• Keine Ergebnisse gefunden

Incorporation of dietary carotenoids into the fins of yellow- and red-finned Eurasian perch Perca fluviatilis

N/A
N/A
Protected

Academic year: 2022

Aktie "Incorporation of dietary carotenoids into the fins of yellow- and red-finned Eurasian perch Perca fluviatilis"

Copied!
5
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Incorporation of dietary carotenoids into the fins of yellow- and red-finned Eurasian perch Perca fluviatilis

Reiner Eckmann

, Romy Krammel, Dieter Spiteller

UniversityofKonstanz,FacultyofBiology,D-78457Konstanz,Germany

Keywords:

Astaxanthin Canthaxanthin Fincolour HPLCanalysis Rednessintensity

a b s t r a c t

Thecolouroftheventral,analandcaudalfinsofEurasianperchcanrangefrompaleyellowtointense red.Withinspatiallyseparatedpopulations,however,individualsareusuallyveryuniformincolour.

Wefedastaxanthin-andcanthaxanthin-enricheddryfeedtojuvenileperchfromayellow-finnedanda red-finnedpopulationtocomparetheinfluenceofdietarycarotenoidsonfincolourbetweenthesetwo populations.Inthiswaywewantedtotestwhetherfincolourinperchispredominantlyaphenotypically plastictraitorwhetherdifferentlycolouredindividualsrepresentcolourmorphs.Theventralfinsofperch fromthered-finnedpopulationalwaysexhibitedsignificantlymoreintenserednesswhentheirfeedwas supplementedwitheitheroneorbothcarotenoidadditives.Perchfrombothpopulationsdepositedmore canthaxanthinintheirventralfinsthanastaxanthin,red-finnedperchinparticular.Yellow-finnedperch probablyconvertedcanthaxanthininto␤-carotene,whichwasthedominantcarotenoidintheirventral fins,whereasthefinsofred-finnedperchcontainedonlytraceamountsof␤-carotene.Weconcludethat thesetwopopulationsrepresentcolourmorphsthatdifferfundamentallyintheirabilitytometabolise anddepositdietarycarotenoidsintotheirventralfins.Consideringthemultiplephysiologicalfunctions ofcarotenoids,thesefundamentaldifferencesincarotenoidmetabolismbetweenperchcolourmorphs mayhavefar-reachingconsequencesfortheperformanceofdifferentpopulations,forexampleintheir responsetoparasiteinfections.

1. Introduction

EurasianperchPercafluviatilisL.1758(hereafterperch)candif- fermarkedly infin colour, rangingfrompaleyellowtointense red(Pimakhin,2012).Perchwithredfinsseemtooccurmorefre- quently:inphotosuploadedbyFishbaseusers(FroeseandPauly, 2013)red-finnedperchoutnumberyellow-finnedperchby13:3 anda GooglesearchforEurasian perchimagesyieldsa ratioof 6:1.Withinpopulations,however,fincolourisoftenuniform.For example,inLakeConstanceuntilrecently,allperchhadpaleyel- lowfinswhilethoseinthesmalllakesnorthofLakeConstancehave orangeorbrightredfins.InSwedishforestlakesandintheRiver RhinenearBasel,however,yellow-andred-finnedperchco-occur (P.Hirsch,Univ.Basel,pers.comm.).Itisnotyetknownwhether fincolourinperchispredominantlyaphenotypicallyplastictrait whoseexpressionisinfluencedbyenvironmentalfactorssuchas

Correspondingauthor.

E-mailaddresses:reiner.eckmann@uni-konstanz.de(R.Eckmann), r.krammel1991@jahoo.de(R.Krammel),dieter.spiteller@uni-konstanz.de (D.Spiteller).

dietcompositionorwatercolourandturbidity,orwhetherdiffer- entlycolouredindividualsrepresentcolourmorphsthatdiffereven thoughtheyingestthesametypeofdietarycarotenoids.

Dietarycarotenoidscontributetotheyellow,orangeandred colourationoftheskin,finsandfilletinsalmonids (Shahidiand Brown,1998), buttheirinfluenceonthefincolourofperchhas notpreviouslybeenstudied.Watercolourorturbiditycaninflu- encethecolorationofperchasshownbyKekäläinenetal.(2010).

Intheleasthumic(i.e.mosttransparent)of fourborealFinnish lakes,perchhadthelightestandlesscolouredbellyandperchwere morecolourfulinthelittoralthaninthepelagichabitat,suggest- ingdivergentselectioninlittoralandpelagiczones.Howeverthe mechanismbywhichdifferentfincolorationisobtainedinthedif- ferenthabitatsremainsunknown.Consistentdifferencesincaudal fincolour betweenperchfromdifferentwaterbodieshave also beenobservedbyMairesseetal.(2005)whowereabletodiscrim- inateperchfromtheRiverRhineandLakeGenevabycaudalfin colour.Howeverthisstudyencounteredaconfoundingfactorin thatcaudalfincolourattributes,suchaslightness,chromaandhue, weresignificantlyrelatedtofishsize.

