Math.

2,

282-304 ( 1 980)

.

15. Shahshahani, S.: A new mathematical framework f o r t h e study of l i n k a g e and s e l e c t i o n .

Memoirs Amer.Math. Soc.

211

( 1 979).

1 6 . Sigmund, K . : The maximum p r i n c i p l e f o r r e p l i c a t o r e q u a t i o n s . I n : Lotka-Volterra Approach t o Dynamical Systems, M. ~ e s c h e l ed

. ,

Proc

.

Conf

.

Wartburg (GDR) March 1984.

B e r l i n : Akademie-Verlag. 1 984.

Referenzen

ÄHNLICHE DOKUMENTE

R, mice released with tags at the beginning of the interval (including those already tagged before); S, tagged mice caught alive at the end of the interval; S/R, fraction surviving

In order to validate whether a mutation in one of these genes might be responsible for OI, we genotyped three gene associated microsatellite markers derived from the surrounding

The simplification of dictionary articles with only a single item giving the meaning in each article shows that a text reception dictionary does not have to maintain the

Based on this approximation, we derived probabilities q A (r) for selecting edges to be incorporated into candidate solutions of an EA during mutation such that the average

The empirical probability p E (r) that an edge appears in an optimum solution as a function of its rank, for the MSTP, 3-MSTP, 5-MSTP, and TSP on uniform and Euclidean instances of

To make sure the observed strong differences between the measured establishment rates for different species are not due to variations in inoculation volume and total cell

1) All number fields, including signs if any, are written right-justified and are filled up with spaces (20H) on the left. 3) All decimal points are transferred at

In general, our in silico calculations of the PC ‐ free energy changes show that mutations which do not destabilize the balance between the two major enzyme conformers are likely