• Keine Ergebnisse gefunden

An automated Fpg-based FADU method for the detection of oxidative DNA lesions and screening of antioxidants

N/A
N/A
Protected

Academic year: 2022

Aktie "An automated Fpg-based FADU method for the detection of oxidative DNA lesions and screening of antioxidants"

Copied!
7
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

An automated Fpg-based FADU method for the detection of oxidative DNA lesions and screening of antioxidants

Nathalie Müller

a,1

, Maria Moreno-Villanueva

a,1

, Arthur Fischbach

a

, Joachim Kienhöfer

a

, Rita Martello

a

, Peter C. Dedon

b,c

, Volker Ullrich

a

, Alexander Bürkle

a,∗,2

, Aswin Mangerich

a,b,∗∗

aUniversityofKonstanz,MolecularToxicologyGroup,DepartmentofBiology,D-78457Konstanz,Germany

bDepartmentofBiologicalEngineering,MassachusettsInstituteofTechnology,77MassachusettsAvenue,Cambridge,MA02193,UnitedStates

cCenterforEnvironmentalHealthScience,MassachusettsInstituteofTechnology,77MassachusettsAvenue,Cambridge,MA02193,UnitedStates

Keywords:

DNAdamage FADU

Genotoxicitytesting Antioxidants Highthroughput Massspectrometry

a b s t r a c t

Theoxidationofguanineto8-oxo-2-deoxyguanosine(8-oxo-dG)isoneofthemostabundantandbest studiedoxidativeDNAlesionsandiscommonlyusedasabiomarkerforoxidativestress.Overthelast decades,variousmethodsforthedetectionofDNAoxidationproductshavebeenestablishedandopti- mized.However,someofthemlacksensitivityorarepronetoartifactformation,whileothersare time-consuming,whichhamperstheirapplicationinscreeningapproaches.Inthisstudy,wepresenta formamidopyrimidineglycosylase(Fpg)-basedmethodtodetectoxidativelesionsinisolatedDNAusing amodifiedprotocoloftheautomatedversionofthefluorimetricdetectionofalkalineDNAunwinding (FADU)method,initiallydevelopedforthemeasurementofDNAstrandbreaks(Moreno-Villanuevaetal., 2009.BMCBiotechnol.9,39).TheFADU-FpgmethodwasvalidatedusingaplasmidDNAmodel,mimick- ingmitochondrialDNA,andtheresultswerecorrelatedto8-oxo-dGlevelsasmeasuredbyLC–MS/MS.

TheFADU-FpgmethodcanbeappliedtoanalyzethepotentialofcompoundstoinduceDNAstrandbreaks andoxidativelesions,asexemplifiedherebytreatingplasmidDNAwiththeperoxynitrite-generating moleculeSin-1.Moreover,thismethodcanbeusedtoscreenDNA-protectiveeffectsofantioxidantsub- stances,asexemplifiedhereforasmall-molecule,i.e.,uricacid,andaprotein,i.e.,manganesesuperoxide dismutase,bothofwhichdisplayedadose-dependentprotectionagainstthegenerationofoxidativeDNA lesions.Inconclusion,theautomatedFADU-Fpgmethodoffersarapidandreliablemeasurementforthe detectionofperoxynitrite-mediatedDNAdamageinacell-freesystem,renderingitanidealmethodfor screeningtheDNA-protectiveeffectsofantioxidantcompounds.

1. Introduction

Avarietyofreactiveoxygenandnitrogenspecies(ROSandRNS) aregeneratedinbiologicalsystems,eitherendogenouslyfromcel- lularmetabolismand inflammatoryreactionsorexogenouslyby avarietyofchemicalsorionizingradiation(Delaneyetal.,2012;

Kasaietal.,1986).ROSandRNScanreactwithDNAmolecules, resultinginawidespectrumofdamageproducts(Delaneyetal., 2012;Tretyakovaetal.,2012).Duetothelowoxidation poten- tialofguanine,deoxyguanosine(dG)oxidationproducts,suchas

Correspondingauthorat:MolecularToxicologyGroup,DepartmentofBiology, UniversityofKonstanz,D-78457Konstanz,Germany.

∗∗Correspondingauthorat:MolecularToxicologyGroup,DepartmentofBiology, UniversityofKonstanz,D-78457Konstanz,Germany.Tel.:+4907531884067.

E-mailaddresses:alexander.buerkle@uni-konstanz.de(A.Bürkle), aswin.mangerich@uni-konstanz.de,amang@mit.edu(A.Mangerich).