Theexistenceofcolourmorphsinthisspecieswassuggested recentlyinastudybyRochetal.(2015)whocomparedage-0perch

Konstanzer Online-Publikations-System (KOPS) URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-389799

https://dx.doi.org/10.1016/j.limno.2016.12.001

(2)

withpaleyellowishfinsandperchwithredfinssampledfromthe littoralofLakeConstance.Duringthefewdecadespriorto2010, yellow-finnedperchwerethesolephenotypeinLakeConstance (professionalfishermenandfishery scientists,pers.comm.), but inthat yearindividuals withredfinsbegan tobecaught.Roch etal.(2015)showedbymicrosatelliteanalysisthatthered-finned fishdifferedfromtheyellow-finnedindividualsandfromfishwith mixedfincolour,whichareprobablybackcrossesbetweenred-and yellow-finnedindividuals. Theseresultssuggest thatred-finned fisharenotacolour variantofthenativeperchpopulation, but morelikelytheprogenyofindividualsthathaveinvadedthelake fromotherwaterbodiesinthedrainagebasin.

Thefirstcluethatfincolorationinperchisinfluencedbydiet camefromapreliminaryfeedingexperimentinourlaboratoryin whichjuvenilesof a red-finnedpopulationreceiveddietscom- prising either chironomid larvae or lake zooplanktonfor eight weeks(Eckmann,unpubl.data).Fishfeedingonchironomidlarvae hadpale-orangefins whereasthefinsof those feedingonzoo- planktonwereintenselyorange-red,theanalandventralfinsin particular.Followingthispreliminarystudy,twoexperimentswere designedtocomparetheinfluenceofdietarycarotenoidsonfincol- orationbetweenared-andayellow-finnedpopulationofperch.As astaxanthinandcanthaxanthinarethemainchromophorecom- poundspresentinperchfins(Czeczuga,1979b),weusedthesetwo carotenoidsasfeedadditives.Inthefirstexperiment,fishwerefed adryfeedsupplementedwithbothcarotenoids,andinthesecond experimentdifferenttreatmentgroupsreceiveddryfeedssupple- mentedwitheitherastaxanthinorcanthaxanthin.Itwastheaim ofourstudytotestthenullhypothesisthatperchfromyellow- andred-finnedpopulationsdevelopthesameventralfincoloration whenfeedingondietswithidenticalcarotenoidcontent.

2. Materialandmethods

Thered-finnedperchusedinthisexperimentoriginatedfrom LakeKarsee(Kperch),asmall(3ha)lakenorthofLakeConstance.

Theyellow-finnedperchoriginatedfromLakeConstance(Cperch), thesecond-largest(536km2)perialpinelakenorthoftheEuropean Alps.Spawnersfrombothpopulationswerekeptseparatelyinout- doormesocosmswheretheyspawnedvoluntarilyfrommid-April tomid-May.Eggstrandswerecollectedfromthemesocosmsand incubatedinthelaboratory.LarvaewererearedonArtemianauplii forfourweeksandthenweanedtoadrydiet(Inicio917,BioMar) whichtheyreceiveduntiltheexperimentsstarted.

2.1. Experiment1

In October 2013, two aquaria of 85L volume were stocked with30age-0 Kpercheach anda furthertwoaquaria with30 age-0Cpercheach. Allfourgroups received a formulated diet supplementedwith50mgeachofastaxanthinandcanthaxanthin (LucantinTMPinkandLucantinTMRed,BASF)per1000gofpellets.

Thisisaconcentrationofcarotenoidscommonlyusedinfeeding studieswithsalmonids(ShahidiandBrown,1998).Asoursisthe firststudyinwhichcarotenoidsareaddedtothedietofperch,we adoptedthesevaluesasaguideline.Theadditivesweregroundina mortarwithasmallquantityofpellets,andthepowdermixedwith 1000goffeed.Themixturewaswettedwithwater,mixedthor- oughlytoapulp,passedthroughameatmincerwith2mmbore diameter,anddried.Thefishlivedat20±0.2C with14hlight perday.TheaquariaweresuppliedwithtapwaterfromtheCity ofConstancewaterworksat arateimplyinga theoreticalwater renewaltimeof 2–3h, and foodwasprovided adlibitumtwice perday.Afterthree months,onetankgroupofeachpopulation wasswitchedontoanon-supplementeddryfeed(codes:KCar/df

andCCar/df,respectively)whilethesecondgroupofeachpopula- tioncontinuedtoreceivethesupplementeddiet(codes:KCarand CCar,respectively).Theexperimentsendedafterfivemonths.

Samplingtookplaceatthestartoftheexperiment,afterthree monthsandattheendoftheexperiment,withtenfishremoved fromeachaquarium,euthanizedwithanoverdoseofMS222and photographedinventralaspectwithacolour referencechartin eachpicture.Photosweretakenunderawhitecanvassoftboxillu- minatedwithvideofloodlightstoeliminatesurfacereflectionsand hardshadows.Theventralfinswerecutoffatthebases,blotteddry, weighedto0.1mgandstoredat−20Cuntilfurtherprocessing.

