• Keine Ergebnisse gefunden

Height above ground surface [m]Height above ground surface [m]

N/A
N/A
Protected

Academic year: 2022

Aktie "Height above ground surface [m]Height above ground surface [m]"

Copied!
14
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Mie Andreasen

Department of Geosciences and Natural Ressource Management University of Copenhagen

Majken C. Looms, Karsten H. Jensen, Heye Bogena, 

Marek Zreda and Darin Desilets

(2)

TERENO International Conference 2014

Objective: To estimate intermediate scale biomass and canopy interception

Canopy interception:

‐ is the precipitation intercepted by the canopy of a tree/forest

‐ the interception loss can be important for the water balance 

‐Skjern River catchment: 16% forest and approx. 200 rainy days per year. 

Earlier studies estimate canopy interception loss to be around 40% of the  total forest evaporation (Apr‐Oct 2010)

‐ is traditionally measured on a small scale (e.g. through‐fall stations) Biomass:

‐ detection is important given interests in bioenergy, climate change,  wood production etc.

‐ is traditionally estimated through e.g. tree surveys, satellite/images  retrievals

Through‐fall station

(3)

Cosmic‐ray transport

High energy particles Earth ´ s protecting forces:

‐the magnetic fields 

‐the atmosphere  (Moderation and absorption of the particles)

Inverse relationship between the cosmic‐ray neutron intensity and  the hydrogen content  (Unique ability of hydrogen to moderate neutrons)

Footprint

In the scale of hectometers in the air and decimeters in the ground

Hydrogen is pooled in the:

‐biomass 

‐canopy interception

‐surface water

‐water vapour 

‐soil moisture

‐soil organic compounds  etc.

(4)

TERENO International Conference 2014

Method

Field equipment

Cosmic‐ray neutron probes: 

‐ BARE probe; detects low‐energy neutrons

‐ MOD probe; detects high‐energy neutrons

Measurements

‐ multiple level measurements 

‐ multiple neutron energy detection

‐ reference detection (above a water body)

Modeling, MCNPX

‐ an extended version of the Monte Carlo N‐Particle Transport Code

‐ a radiation transport code for simulating nuclear processes

(5)

Gludsted Plantation

Forest characteristics:

‐latitude: 56 ° N and 50 m abs.

‐flat terrain and sandy soils

‐a coniferous plantation 

primarily Norway spruce; 20 and 40 years

‐forest area: approx. 3500 ha

‐biomass: approx. 100 t/ha above ground     dry biomass (from Lidar images, 2006/2007)

‐thick litter layer (5‐7 cm)

(6)

TERENO International Conference 2014

Model conceptualization

to setup a representative model

MCNPX model

‐ steady state model

Energy bins

‐ thermal neutrons; 0 ‐ 0.5 eV

‐ fast/epithermal neutrons; 0.5 ‐ 10

6

eV

A homogenous forest is simulated using average values for the forest  and the soil:

‐ tree radius and height 

‐ tree density

‐ forest biomass

‐ bulk density

‐ porosity 

‐ carbon content  etc.

Atmosphere

Forest layer

Litter layer  Soil layer Forest layer seen 

from above  

Forest layer seen 

from the side 

(7)

Cosmic‐ray neutron intensity profiles

‐ Measurements vs. Model

Measurements:

Model:

1 1.5 2 2.5 3

x 10‐10 0

5 10 15 20 25 30 35 40

Neutron intensity (relative)

Height above ground surface [m]

Thermal neutron intensity Tree trunk, Foliage, Air Point of measurement

3 3.5 4 4.5 5

x 10‐10 0

5 10 15 20 25 30 35 40

Neutron intensity (relative)

Height above ground surface [m]

Fast/epithermal neutron intensity Tree trunk, Foliage, Air Point of measurement

700 800 900 1000 1100

0 5 10 15 20 25 30 35 40

Neutron intensity [cts/hr]

Height above ground surface [m]

Measurement point and standard deviation November 2013 March 2014 Canopy Surface

2000 300 400 500 600

5 10 15 20 25 30 35 40

Neutron intensity [cts/hr]

Height above ground surface [m]

Measurement point and standard deviation November 2013 March 2014 Canopy Surface

Mismatch between the  measured and 

modeled high‐energy 

neutron intensity

(8)

TERENO International Conference 2014

Ringkøbing Fjord – Cadmium shield experiment

A cosmic‐ray neutron probe shielded by  cadmium foil will detect neutrons with  energies > 0.5 eV

Reference measurements

conversion factor ‐ relative count rates       (model) to actual count rates

> a chemical analysis of the fjord water    is necessary!

