• Keine Ergebnisse gefunden

Lecture 4: Power Spectrum

N/A
N/A
Protected

Academic year: 2022

Aktie "Lecture 4: Power Spectrum"

Copied!
42
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Lecture 4: Power Spectrum

1

(2)

Outstanding Questions

• Where does anisotropy in CMB temperature come from?

• This is the origin of galaxies, stars, planets, and everything else we see around us, including

ourselves

• The leading idea: quantum fluctuations in

vacuum, stretched to cosmological length scales by a rapid exponential expansion of the universe

called “cosmic inflation” in the very early universe

How do we analyse the

data like this? 2

(3)

Data Analysis

• Decompose temperature fluctuations in the sky into a set of waves with

various wavelengths

• Make a diagram showing the strength of each wavelength: Power Spectrum

3

(4)

Long Wavelength Short Wavelength

180 degrees/(angle in the sky)

Amplitude of W aves [ μ K 2 ]

WMAP Collaboration

4

(5)

Power Spectrum,

Explained

(6)

Part I: Spherical Harmonics

6

(7)

Fourier transform?

• The simplest way to decompose fluctuations into waves is Fourier transform.

• However, Fourier transform works only for plane waves in flat space.

• The sky is a sphere. How do we decompose fluctuations on a sphere into waves?

• The answer: Spherical Harmonics.

7

(8)

Spherical harmonics

Wait, don’t run! It is not as bad as you may remember from the QM class…

• Dipole patterns (l=1)

8

(l,m)=(1,0) (l,m)=(1,1)

<latexit sha1_base64="XLU8YyiTG6GvUNJlVpconh9498g=">AAACCnicbVDLSsNAFJ3UV62vqEs3o0WoQksiim6EohuXFewD2jRMppN26EwSZiZCCVm78VfcuFDErV/gzr9x2kbQ1gMXDufcy733eBGjUlnWl5FbWFxaXsmvFtbWNza3zO2dhgxjgUkdhywULQ9JwmhA6ooqRlqRIIh7jDS94fXYb94TIWkY3KlRRByO+gH1KUZKS665j9ykQxiDZZ7CS1gq20ddDn9EnnaPXbNoVawJ4DyxM1IEGWqu+dnphTjmJFCYISnbthUpJ0FCUcxIWujEkkQID1GftDUNECfSSSavpPBQKz3oh0JXoOBE/T2RIC7liHu6kyM1kLPeWPzPa8fKv3ASGkSxIgGeLvJjBlUIx7nAHhUEKzbSBGFB9a0QD5BAWOn0CjoEe/bledI4qdhnFev2tFi9yuLIgz1wAErABuegCm5ADdQBBg/gCbyAV+PReDbejPdpa87IZnbBHxgf3+vYmIE=</latexit>

a ` m = ( 1) m a `m : sufficient to consider only m>=0

(9)

Dipole Temperature Anisotropy of the CMB

Due to the motion of Solar System with respect to the CMB rest frame

• Temperature anisotropy towards “+” is ΔT/T = v/c = 1.23 x 10 –3

• Thus, ΔT = 3.355 mK 9

in Galactic coordinates

The Solar System is moving towards this direction at 369 km/s.

<latexit sha1_base64="DzXFOjULeDw9KICe1jd04HINdHg=">AAACV3ichVFJSwMxGM1Mq9a6VT16CRZFxI6TLtiLIHoRvFSwVejUkklTDSaZIckIZRh/pHjpX/Gi6XJwAz8IPN7Cl7yEMWfa+P7YcXP5hcWlwnJxZXVtfaO0udXRUaIIbZOIR+ouxJpyJmnbMMPpXawoFiGnt+HTxUS/faZKs0jemFFMewI/SDZkBBtL9UtyH/dT5GenDQ9V6y9poAQUV9kMaKOy+xQdV7OjIChOnSg79b1arVmv1LwqarD/ExUbqcyi94f9Utn3/OnA3wDNQRnMp9UvvQaDiCSCSkM41rqL/Nj0UqwMI5xmxSDRNMbkCT/QroUSC6p76bSXDO5ZZgCHkbJHGjhlvyZSLLQeidA6BTaP+qc2If/SuokZNnspk3FiqCSzRcOEQxPBSclwwBQlho8swEQxe1dIHrHCxNivKNoS0M8n/wadqocann9dL5+dz+sogB2wCw4AAifgDFyCFmgDAt7Au5Nz8s7Y+XAX3cLM6jrzzDb4Nu7mJ/lorz0=</latexit>

a 10 = 5.124 mK str 1/2 ,

a 11 = 0.3384 3.215i mK str 1/2 ,

a 1 1 = a 11

(10)

(l,m)=(2,0) (l,m)=(2,1)

(l,m)=(2,2)

✓ = ⇡

`

For l=m , a half-

wavelength, λ θ /2,

corresponds to π/l.