2.2. Experiment2

InApril2014,asecondexperimentbeganusingfishfromthe same sourcebatches as those used in experiment 1. Four 85L aquariawere each stocked with30 Kperchand a furtherfour aquariawith30Cpercheach.Twotank-groupsfromeachpop- ulationreceivedaformulateddietsupplementedwith100mgof astaxanthinper1000gofpellets(codes:KAst1/2andCAst1/2, respectively),and theothertwogroups receivedadiet supple- mentedwith100mgofcanthaxanthinper1000g(codes:KCan1/2 andCCan1/2,respectively).Theexperimentalconditionswerethe sameasinexperiment1.Photosandfinsamplesoftenfishfrom eachaquariumweretakenatthestartoftheexperimentandafter nineweeksattheend.

2.3. Rednessintensity

PhotoswereevaluatedwithImageJ(http://rsbweb.nih.gov/ij/) usingtheRGBcolourmodel.Luminosity,i.e.theoverallbrightness ofaphoto,wascalculatedbyconvertingeach pixeltograyscale usingtheweightedRGBconversion.Thebrightnessofallphotos wasauto-adjustedsothattheaveragegreyvalue(range0–255)of thewhitereferencechartexceeded240.Anellipticalselectionof themostintenselycolouredpartofeachventralfinwasmarked, andtheaverageredandgreyvaluesofthisselectionnotedalong withthoseofthewhiteandredstandardcharts.Fincolourwas scoredaccording totheredness intensity, I,of theselected fin region,whichwascalculatedasI=100*(F-W)/(R-W)accordingto VillafuerteandNegro(1998),whereF,WandRarethequotients ofaverageredandgreyvaluesofthefinarea,thewhitestandard andtheredstandardchart,respectively.Thisgivesastandardized rednessvaluerangingfrom0to100.Inbothexperiments,right andleftventralfinsofallsampledfishmatchedintermsofredness intensity(t-testforpairedvalues,p>0.05inallcases).Therefore, meanvaluesforeachfinpairwereusedinfurtheranalyses.

2.4. High-performanceliquidchromatography(HPLC)

FortheanalysisofcarotenoidsinventralfinsbyHPLC,deep- frozenfinsweregroundinliquidnitrogeninamortar.Carotenoids were extracted withacetone,dried over Na2SO4 and the sam- pleswerecentrifugedfor6–12minat13000rpm.Thesupernatants weretransferredintoHPLCvials,evaporatedunderanitrogenflow, andthevialswerestoredat−20C.ForHPLCanalysiscarotenoids werere-dissolvedin0.2mLacetoneandseparatedonanAgilent ZorbaxEclipse XDB-C8column (150mm×4,6mm, 5␮m) using anAgilent1100HPLCsystemwithadiodearraydetector.HPLC conditionswere:solventA:H2O0.1%aceticacid,solventB:ace- tonitrile;HPLCprogramme:gradientelutionfrom70%Bto100%B in10min,100%Bfor15min;flowrate:1mL/min,diodedetector range280–550nm;theUVtraceof462nmwasusedforquantita- tiveanalysis.Injectionvolumesrangedfrom5to50␮L.Astaxanthin (retentiontime:8.3min),canthaxanthin(retentiontime:11.5min) and ␤-carotene(retentiontime: 21.5min) (BASF)were usedas

(3)

Table1

Totallength(cm)andredness(cf.Materialsandmethodsfordefinitionofredness)of theventralfinsofjuvenileEurasianperchfromLakeConstance(C)andKarsee(K) afterthreeandfivemonthsofadlibitumfeedingondryfeedenrichedwith50mg/kg ofastaxanthinandcanthaxanthin(10fishanalysedpertreatment).Thefishreceived thecarotenoid-enrichedfeedforfivemonths(Car)orforthreemonthsfollowedby twomonthsonnon-enricheddryfeed(Car/df).Valueswiththesamesuperscript indicatenon-significantdifferenceswithincolumns.Significancelevelsweresetat P<0.05inallcomparisons.

Treatment Totallength(cm) Redness

3mo 5mo 3mo 5mo

C Car 10.1±0.7b 13.2±0.7bc 14.5±5.9b 23.1±5.1bc CCar/df 10.3±0.8b 13.1±1.2c 12.5±2.9b 13.9±2.1c KCar 11.4±1.3a 14.5±1.2a 57.8±22.1a 74.5±14.6a KCar/df 11.1±1.3ab 14.1±1.3ab 60.5±17.1a 55.1±12.2ab

standardsandtogeneratecalibrationcurvesforthequantitative analysisofextractedcarotenoids.

2.5. Dataanalysis

Start values of total length and of redness intensity were comparedbetweenpopulationsbyt-test.Treatmentmeanswere compared with ANOVA when test assumptions of normality (Shapiro-WilkWtest)and homoscedasticity(Bartletttest)were fulfilled,otherwiseKruskal-Wallis-ANOVA(KW-ANOVA)wasused.