25‐Mar‐2014200 26‐Mar‐2014

300 400 500 600 700 800

Cosmic-ray neutron intensity [counts/hr]

30‐Jun‐2014200 01‐Jul‐2014 02‐Jul‐2014 300

400 500 600 700 800

MOD neutron intensity Fast/epithermal neutron intensity BARE neutron intensity Thermal neutron intensity

0 1 2 3 4 5

‐10

0 5 10 15 20 25 30 35 40

Neutron intensity (relative)

Height above water surface [m]

Thermal neutron intensity Saltwater

Freshwater Point of measurement

0 1 2 3 4 5

‐10

0 5 10 15 20 25 30 35 40

Neutron intensity (relative)

Height above water surface [m]

Fast/Epithermal neutron intensity Saltwater

Freshwater Point of measurement

(9)

Cadmium shield experiments 

– Correction factors

Correction factors for BARE and MOD probes has been calculated based  on cadmium field experiment conducted at different: 

‐ land covers

‐ heights above the ground surface

‐ soil types 

(not included in the figure below)

(10)

TERENO International Conference 2014

A Cosmic‐ray neutron intensity profile  (incl. a cadmium shielded MOD probe)

‐ Measurements (March 2013) vs. Model

Measurements:

Model:

The modeled 

fast/epithermal neutron  intensity is more in line  with the measured  cadmium shielded MOD  neutron intensity

1 1.5 2 2.5 3

x 10‐10 0

5 10 15 20 25 30 35 40

Neutron intensity (relative)

Height above ground surface [m]

Thermal neutron intensity Tree trunk, Foliage, Air Point of measurement

3 3.5 4 4.5 5

x 10‐10 0

5 10 15 20 25 30 35 40

Neutron intensity (relative)

Height above ground surface [m]

Fast/epithermal neutron intensity Tree trunk, Foliage, Air Point of measurement

600 700 800 900

0 5 10 15 20 25 30 35 40

Neutron intensity [cts/hr]

Height above ground surface [m]

Measurement point & standard deviation, March 2014:

MOD+Cadmium MOD Canopy Surface

2000 300 400 500 600

5 10 15 20 25 30 35 40

Neutron intensity [cts/hr]

Height above ground surface [m]

Measurement point & standard deviation, March 2014:

BARE Canopy Surface

(11)

Model conceptualization

Tree trunk, Air

Foliage

Tree trunk, Foliage

Tree trunk, Foliage, Air

Wet canopy;

2 mm canopy interception

5 10 15 20 25 30 35 40

Height above ground surface [m]

Thermal neutron intensity Dry canopy

Wet canopy Canopy surface Point of measurement

5 10 15 20 25 30 35 40

Height above ground surface [m]

Fast/epithermal neutron intensity Dry canopy

Wet canopy Canopy surface Point of measurement

1 1.5 2 2.5 3

x 10‐10 0

5 10 15 20 25 30 35 40

Neutron intensity (relative)

Height above ground surface [m]

Thermal neutron intensity Tree trunk, Air Foliage Tree trunk, Foliage Tree trunk, Foliage, Air Canopy surface Point of measurement

3 3.5 4 4.5 5

x 10‐10 0

5 10 15 20 25 30 35 40

Neutron intensity (relative)

Height above ground surface [m]

Fast/epithermal neutron intensity Tree trunk, Air

Foliage Tree trunk, Foliage Tree trunk, Foliage, Air Canopy surface Point of measurement

(12)

TERENO International Conference 2014

A comparison of modeled and measured neutron intensities

Preliminary

Actual counts rates:

a preliminary conversion factor derived from  the boat experiment is used

Relative to ground surface values: 

0.4 0.6 0.8 1

0 5 10 15 20 25 30 35 40

Neutron intensity (relative)

Height above ground surface [m]

Model

Measurements, November 2013 Measurements, March 2014 Canopy surface

0.6 0.8 1 1.2 1.4

0 5 10 15 20 25 30 35 40

Neutron intensity (relative)

Height above ground surface [m]

Model

Measurements, November 2013 Measurements, March 2014 Canopy surface

1000 200 300 400 500 600 700

5 10 15 20 25 30 35 40

Neutron intensity [cts/hr]

Height above ground surface [m]

Model

Measurements, November 2013 Measurements, March 2014 Canopy surface

3000 400 500 600 700 800 900

5 10 15 20 25 30 35 40

Neutron intensity [cts/hr]

Height above ground surface [m]

Model

Measurements, November 2013 Measurements, March 2014 Canopy surface

(13)

Biomass modeling

the effect of changing biomass and soil moisture

(14)

TERENO International Conference 2014

Thank you for your attention

Referenzen

ÄHNLICHE DOKUMENTE

But the emphasis on the number of former officers in high-profile posts, which is conventionally taken as an indicator of the militarization (or demili- tarization) of

The CM 3000 offers technological leadership through the ultimate com- bination of a high torque precision stepper motor, on-board microprocessor, crystal controlled

The CM 4426 is designed for applications that require 20 megabytes of formatted storage , yet demand the high performance, sub-40 millisecond average access time needed by

A global assessment of biomass in forests for the year 2007 reported 362 Pg C based on a compilation of forest inventory resources (Pan et al., 2011), whereas approx- imately 300 Pg

Based on this checking of Spearman's rank correlation coefficient and general temperature trend from 9th of December in 2014 to 3rd of September in 2015 as well as the graph

In studies on the common reed (Phragmites austalis (Cav.)'kin. ISSN 0003-1847 A stratified sampling method is presented for €stimating the above-Sround biomass of

The drives' positioning system uses a rugged linear voice coil actuator that eliminates head skew problems common with other positioning mechanisms..

The incorporation of the SCSI inter- face technology delivers the complete functionality of a subsystem using the high- est level of hardware integration (VSLI)