Therefore, λ θ =2π/l

10

(11)

(l,m)=(3,0) (l,m)=(3,1)

(l,m)=(3,2) (l,m)=(3,3)

✓ = ⇡

`

11

(12)

[Values of Temperatures in the Sky Minus 2.725 K] / [Root Mean Square]

Fraction of the Number of Pixels Having Those T emperatur es

Histogram: WMAP Data Red Line: Gaussian

WMAP Collaboration

Variance of CMB Temperature

12

(13)

• Values of a lm depend on

coordinates, but the squared amplitude, , does not depend on coordinates

Angular Power Spectrum

• The angular power spectrum, C l , quantifies how much

correlation power we have at a given angular separation.

• More precisely: it is l(2l+1)C l /4π that gives the fluctuation power at a given angular separation, ~π/l.

We can see this by computing variance:

13

(14)

COBE 4-year Power Spectrum Bennett et al. (1996)

What physics can we learn

from this

measurement?

14 Φ!!

(15)

Gravitational Potential in 3D to Temperature in 2D

More generally: How is a plane wave in 3D projected on the sky?

• Take a single plane wave for the potential, going in the z direction:

15

φ=cos(qz)

r L

<latexit sha1_base64="ciE46FQAfLsnTsfc9vWVrW1JpLA=">AAACIXicbVDJSgNBEO1xjXGLevTSGIQIEmZcMBchqAcPOUTIImTC0NPpSZr09AzdNUIY8ite/BUvHhTJTfwZO8tBEx8UPN6roqqeHwuuwba/rKXlldW19cxGdnNre2c3t7ff0FGiKKvTSETq0SeaCS5ZHTgI9hgrRkJfsKbfvx37zSemNI9kDQYxa4ekK3nAKQEjebmSGyhCU/eOCSC4VnB7BLA8GaY1zx5eT0zn3K32eAG8yunUxcqrnHi5vF20J8CLxJmRPJqh6uVGbieiScgkUEG0bjl2DO2UKOBUsGHWTTSLCe2TLmsZKknIdDudfDjEx0bp4CBSpiTgifp7IiWh1oPQN50hgZ6e98bif14rgaDUTrmME2CSThcFicAQ4XFcuMMVoyAGhhCquLkV0x4xqYAJNWtCcOZfXiSNs6JzWbQfLvLlm1kcGXSIjlABOegKldE9qqI6ougZvaJ39GG9WG/WpzWati5Zs5kD9AfW9w+xT6Hy</latexit>

T (ˆ n)

T 0 = 1

3 (t L , nr ˆ L )

Let’s use the Sachs-Wolfe formula for the adiabatic initial condition:

<latexit sha1_base64="BlRi7QPiMbQzYaNAs1Xj9M8U1qE=">AAACEnicbVC7TsMwFHV4lvIKMLJYVEithKoEgWAssDAwFIk+pCaKHNdprTpxsB1EifoNLPwKCwMIsTKx8Tc4bQZoOZKlo3Pu1fU5fsyoVJb1bczNLywuLRdWiqtr6xub5tZ2U/JEYNLAnHHR9pEkjEakoahipB0LgkKfkZY/uMj81h0RkvLoRg1j4oaoF9GAYqS05JkVp96nZeVdHaSOH8D7UQU6seCx4hCeZXrFwVyWbx8qnlmyqtYYcJbYOSmBHHXP/HK6HCchiRRmSMqObcXKTZFQFDMyKjqJJDHCA9QjHU0jFBLppuNII7ivlS4MuNAvUnCs/t5IUSjlMPT1ZIhUX057mfif10lUcOqmNIoTRSI8ORQkDOrAWT+wSwXBig01QVhQ/VeI+0ggrHSLRV2CPR15ljQPq/Zx1bo+KtXO8zoKYBfsgTKwwQmogUtQBw2AwSN4Bq/gzXgyXox342MyOmfkOzvgD4zPH10inAQ=</latexit>

(t L , x) / A(t L ) cos(qz )

• A(t L ): Amplitude

• q: Wavenumber in 3D

(16)

Gravitational Potential in 3D to Temperature in 2D

More generally: How is a plane wave in 3D projected on the sky?