Multiplecomparisons ofmeanswere conductedwithStudent’s tonthedifferenceacrosseverypairoflevelsorwithNemenyi- test,respectively.Resultswereconsideredstatisticallysignificant atP<0.05.TestswerecalculatedusingJMP(SASInstituteInc.Cary, NorthCarolina,USA)version7.0.1.orSTATeasy(Wissenschaftliche Auswertungen,Hamburg,Germany),version2009.

3. Results 3.1. Experiment1

Atthestartoftheexperiment,Kperchweresignificantlylarger thanCperch(7.0±0.7vs.6.4±0.6cmtotallength;t-test,P<0.05) probablybecauseKperchspawnedandhatchedaboutthreeweeks earlier.AfterthreemonthsKperchcontinuedtobelargerthan Cperch,andthesamewastrueafterfivemonthswhenonetreat- mentgrouppermorphhadbeenswitchedtoanon-enrichedfeed (Table 1).Thesedifferenceshowever, couldonlypartly becon- firmedstatistically(ANOVA,F3,34=3.02,P=0.043andF3,36=3.67, P=0.021,respectively).

RednessintensitywasalreadysignificantlygreaterforKperch thanforCperchatthebeginningoftheexperiment(4.3±1.4vs.

3.3±0.8;t-test,P<0.05).Afterthreemonths,rednessintensitywas significantly greater for Kperchthan for Cperch (KW-ANOVA, H=27.5>␹2=7.81;Table1).Afterfivemonths,rednessintensity hadincreasedfurtherinthetwogroupsreceivingthecarotenoid- enrichedfeedbutnotinthegroupsthatfedonnon-enrichedfeed forthelasttwomonths.Evenso,Kperchstillexhibitedsignificantly moreintenserednessthanCperchthatreceivedthesametypeof feed(KW-ANOVA,H=33.6>␹2=7.81;Table1;Fig.1a+b).

Astaxanthin was only foundsporadically in the ventralfins ofbothmorphs,exceptKperchthathadfedforfivemonthson carotenoid-enrichedfeed,whosefinsconsistentlycontainedlow amountsofastaxanthin.CanthaxanthinwasdetectedinCperch inverysmallamounts,butwasthedominantcarotenoidinven- tralfinsofKperch(Table2).Afterswitchingtonon-enrichedfeed, theconcentrationofcanthaxanthininthefinsofKperchdidnot changesignificantlybutinthegroupthatcontinuedtofeedona carotenoid-enricheddiet,theconcentrationincreasedaboutthree- fold (ANOVA, F3,16=3.64, P=0.036; Table 2).Beta-carotene was

Fig.1.VentralviewsofjuvenilePercafluviatilisfromtwospatiallyseparatedpopula- tionsfedwithdryfeedssupplementedwithcarotenoids.a)Karseeperchfedforfive monthswith50mg/kgastaxanthin-and50mg/kgcanthaxanthin-supplemented feed.b)LakeConstanceperchreceivingthesametreatment.c)Karseeperchfedfor nineweekswith100mg/kgastaxanthin-supplementedfeed.d)Karseeperchfedfor nineweekswith100mg/kgcanthaxanthin-supplementedfeed.e)LakeConstance perchfedfornineweekswith100mg/kgastaxanthin-supplementedfeed.f)Lake Constanceperchfedfornineweekswith100mg/kgcanthaxanthin-supplemented feed.Bars:10mm.

Table2

Thecontentofastaxanthin,canthaxanthinand␤-caroteneintheventralfinsof Eurasianperchafterthreeandfivemonthsofadlibitumfeedingonacarotenoid- enricheddryfeed.Valuesaregivenin␮gcarotenoidpergfreshweightandare presentedasmeans±S.D.forfivefish.WhenavaluewithoutS.D.isgiveninatable cell,thenonlyoneoutoffivefishcontainedthatparticularcarotenoid.Valueswith thesamesuperscriptindicatenon-significantdifferencesbetweencanthaxanthin valuesforKperchafterthreeandfivemonths,andbetween␤-carotenevaluesfor Cperchafterthreeandfivemonths.SignificancelevelsweresetatP<0.05inboth comparisons.FortreatmentcodesrefertoTable1.

Treatment Astaxanthin Canthaxanthin ␤-carotene

3mo 5mo 3mo 5mo 3mo 5mo

CCar 0 0 0.1±0.1 0.1±0.1 2.2±0.8a 4.7±2.7a

CCar/df 0.3 0.2 0 3.0±1.5a 1.2±0.5a

KCar 0.8 0.4±0.3 4.8±6.1b 12.1±6.8a 0 0 KCar/df 0.4 0.2 4.1±2.9b 2.9±1.7b 0 0

notfoundinKperchfinsbutwasthedominantcarotenoidinthe ventralfinsofCperch.InbothCperchgroupstheconcentrations of␤-carotenefoundafterfivemonthsdidnotdiffersignificantly fromthosemeasuredafterthreemonths(Table2),eventhoughthe concentrationinthegroupthatcontinuedtofeedonacarotenoid- enricheddietwasaboutfourfoldhigherthaninthegroupthatfed thenon-enricheddietduringthelasttwomonths(KW-ANOVA, H=8.42>␹2=7.81).