16

φ=cos(qz)

r L

In the x-axis, the angle θ 1 subtends the half wavelength λ/2, with

<latexit sha1_base64="x3GKfoqJ977fd0YlXtya7cCrL94=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBFc1aQouhGKblxWsA9oQplMJu3QySTOTAol9E/cuFDErX/izr9x2mahrQcGDuecy71zgpQzpR3n21pZXVvf2Cxtlbd3dvf27YPDlkoySWiTJDyRnQArypmgTc00p51UUhwHnLaD4d3Ub4+oVCwRj3qcUj/GfcEiRrA2Us+2PW7CIUY3qOal7PypZ1ecqjMDWiZuQSpQoNGzv7wwIVlMhSYcK9V1nVT7OZaaEU4nZS9TNMVkiPu0a6jAMVV+Prt8gk6NEqIokeYJjWbq74kcx0qN48AkY6wHatGbiv953UxH137ORJppKsh8UZRxpBM0rQGFTFKi+dgQTCQztyIywBITbcoqmxLcxS8vk1at6l5WnYeLSv22qKMEx3ACZ+DCFdThHhrQBAIjeIZXeLNy68V6tz7m0RWrmDmCP7A+fwDzyZKQ</latexit>

= 2⇡ /q

With trigonometry, we find

<latexit sha1_base64="X4EFaW9VhI0XU906xeHGIJoHoDU=">AAACHXicbVBNa9tAEF0lbeq6Taqkx16WmkBPjmQckkvAJJceenChTgyWEaP1yF68Wqm7o4IR/iO59K/0kkNLySGX0n/T9QeltfNg4e17M7M7LymUtBQEv72d3SdP957VntdfvNw/eOUfHl3bvDQCeyJXueknYFFJjT2SpLBfGIQsUXiTTK8W/s0XNFbm+hPNChxmMNYylQLISbHfjgh0RBMkiEMeWZnhZ/73fsGj1ICoIuUmjuCkNa9M/GEe+42gGSzBt0m4Jg22Rjf2H6JRLsoMNQkF1g7CoKBhBYakUDivR6XFAsQUxjhwVEOGdlgtt5vzY6eMeJobdzTxpfpvRwWZtbMscZUZ0MRuegvxMW9QUno+rKQuSkItVg+lpeKU80VUfCQNClIzR0AY6f7KxQRcHuQCrbsQws2Vt8l1qxmeNoOP7Ubnch1Hjb1hb9k7FrIz1mHvWZf1mGC37Bv7zn54X70776d3vyrd8dY9r9l/8H79AcE+obU=</latexit>

tan ✓ 1 ' ✓ 1 = /2 r L

<latexit sha1_base64="iCWO2yRii38MI98xt+EjA9lex0A=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqs6Uii6LblxWsA9ph5LJZNrQJDMkGaEM/Qo3LhRx6+e4829M21lo64HA4Zxzyb0nSDjTxnW/ncLa+sbmVnG7tLO7t39QPjxq6zhVhLZIzGPVDbCmnEnaMsxw2k0UxSLgtBOMb2d+54kqzWL5YCYJ9QUeShYxgo2VHvvcRkN8URuUK27VnQOtEi8nFcjRHJS/+mFMUkGlIRxr3fPcxPgZVoYRTqelfqppgskYD2nPUokF1X42X3iKzqwSoihW9kmD5urviQwLrScisEmBzUgvezPxP6+Xmujaz5hMUkMlWXwUpRyZGM2uRyFTlBg+sQQTxeyuiIywwsTYjkq2BG/55FXSrlW9y6p7X680bvI6inACp3AOHlxBA+6gCS0gIOAZXuHNUc6L8+58LKIFJ585hj9wPn8AILWP9g==</latexit>

/2

<latexit sha1_base64="kioQwswNOG0n9Yz3t9xY5U1JAfk=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0Y1QdOPCRQX7gCaEyXTSDp08nJkoJeZT3LhQxK1f4s6/cdpmoa0HLhzOuZd77/ETzqSyrG+jtLS8srpWXq9sbG5t75jV3baMU0Foi8Q8Fl0fS8pZRFuKKU67iaA49Dnt+KOrid95oEKyOLpT44S6IR5ELGAEKy15ZvXCCQQmmZOwPLsX3k3umTWrbk2BFoldkBoUaHrml9OPSRrSSBGOpezZVqLcDAvFCKd5xUklTTAZ4QHtaRrhkEo3m56eo0Ot9FEQC12RQlP190SGQynHoa87Q6yGct6biP95vVQF527GoiRVNCKzRUHKkYrRJAfUZ4ISxceaYCKYvhWRIdZRKJ1WRYdgz7+8SNrHdfu0bt2e1BqXRRxl2IcDOAIbzqAB19CEFhB4hGd4hTfjyXgx3o2PWWvJKGb24A+Mzx+mcpRB</latexit>