(4)

Table3

Totallength(cm)andredness(cf.Materialsandmethodsfordefinitionofredness)of theventralfinsofjuvenileEurasianperchfromLakeConstance(C)andKarsee(K) afternineweeksofadlibitumfeedingoncarotenoid-enricheddryfeeds.Thedryfeed wassupplementedwitheither100mg/kgofastaxanthin(Ast)orcanthaxanthin (Can).Thereweretworeplicatespertreatment(10fishanalysedperreplicate)and theresultsaregivenasmeans±S.D.Valueswiththesamesuperscriptindicatenon- significantdifferences.Foreachvariablethegroupsreceivingthecanthaxanthin- enrichedfeedarecomparedinthefirstcolumnbelowthevariablename,those receivingtheastaxanthin-enrichedfeedarecomparedinthesecondcolumn,and thefourgroupsofLakeConstanceorKarseepercharecomparedwitheachotherin thethirdcolumn.SignificancelevelsweresetatP<0.05inallcomparisons.

Treatment Totallength(cm) Redness

CAst1 10.4±0.7a b 17.4±3.6b b

CAst2 10.6±0.7a b 16.4±2.5b b

C Can1 12.2±0.5a a 25.9±1.9b a

C Can2 10.6±0.7b b 23.3±3.7b a

KAst1 10.5±0.8a b 57.9±8.8a a

KAst2 9.6±0.6b c 42.7±9.0a b

KCan1 10.9±0.5b b 33.8±8.6a c

K Can2 12.4±0.6a a 33.4±7.9a c

3.2. Experiment2

At the start of the experiment, total body length did not differ between Kperch and Cperch (7.3±0.5 vs. 7.2±0.9cm;

t-test, P>0.05). Afternine weeks total body length showedno consistentpattern betweenperch morphs feeding oncanthax- anthin(ANOVA,F3,36=22.68,P<0.0001)orastaxanthin(ANOVA, F3,36=4.13, P=0.0129) aswell asamong perchmorphs feeding ontwo different enriched feeds (Cperch: ANOVA,F3,36=15.45, P<0.0001; Kperch: ANOVA, F3,36=33.55, P<0.0001). For both perchmorphs,however,thelargestfishwerefoundingroupsfeed- ingoncanthaxanthin-enricheddiets(cf.secondcolumninTable3).

Redness intensity (I) was significantly higher for Kperch than for Cperch at the beginning of the experiment (6.5±2.2 vs. 4.6±1.4; t-test, P<0.05). After nine weeks, Kperch exhib- ited significantly greater I values than Cperch feeding on bothastaxanthin-andcanthaxanthin-enrichedfeed(KW-ANOVA, H=31.60>␹2=7.81andH=15.11>␹2=7.81,respectively;Table3).

Among Cperch, fish feeding on canthaxanthin-enriched feed exhibitedsignificantlygreaterrednessintensitythanthosefeed- ingonastaxanthin-enrichedfeed(ANOVA,F3,36=23.34,P<0.0001) whereasinKperchfinswereredderinfishfeedingonastaxanthin- enrichedfeed,(ANOVA,F3,36=17.93,P<0.0001;Fig.1,c–f).

AstaxanthinwasfoundintheventralfinsofallanalysedKperch receivingtheastaxanthin-enrichedfeed,whereasinallothertreat- mentgroupsthiscarotenoidwasonlyfoundoccasionally(Table4).

Canthaxanthinwasfoundconsistentlyinallgroupsreceivingthe canthaxanthin-enricheddiet,andtheaveragecontentofKperch ventralfinswasnearlytenfoldgreaterthaninCperch(KW-ANOVA, H=15.46>␹2=7.81).Inthegroupsreceivingastaxanthin-enriched feed,canthaxanthinwasfoundinonlyafewfish(Table4).Beta- carotenewasnotdetectedineitherCAstorinKAstgroups,nor wasit foundin sevenoutoftenKCan fish.Cperchfeedingon canthaxanthin-enrichedfeed,however,hadconsistentlyhighcon- centrationsof␤-caroteneintheirventralfins(Table4).

4. Discussion

Theperchpopulationscomparedinthesetwoexperimentsdif- feredmarkedlyinventralfincolorationwhenfeedingonthesame carotenoid-enricheddry feeds,inthatKperchalwaysexhibited moreintenserednessthanCperch.Thenullhypothesisthatperch fromyellow-andred-finnedpopulationsdevelopthesameven- tralfincolorationwhenfeedingondietswithidenticalcarotenoid contentmustthereforeberejected.Thisresultsuggeststhatthedif- ferenceinventralfincolorationandcarotenoiddepositionbetween

yellow-andred-finnedperchhasageneticbasis,perhapssimilar tothatpreviouslyshowntoinfluencevariablepigmentationand colorationinsalmonids(Bjerkeng,2000;Choubertetal.,1995;Rye andGjerde,1996;Withler,1986;WithlerandBeacham,1994).In contrasttosalmonids,dietarycarotenoidsapparentlydonotinflu- encefleshcolourinperch.Whenadultyellow-finnedperchwere fedonbroodstockfeedfortroutwithahighcarotenoidcontentfor severalmonths,wedidnotobserveanychangeinthefish’spale- whitefleshcolour(Eckmann,unpublisheddata),andinthepresent studywedidnotobservebygrossinspectionanydifferenceinflesh colourbetweenperchfromdifferenttreatmentseither.

Earlierwork hassuggested thatgrowth rate,as a proxy for uptakeofdietarycarotenoids,couldexplaindifferencesinventral fincoloration.Mairesseetal.(2005)reportedthatcaudalfincolour inEurasianperchwassignificantlyrelatedtofishsize,andasimilar positive relationshipbetweenbody sizeand carotenoiddeposi- tionwasreportedforsalmonidsbyStorebakkenandNo(1992).At theendofourexperiments,however,bodylengthsofKperchand Cperchdifferedbyonlyaround1cminexperiment1(Table1),and showednoconsistentpatterninexperiment2(Table3),whereas inthestudyofMairesseetal.(2005),fishdifferedbyupto20cmin standardlength.Furthermore,inexperiment1afterfivemonthsof feedingCperchwerearound2cmlongerthanKperchafterthree months,yetthesmallerKperchhadhigherrednessintensitythan thelargerCperch(Table1).Fishsize,therefore,isnotaconfound- ingfactorinourstudy,suggestingthatouryellow-andred-finned populationsrepresentcolourmorphswithmarkeddifferencesin carotenoidmetabolismand/orincorporationintotheirfins.

The analysis of fin carotenoid content revealed pronounced differencesbetweenthetwopopulations.Whenthedryfeedcon- tainedcanthaxanthin,Kperchdepositedconsiderableamountsof thiscarotenoidintheirventralfins,betweenone(experiment2) andtwo(experiment1)ordersofmagnitudemorethanCperch.

Supplementaryastaxanthinwasincorporatedconsistently,albeit insmallquantitiesbyKperch,afternineweeksinexperiment2 andafterfivemonthsinexperiment1.InCperchfins,astaxanthin wasfoundonlysporadically.Atlanticsalmonand rainbowtrout areknowntoutilizeastaxanthin moreefficientlythan canthax- anthinforflesh pigmentation(StorebakkenandNo,1992).Both colourmorphsofperch,however,utilizethesecarotenoidsforfin colorationinadifferentway,favouringcanthaxanthinoverastax- anthin.

Themoststrikingdifferencebetweenthetwopopulationsisthe

␤-carotenecontentoftheventralfins.Whilethiscarotenoidwas completelyabsentinKperch,itwaspresentinlargeamountsin Cperchconsumingdryfeedwithcanthaxanthin.Hence,Cperch likely converted canthaxanthinin ␤-carotene, probablyusing a metabolicpathwaythathaspreviouslybeendetectedintheskin andliverofrainbowtrout(Guillouetal.,1989).Feedinglabelled carotenoidstoperchmighthelptosubstantiatethesuggestedcon- versionofcanthaxanthinin␤-carotene.

Whenthefishwereswitchedfromcarotenoid-enrichedtonon- enrichedfeedinexperiment 1,therewasnochangeinredness intensity in either K or Cperch. By contrast, carotenoid con- tentdecreasedaftertwomonths,mostnotablyforcanthaxanthin and␤-carotene,butunfortunatelythesedifferencescouldnotbe confirmedstatisticallyasvarianceswereratherhigh.Inrainbow trout musclecarotenoid concentrationhad not decreased after 85days of starvation (Choubert, 1985). The marginal decrease of carotenoid concentration in perch ventralfins suggests that carotenoidsdepositedintoperchventralfinsarenotpermanently incorporatedandmightbeatleastpartlyremobilizedataslow rate.Longerperiodsofcarotenoiddeprivationareneededtogain betterinformationonthepossibleremobilizationofcarotenoids fromperchventralfins.

(5)

Table4

Thecontentofastaxanthin,canthaxanthinand␤-caroteneintheventralfinsofEurasianperchafternineweeksofadlibitumfeedingoncarotenoid-enricheddryfeed.Values aregivenin␮gcarotenoidpergfreshweightandarepresentedasmeans±S.D.forfivefishperreplicate.Whenlessthanfivefishperreplicatecontainedtherespective carotenoid,replicatesweremergedandthecombinednumberoffishcontainingthecarotenoidisindicated.Thesetreatmentswereomittedfromstatisticalcomparisons.

Valueswiththesamesuperscriptindicatenon-significantdifferenceswithincolumns.SignificancelevelsweresetatP<0.05inallcomparisons.Fortreatmentcodesreferto Table3.