= ⇡

qr L

<latexit sha1_base64="J7DM3WyxZs7rsnfW+7jb3zxK794=">AAACEHicbVC7SgNBFJ31GeMramkzGESrsCuKNkLQxsIignlANiyzk7tmcHZ3nLkrhiWfYOOv2FgoYmtp5984eRS+Dlw4nHMv994TKikMuu6nMzU9Mzs3X1goLi4tr6yW1tYbJs00hzpPZapbITMgRQJ1FCihpTSwOJTQDK9Ph37zFrQRaXKJfQWdmF0lIhKcoZWC0o4PUgaez5TS6R31I8147isxyH3sAbLAGxzf6OA8KJXdijsC/Uu8CSmTCWpB6cPvpjyLIUEumTFtz1XYyZlGwSUMin5mQDF+za6gbWnCYjCdfPTQgG5bpUujVNtKkI7U7xM5i43px6HtjBn2zG9vKP7ntTOMjjq5SFSGkPDxoiiTFFM6TId2hQaOsm8J41rYWynvMZsJ2gyLNgTv98t/SWOv4h1U3Iv9cvVkEkeBbJItsks8ckiq5IzUSJ1wck8eyTN5cR6cJ+fVeRu3TjmTmQ3yA877F0d9nV4=</latexit>

` 1 ⇡ ⇡

1 = qr L

(17)

<latexit sha1_base64="KOT0HQYakgfjUS6ujnQfZaK9/tA=">AAACK3icbVBNT9tAEF1D+Wj4SumRy6oREqdgRyC4gBC99NADSASQ4sgab8ZkxXrt7I6RIsv/pxf+CodyoK249n+wCUZqgSet9Pa9mdmdF+dKWvL9397M7Ie5+YXFj42l5ZXVtean9XObFUZgV2QqM5cxWFRSY5ckKbzMDUIaK7yIr79O/IsbNFZm+ozGOfZTuNIykQLISVHzOCTQIQ2RIOqEVqY44i/XwzAxIMpQuXED2O5UpYm+Vwe1msuqHE2EqNny2/4U/C0JatJiNU6i5s9wkIkiRU1CgbW9wM+pX4IhKRRWjbCwmIO4hivsOaohRdsvp7tWfNMpA55kxh1NfKr+21FCau04jV1lCjS0r72J+J7XKyjZ75dS5wWhFs8PJYXilPFJcHwgDQpSY0dAGOn+ysUQXBTk4m24EILXK78l5512sNv2T3daR8d1HItsg31hWyxge+yIfWMnrMsE+8Hu2AP75d16994f7/G5dMarez6z/+D9fQIHuKjM</latexit>

tan ✓ 2 ' ✓ 2 > /2

r L = ⇡

qr L

Gravitational Potential in 3D to Temperature in 2D

More generally: How is a plane wave in 3D projected on the sky?

17

φ=cos(qz)

r L

In the z-axis, the angle θ 2 is subtends bigger than the half wavelength λ/2, with

<latexit sha1_base64="x3GKfoqJ977fd0YlXtya7cCrL94=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBFc1aQouhGKblxWsA9oQplMJu3QySTOTAol9E/cuFDErX/izr9x2mahrQcGDuecy71zgpQzpR3n21pZXVvf2Cxtlbd3dvf27YPDlkoySWiTJDyRnQArypmgTc00p51UUhwHnLaD4d3Ub4+oVCwRj3qcUj/GfcEiRrA2Us+2PW7CIUY3qOal7PypZ1ecqjMDWiZuQSpQoNGzv7wwIVlMhSYcK9V1nVT7OZaaEU4nZS9TNMVkiPu0a6jAMVV+Prt8gk6NEqIokeYJjWbq74kcx0qN48AkY6wHatGbiv953UxH137ORJppKsh8UZRxpBM0rQGFTFKi+dgQTCQztyIywBITbcoqmxLcxS8vk1at6l5WnYeLSv22qKMEx3ACZ+DCFdThHhrQBAIjeIZXeLNy68V6tz7m0RWrmDmCP7A+fwDzyZKQ</latexit>