Treatment Astaxanthin Canthaxanthin ␤-carotene

CAst1 0.2±0.1(n=3/10) 0.1±0.2(n=4/10) 0

CAst2 0

CCan1 0.1±0.1(n=5/10) 0.7±0.2b 4.1±1.6a

C Can2 1.2±0.5b 5.8±2.2a

KAst1 0.5±0.1a 0.1±0.1(n=3/10) 0

KAst2 0.2±0.1b 0

KCan1 0.1±0.1(n=4/10) 12.2±5.3a 0.8±2.1(n=3/10)

KCan2 6.4±4.3ab

Astaxanthinseemstoprovidemoreintenserednessthancan- thaxanthininKperch.Inexperiment2,astaxanthin-supplemented feed led to greater redness intensity than canthaxanthin- supplemented feed (Table 3) even though the canthaxanthin contentofKperchventralfinswasmorethananorderofmag- nitudegreaterthantheircontentofastaxanthin(Table4).Similar resultshavebeenobtainedintrout,whereastaxanthinledtomore intenserednessofthefleshthancanthaxanthinatcomparablecon- centrations(SkredeandStorebakken,1986;Skredeetal.,1989).

Beta-carotene hasfull vitamin A activityin fish, while both astaxanthin andcanthaxanthin arevitamin Aprecursors (Gross and Budowski, 1966). Howeverdetails ofthe furtherbiological rolesofcarotenoidsinfishareonlypartlyunderstood(Shahidiand Brown,1998).Otherphysiologicalfunctionscommonlyattributed tocarotenoidsincludetheirabilitytoabsorbpotentiallydamaging radiationandtoquenchsingletoxygenandthusserveasantiox- idants(Tacon,1981).Highlevelsofcarotenoidshavebeenlinked tobetterresistancetobacterialandfungaldiseasesinsalmonids (Czeczuga,1979a),andtoincubation-survivalanddiseaseresis- tanceineggsofOncorhynchustshawytscha(Tyndaleetal.,2008).

Giventhesepotentiallybeneficialeffectsofcarotenoids,theques- tionariseswhetheryellowandredcolourmorphsofperchdifferin physiologicalperformanceaswellasfincolour.Inarecentstudy, Rochetal.(2015)showedthatthetwocolourmorphsnowresident inLakeConstancediffer intheirsusceptibilitytomacroparasite infection.Red-finned specimens andfish withmixedfin colour showed better resilience to the pike tapeworm Triaenophorus nodulosusandthegillwormAncyrocephaluspercae.Theseresults suggestthatparasitesusceptibilitymayberelatedtodifferencesin carotenoidmetabolismbetweenperchcolourmorphs.

Inconclusion,fincolourisnotsimplyaphenotypicallyplastic traitthatisinfluencedbyenvironmentalfactorssuchasdietcom- positionorwatercolourandturbidity,butyellow-andred-finned Eurasianperchrepresentcolourmorphsthatdifferfundamentally intheirabilitytometaboliseanddepositdietarycarotenoidsinto theirventralfins.Differencesincarotenoidmetabolismmayhave unexploredbutfar-reachingconsequencesforperchperformance, forexampleinresistingparasiteinfection.

Acknowledgements

Dr.W.Pelletier,BASF,kindlyprovidedthefeedcarotenoids.H.

Thieletookcareoftheperchspawnersandsuccessfullyweaned perchfry todry feed.M.Schmidtookcare ofthe juvenilefish stockandhelpedduringtheentirecourseoftheexperiments.We thankA.-J.Beerforlanguagecorrectionandimprovementofthe manuscriptand twoanonymous refereesfortheirhelpfulcom- ments.

References

Bjerkeng,B.,2000.Carotenoidpigmentationofsalmonidfishesrecentprogress.

9-22Noviembre,2000.Mérida,YucatánIn:Cruz-Suárez,L.E.,Ricque-Marie,D., Tapia-Salazar,M.,Olvera-Novoa,M.A.,Divera-Cerecedo,R.(Eds.),AvancesEn NutriciónAcuícolaV.MemoriasDelVSimposiumInternacionalDeNutrición Acuícola,1,pp.P71–P89.

Choubert,G.,Milicua,J.-C.G.,Gomez,R.,Sance,S.,Petit,H.,Négre-Sadargues,G., Castillo,R.,Trilles,J.-P.,1995.Utilizationofcarotenoidsfromvarioussources byrainbowtrout:musclecolour,carotenoiddigestibilityandretention.

Aquacult.Int.3,205–216.

Choubert,G.,1985.Effectsofstarvationandfeedingoncanthaxanthindepletionin themuscleofraibowtrout(SalmogairdneriRich.).Aquaculture46,293–298.

Czeczuga,B.,1979a.CarotenoidsinfishXIX.Carotenoidsintheeggsof Oncorhynchusketa(Walbaum).Hydrobiologia63,45–47.

Czeczuga,B.,1979b.CarotenoidsinfishXXI.percidaefrompolishwaters.Acta Hydrobiol.21,1–8.