= 2⇡ /q

With trigonometry, we find

<latexit sha1_base64="iCWO2yRii38MI98xt+EjA9lex0A=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqs6Uii6LblxWsA9ph5LJZNrQJDMkGaEM/Qo3LhRx6+e4829M21lo64HA4Zxzyb0nSDjTxnW/ncLa+sbmVnG7tLO7t39QPjxq6zhVhLZIzGPVDbCmnEnaMsxw2k0UxSLgtBOMb2d+54kqzWL5YCYJ9QUeShYxgo2VHvvcRkN8URuUK27VnQOtEi8nFcjRHJS/+mFMUkGlIRxr3fPcxPgZVoYRTqelfqppgskYD2nPUokF1X42X3iKzqwSoihW9kmD5urviQwLrScisEmBzUgvezPxP6+Xmujaz5hMUkMlWXwUpRyZGM2uRyFTlBg+sQQTxeyuiIywwsTYjkq2BG/55FXSrlW9y6p7X680bvI6inACp3AOHlxBA+6gCS0gIOAZXuHNUc6L8+58LKIFJ585hj9wPn8AILWP9g==</latexit>

/2

<latexit sha1_base64="pLPl9qz7ZRR2RyFJAcSFcrhhuNg=">AAACD3icbVC7TsNAEDyHVwivACWNRQSiiuwIBAVFBA0FRZAIIMWRdb6sk1PO9nG3RkSW/4CGX6GhACFaWjr+hsujgMBIK41mdrW7E0jBNTrOl1WYmZ2bXygulpaWV1bXyusbVzpJFYMmS0SibgKqQfAYmshRwI1UQKNAwHXQPx3613egNE/iSxxIaEe0G/OQM4pG8su7Hgjh1zwqpUruvVBRlnmS55mHPUDq1/LjW+Wf++WKU3VGsP8Sd0IqZIKGX/70OglLI4iRCap1y3UktjOqkDMBeclLNUjK+rQLLUNjGoFuZ6N/cnvHKB07TJSpGO2R+nMio5HWgygwnRHFnp72huJ/XivF8Kid8VimCDEbLwpTYWNiD8OxO1wBQzEwhDLFza0261GTCZoISyYEd/rlv+SqVnUPqs7FfqV+MomjSLbINtkjLjkkdXJGGqRJGHkgT+SFvFqP1rP1Zr2PWwvWZGaT/IL18Q3rCJ01</latexit>

` 2 ⇡ ⇡

2 < qr L

(18)

How do we understand the relationship between the 3D

wavenumber of the gravitational potential, Φ , and the 2D

wavenumber of the temperature anisotropy, l ?

18

<latexit sha1_base64="RBD8tr0dpBybgVyGMyemHOVMmPk=">AAACP3icbVBLaxsxGNSmzaPOy0mOvYiagA3B7OZBcgmY9JJDDw7UTsByFq1WGwtrtRvp22Cz7D/rJX+ht1xzySGl9Jpbtc4WmseAYJiZT9I3QSqFAde9c+Y+fJxfWFz6VFteWV1br29s9k2SacZ7LJGJvgio4VIo3gMBkl+kmtM4kPw8GH8t/fMbro1I1HeYpnwY0yslIsEoWMmv90l3JJrgf9vJSRDhSdE6JkIBiTRleXi5d13kzV2SitblXlFG/VnsuihHWoRP0qaoFMLCBP5d4tcbbtudAb8lXkUaqELXr/8kYcKymCtgkhoz8NwUhjnVIJjkRY1khqeUjekVH1iqaMzNMJ/tX+Btq4Q4SrQ9CvBM/X8ip7Ex0ziwyZjCyLz2SvE9b5BBdDTMhUoz4Io9PxRlEkOCyzJxKDRnIKeWUKaF/StmI2qrA1t5zZbgvV75Lenvtr2Dtnu23+icVHUsoc/oC2oiDx2iDjpFXdRDDP1A9+gR/XJunQfnt/PnOTrnVDNb6AWcp7847K8W</latexit>

(t L , x) =

Z d 3 q

(2⇡ ) 3 q (t L ) exp(iq · x) ?

t L : the time at the last scattering surface

(19)

Part II: Flat-sky (Small-angle) Approximation

19

(20)

Fourier transform?

• The simplest way to decompose fluctuations into waves is Fourier transform.

• However, Fourier transform works only for plane waves in flat space.

• The sky is a sphere. How do we decompose fluctuations on a sphere into waves?

• The answer: Spherical Harmonics.

20

• But, this seems too complicated for understanding the

relationship between the gravitational potential in 3D and the temperature anisotropy in 2D (i.e., sky).

• Alternative (approximate) approach?

(21)

Fourier transform!

Approximately correct in a small region in the sky

• Take z-axis to anywhere we want in the sky. Then, treat a small area

around the z-axis as a “flat sky”.

• We then apply the usual 2D Fourier transform to analyse temperature

fluctuations, and relate it to the 3D Fourier transform of the potential Φ.

21

Focus here.

“Flat sky”, if θ is small

ˆ

n = (sin ✓ cos , sin ✓ sin , cos ✓ )

(22)

2D Fourier Transform

C.f.,

( )

22

(23)

• Take the inverse 2D Fourier transform of the Sachs-Wolfe formula for the adiabatic initial condition:

a(l) of the Sachs-Wolfe effect

23

<latexit sha1_base64="ciE46FQAfLsnTsfc9vWVrW1JpLA=">AAACIXicbVDJSgNBEO1xjXGLevTSGIQIEmZcMBchqAcPOUTIImTC0NPpSZr09AzdNUIY8ite/BUvHhTJTfwZO8tBEx8UPN6roqqeHwuuwba/rKXlldW19cxGdnNre2c3t7ff0FGiKKvTSETq0SeaCS5ZHTgI9hgrRkJfsKbfvx37zSemNI9kDQYxa4ekK3nAKQEjebmSGyhCU/eOCSC4VnB7BLA8GaY1zx5eT0zn3K32eAG8yunUxcqrnHi5vF20J8CLxJmRPJqh6uVGbieiScgkUEG0bjl2DO2UKOBUsGHWTTSLCe2TLmsZKknIdDudfDjEx0bp4CBSpiTgifp7IiWh1oPQN50hgZ6e98bif14rgaDUTrmME2CSThcFicAQ4XFcuMMVoyAGhhCquLkV0x4xqYAJNWtCcOZfXiSNs6JzWbQfLvLlm1kcGXSIjlABOegKldE9qqI6ougZvaJ39GG9WG/WpzWati5Zs5kD9AfW9w+xT6Hy</latexit>

T (ˆ n)

T 0 = 1

3 (t L , nr ˆ L ) r L

1 [flat-sky approximation]

*q is the 3D Fourier wavenumber

• And Fourier transform Φ in 3D:

<latexit sha1_base64="RBD8tr0dpBybgVyGMyemHOVMmPk=">AAACP3icbVBLaxsxGNSmzaPOy0mOvYiagA3B7OZBcgmY9JJDDw7UTsByFq1WGwtrtRvp22Cz7D/rJX+ht1xzySGl9Jpbtc4WmseAYJiZT9I3QSqFAde9c+Y+fJxfWFz6VFteWV1br29s9k2SacZ7LJGJvgio4VIo3gMBkl+kmtM4kPw8GH8t/fMbro1I1HeYpnwY0yslIsEoWMmv90l3JJrgf9vJSRDhSdE6JkIBiTRleXi5d13kzV2SitblXlFG/VnsuihHWoRP0qaoFMLCBP5d4tcbbtudAb8lXkUaqELXr/8kYcKymCtgkhoz8NwUhjnVIJjkRY1khqeUjekVH1iqaMzNMJ/tX+Btq4Q4SrQ9CvBM/X8ip7Ex0ziwyZjCyLz2SvE9b5BBdDTMhUoz4Io9PxRlEkOCyzJxKDRnIKeWUKaF/StmI2qrA1t5zZbgvV75Lenvtr2Dtnu23+icVHUsoc/oC2oiDx2iDjpFXdRDDP1A9+gR/XJunQfnt/PnOTrnVDNb6AWcp7847K8W</latexit>

(t L , x) =

Z d 3 q

(2⇡ ) 3 q (t L ) exp(iq · x)

(24)

Flat-sky Result

It is now manifest that only the

perpendicular wavenumber contributes to l, i.e., l=q perp r L , giving l<qr L

i.e.,

r L

<latexit sha1_base64="J7DM3WyxZs7rsnfW+7jb3zxK794=">AAACEHicbVC7SgNBFJ31GeMramkzGESrsCuKNkLQxsIignlANiyzk7tmcHZ3nLkrhiWfYOOv2FgoYmtp5984eRS+Dlw4nHMv994TKikMuu6nMzU9Mzs3X1goLi4tr6yW1tYbJs00hzpPZapbITMgRQJ1FCihpTSwOJTQDK9Ph37zFrQRaXKJfQWdmF0lIhKcoZWC0o4PUgaez5TS6R31I8147isxyH3sAbLAGxzf6OA8KJXdijsC/Uu8CSmTCWpB6cPvpjyLIUEumTFtz1XYyZlGwSUMin5mQDF+za6gbWnCYjCdfPTQgG5bpUujVNtKkI7U7xM5i43px6HtjBn2zG9vKP7ntTOMjjq5SFSGkPDxoiiTFFM6TId2hQaOsm8J41rYWynvMZsJ2gyLNgTv98t/SWOv4h1U3Iv9cvVkEkeBbJItsks8ckiq5IzUSJ1wck8eyTN5cR6cJ+fVeRu3TjmTmQ3yA877F0d9nV4=</latexit>