Gross,J.,Budowski,P.,1966.ConversionofcarotenoidsintovitaminA1andA2in twospeciesoffreshwaterfish.Biochem.J101,747–754.

Guillou,A.,Choubert,G.,Storebakken,N.,Kaushil,S.,1989.Bioconversionpathway ofastaxanthinintoretinol2inmaturerainbowtrout(SalmogairdneriRich.).

Comp.Biochem.Physiol.94B,481–485.

Kekäläinen,J.,Huuskonen,H.,Kiviniemi,V.,Taskinen,J.,2010.Visualconditions andhabitatshapethecolorationoftheEurasianperch(PercafluviatilisL.):a trade-offbetweencamouflageandcommunication?Biol.J.Linn.Soc99,47–59.

Mairesse,G.,Thomas,M.,Gardeur,J.-N.,Brun-Bellut,J.,2005.Appearanceand technologicalcharacteristicsinwildandrearedEurasianperch(Percafluviatilis L.).Aquaculture246,295–311.

Pimakhin,A.,2012.ColorvariabilityofEurasianperch(PercafluviatilisL.):areview.

Proc.ARSAAdvRes.Sci.Areas1,1564–1569.

Roch,S.,Behrmann-Godel,J.,Brinker,A.,2015.Geneticallydistinctcolourmorphs ofEuropeanperchPercafluviatilisinLakeConstancedifferinsusceptibilityto macroparasites.J.FishBiol.86,854–863.

Rye,M.,Gjerde,B.,1996.Phenotypicandgeneticparametersofbodycomposition traitsandfleshcolourinAtlanticsalmon,SalmosalarL.Aquacult.Res.27, 121–133.

Shahidi,F.,Brown,J.A.,1998.Carotenoidpigmentsinseafoodandaquaculture.

Crit.Rev.FoodSci.38,1–67.

Skrede,G.,Storebakken,T.,1986.Characteristicsofcolorinraw,bakedandsmoked wildandpen-rearedAtlanticsalmon.J.FoodSci.51,804–808.

Skrede,G.,Storebakken,T.,Næs,T.,1989.Colorevaluationinraw,bakedand smokedfleshofrainbowtrout(Onchorhynchusmykiss)fedastaxanthinor canthaxanthin.J.FoodSci.55,1574–1578.

Storebakken,T.,No,H.K.,1992.Pigmentationofrainbowtrout.Aquaculture100, 209–229.

Tacon,A.G.J.,1981.Speculativereviewofpossiblecarotenoidfunctioninfish.Prog.

Fish-Cult.43,205–207.

Tyndale,S.T.,Letcher,R.J.,Heath,J.W.,Heath,D.D.,2008.Whyaresalmoneggsred?

EggcarotenoidsandearlylifesurvivalofChinooksalmon(Oncorhynchus tshawytscha).Evol.Ecol.Res.10,1187–1199.

Villafuerte,R.,Negro,J.J.,1998.Digitalimagingforcolourmeasurementin ecologicalresearch.Ecol.Lett.1,151–154.

Withler,R.E.,Beacham,T.D.,1994.Geneticvariationinbodyweightandflesh colourofthecohosalmon(Oncorhynchuskisutch)inBritishColumbia.

Aquaculture119,135–148.

Withler,R.E.,1986.Geneticvariationincarotenoidpigmentdepositioninthe red-fleshedandwhite-fleshedchinooksalmon(Oncorhynchustshawytscha)of QuesnelRiver,BritishColumbia.Can.J.Genet.Cytol.28,587–594.

Electronicreferences

Froese,R.,Pauly,D.,(eds.)2013.FishBase.Availableathttp://www.fishbase.org (lastaccessed06December2015).

Referenzen

ÄHNLICHE DOKUMENTE

Apart from the poorer food supply in oligotrophic Lake Constance, the recent decrease of perch growth rate is also caused by the massive infection in perch with pike tapeworm..

Abstract Prior studies have shown that perch ( Perca fluviatilis L.) of Lake Constance belong to two genetically different but sympatric populations and that local aggrega- tions

We used perch (Perca fluviatilis) as a visually-orientated, and ruffe (Gymnocephalus cernuus) as a mechano-sensory oriented predator and tested their growth rates and behaviour

We used perch (Perca fluviatilis) as a visually orientated, and ruffe (Gymnocephalus cernuus) as a mechano-sensory oriented predator and tested their growth rates and behaviour

This project is part of our research on population genetics, beha - viour and competitive interactions with other species, of Eurasian perch in a large oligo- to mesotrophic

Eurasian perch Perca fluviatilis (henceforth: perch) is a model species in freshwater fish ecology used extensively in field stud- ies and in controlled aquarium and mesocosm

shoals as was shown in a previous genetic study (Gerlach et al., 2001). Group pref- erence is based on olfactory preference for related individuals and if it lasted during

Three previous studies have investigated the parasite communities of vari- ous fish species in Lake Constance, including pikeperch and perch (Zandt 1924; Ozcelik &amp; € Deufel