` 1 ⇡ ⇡

1 = qr L

24

(25)

Flat-sky Result

It is now manifest that only the

perpendicular wavenumber contributes to l, i.e., l=q perp r L , giving l<qr L

i.e.,

<latexit sha1_base64="pLPl9qz7ZRR2RyFJAcSFcrhhuNg=">AAACD3icbVC7TsNAEDyHVwivACWNRQSiiuwIBAVFBA0FRZAIIMWRdb6sk1PO9nG3RkSW/4CGX6GhACFaWjr+hsujgMBIK41mdrW7E0jBNTrOl1WYmZ2bXygulpaWV1bXyusbVzpJFYMmS0SibgKqQfAYmshRwI1UQKNAwHXQPx3613egNE/iSxxIaEe0G/OQM4pG8su7Hgjh1zwqpUruvVBRlnmS55mHPUDq1/LjW+Wf++WKU3VGsP8Sd0IqZIKGX/70OglLI4iRCap1y3UktjOqkDMBeclLNUjK+rQLLUNjGoFuZ6N/cnvHKB07TJSpGO2R+nMio5HWgygwnRHFnp72huJ/XivF8Kid8VimCDEbLwpTYWNiD8OxO1wBQzEwhDLFza0261GTCZoISyYEd/rlv+SqVnUPqs7FfqV+MomjSLbINtkjLjkkdXJGGqRJGHkgT+SFvFqP1rP1Zr2PWwvWZGaT/IL18Q3rCJ01</latexit>

` 2 ⇡ ⇡

2 < qr L

r L

25

(26)

The relationship between q and l Understood?

Let’s go to the full sky treatment.

26

(27)

• Take the inverse spherical harmonics transform

of the Sachs-Wolfe formula for the adiabatic initial condition:

a lm of the Sachs-Wolfe effect

27

<latexit sha1_base64="ciE46FQAfLsnTsfc9vWVrW1JpLA=">AAACIXicbVDJSgNBEO1xjXGLevTSGIQIEmZcMBchqAcPOUTIImTC0NPpSZr09AzdNUIY8ite/BUvHhTJTfwZO8tBEx8UPN6roqqeHwuuwba/rKXlldW19cxGdnNre2c3t7ff0FGiKKvTSETq0SeaCS5ZHTgI9hgrRkJfsKbfvx37zSemNI9kDQYxa4ekK3nAKQEjebmSGyhCU/eOCSC4VnB7BLA8GaY1zx5eT0zn3K32eAG8yunUxcqrnHi5vF20J8CLxJmRPJqh6uVGbieiScgkUEG0bjl2DO2UKOBUsGHWTTSLCe2TLmsZKknIdDudfDjEx0bp4CBSpiTgifp7IiWh1oPQN50hgZ6e98bif14rgaDUTrmME2CSThcFicAQ4XFcuMMVoyAGhhCquLkV0x4xqYAJNWtCcOZfXiSNs6JzWbQfLvLlm1kcGXSIjlABOegKldE9qqI6ougZvaJ39GG9WG/WpzWati5Zs5kD9AfW9w+xT6Hy</latexit>

T (ˆ n)

T 0 = 1

3 (t L , nr ˆ L )

r L

• And Fourier transform Φ in 3D:

*q is the 3D Fourier wavenumber

<latexit sha1_base64="RBD8tr0dpBybgVyGMyemHOVMmPk=">AAACP3icbVBLaxsxGNSmzaPOy0mOvYiagA3B7OZBcgmY9JJDDw7UTsByFq1WGwtrtRvp22Cz7D/rJX+ht1xzySGl9Jpbtc4WmseAYJiZT9I3QSqFAde9c+Y+fJxfWFz6VFteWV1br29s9k2SacZ7LJGJvgio4VIo3gMBkl+kmtM4kPw8GH8t/fMbro1I1HeYpnwY0yslIsEoWMmv90l3JJrgf9vJSRDhSdE6JkIBiTRleXi5d13kzV2SitblXlFG/VnsuihHWoRP0qaoFMLCBP5d4tcbbtudAb8lXkUaqELXr/8kYcKymCtgkhoz8NwUhjnVIJjkRY1khqeUjekVH1iqaMzNMJ/tX+Btq4Q4SrQ9CvBM/X8ip7Ex0ziwyZjCyLz2SvE9b5BBdDTMhUoz4Io9PxRlEkOCyzJxKDRnIKeWUKaF/StmI2qrA1t5zZbgvV75Lenvtr2Dtnu23+icVHUsoc/oC2oiDx2iDjpFXdRDDP1A9+gR/XJunQfnt/PnOTrnVDNb6AWcp7847K8W</latexit>

(t L , x) =

Z d 3 q

(2⇡ ) 3 q (t L ) exp(iq · x)

(28)

Spherical wave decomposition of a plane wave

• This is the exact formula relating Φ in 3D at the last

scattering surface to a lm . How do we understand this?

• How to obtain a plane wave by combining spherical waves? The answer is

• which is called the “partial wave decomposition” or “Rayleigh’s formula”. Then we obtain

(29)

q -> l projection

• A half wavelength, λ/2, at the last scattering surface

subtends an angle of λ/2r L . Since q=2π/λ, the angle is given by δθ=π/qr L . Comparing this with the relation δθ=π/l, we

obtain l=qr L . How can we see this?

• For l>>1, the spherical Bessel function, j l (qr L ), peaks at l~qr L and falls gradually toward qr L >l. Thus, a given q

mode contributes to large angular scales too. We learned this already from

the flat-sky approximation!

(30)

Part III: Power Spectrum of the Sachs-Wolfe Effect

30

(31)

Let’s compute the temperature power spectrum

Temperature C l

We use

to compute

31

(32)

Result

The power spectrum of the Sachs-Wolfe effect?

We use

to compute

32

• But this is not exactly what we want. We want the

statistical average of this quantity.

(33)

Power Spectrum of φ

• Statistical average of the right hand side contains

two-point correlation function

If does not depend on locations (x)

but only on separations between two points (r), then

where we defined

consequence of “statistical homogeneity”

φ

and used

(34)

Power Spectrum of φ

• In addition, if depends only on the magnitude of the separation r and not on the directions, then

Power spectrum!

Generic definition of the power spectrum for

statistically homogeneous and isotropic fluctuations

(35)

The Power Spectrum of the Sachs-Wolfe Effect

• Thus, the power spectrum of the CMB in the Sachs-Wolfe limit is

• In the flat-sky approximation,

Perpendicular

wavenumber, (q perp ) 2

(36)

The Power Spectrum of the Sachs-Wolfe Effect

• Thus, the power spectrum of the CMB in the SW limit is

• In the flat-sky approximation,

For a power-law form, , we get

(37)

The Power Spectrum of the Sachs-Wolfe Effect

• Thus, the power spectrum of the CMB in the SW limit is

• In the flat-sky approximation,

For a power-law form, , we get

n=1

full-sky corr ection

(38)

COBE 4-year Power Spectrum Bennett et al. (1996)

What physics can we learn

from this

measurement?

38 Φ!!

n=1 n=1.2 ± 0.3

(68%CL)

1989–1993

(39)

WMAP 9-year Power Spectrum Bennett et al. (2013)

1989–1993

2001–2010

(40)

Planck 29-mo Power Spectrum

2001–2010

Planck Collaboration

2009–2013

(41)

Planck 29-mo Power Spectrum

2001–2010

Planck Collaboration

2009–2013

Clearly, the SW

prediction does not fit!

Missing physics:

Hydrodynamics

(sound waves)

(42)

Referenzen

ÄHNLICHE DOKUMENTE

ein Signal hat (eine Zeitfunktion) kann man das in sein Frequenzbereich zerlegen: die Fourier-Transform entspricht die Laplace- Transform mit s = iω.. Dieses Tool wird auch um

Man wendet links und rechts die

How many H, R φ , and CNOT gates, respectively, are required to implement the Quantum Fourier Transform circuit given in the lecture.. Problem 3 Quantum Fourier Transform is

a Division of Computer Assisted Medical Interventions (CAMI), German Cancer Research Center (DKFZ).. b Faculty of Physics and Astronomy, Heidelberg

02/25/2022 Computer Vision I: Fourier Transform 4.. Superposition = representation as linear combination

Build up the Fourier transform from the projections P(Θ) , than transform this back to get the original object. In 3D this is

Es können aber Nullen am Signal gehängt werden (zero-padding) ohne dass das Spektrum sich ändert; es wird dann nur

Transform Fourier coefficients to time domain samples.. DFT Transform time domain samples to