1 Theseauthorscontributedequally.

2 SharedSeniorAuthorship.

8-oxo-2-deoxyguanosine(8-oxo-dG)and theformamidopyrimi- dineFapy-dG,areamongthemostprominentDNAlesions(Delaney etal.,2012;NeeleyandEssigmann,2006).Althoughefficientrepair mechanisms for oxidative DNA lesions exist, i.e., baseexcision repair(BER),theirformationcanaffecttheefficiencyoftranscrip- tional processes (Khobta et al., 2010; Kitsera et al., 2011) and suchlesionscan beboth cytotoxic and mutagenic(Christmann etal.,2003;Delaneyetal.,2012;Shibutanietal.,1991).Inaddi- tiontothenucleargenome,mitochondrialDNA(mtDNA)canbe damaged by ROSand RNS generated duringmitochondrial res- piration (Kazak et al., 2012). Thus, superoxide radicals (O2−•) lackingfromtheelectrontransportchaincanreactwithdiffusible nitricoxide(NO)producedbynitricoxidesynthasestogenerate ONOO and severalhighly reactivemetabolites.In this respect, itwasshownthatmutationsinmtDNAplayaroleindegenera- tivediseasesofthecentralnervousandendocrinesystems,heart, kidneyandskeletalmuscle(Wallaceetal.,1998,1999).Ingen- eral,theassessmentof oxidativeDNA damagehasbeenwidely usedasa biomarkerof oxidativestressinexperimentalaswell

Konstanzer Online-Publikations-System (KOPS) URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-250512

https://dx.doi.org/10.1016/j.tox.2013.05.006

(2)

16

asin epidemiological studies (Dizdaroglu, 2012; Ravanatet al., 2012).

SeveralmethodsforthedetectionofoxidativeDNAlesionshave beendeveloped,butresultsvaryconsiderablydependingonthe differentanalyticalsystemsand thesourceofDNAused(Anson etal.,2000;Ravanat,2012;RossnerandSram,2012).

High-performanceliquid chromatographycoupledwithelec- trochemicaldetection(HPLC/ECD)hasbeenoneofthefirstmethods usedfor8-oxo-dGmeasurement(Floydetal.,1986;Ravanat,2012).

Themethodisbasedonthefactthatthelowoxidationpotential of8-oxo-dGallows specificand sensitivedetection in theone- electron oxidation mode. However, its disadvantages include a risk for the inductionof highlevels of artifactuallesion and a lackofinternalcalibration(Ravanat,2012).Methodsbasedongas chromatographycoupledtomass spectrometry(GC/MS)havea tendencytooverestimate 8-oxo-dGlevelsby10- to 50-fold,in partduetotheacidicconditionsoftheDNAhydrolysisaswellas hightemperatureduringthederivatizationstep(Ravanat,2012).

Pre-purificationofsamplesbyHPLC,orloweringofthederivatiza- tiontemperatureoradditionofantioxidantshavebeensuggested toavoidthistypeofartifact(HalliwellandDizdaroglu,1992).At present,oneof themostspecificand sensitivemethods forthe detectionofawide spectrumofDNAoxidation productsrepre- sentsreversephaseHPLCcoupledESItandemmassspectrometry (LC–MS/MS)whichdoesnotrequirederivatizationpriortomass spectrometricanalysis(Cadetetal.,2002;Mangerichetal.,2012;

Ravanat,2012;Taghizadehetal.,2008;Tretyakovaetal.,2012).

Incontrasttochromatographicmethods,immunologicalmeth- odsdemandlittlesamplepreparation andallowtheanalysisof apanelofsamplessimultaneously(RossnerandSram,2012).For example,ELISAtestarewidelyusedasafastandcheapmethodfor detecting8-oxo-dGinhumanfluids(Cookeetal.,2006).However, theusageofsuchimmuno-chemicaltechniquesremainslimited, becauseofweakantigenicityandchemicalselectivityoftheanti- bodiesused, assignificantcross-reactivitywiththeundamaged nucleobaseshasbeendescribed(Mitchelletal.,2002;Serranoetal., 1996).

Finally,thecometassay(orsinglecellelectrophoresisassay), alkalineunwindingandalkalineelutiontechniquescanbeused todetectawidespectrumDNAlesions(GedikandCollins,2005;

Ravanat,2012; Wood et al., 2010). These methods requireuse ofglycosylases, suchasformamidopyrimidine glycosylase(Fpg) or endonuclease III (EndoIII) that specifically convert the oxi- dizedandmodifiedpyrimidineandpurinebasesintoDNAstrand breaks,whichin turncanbedetectedina very sensitiveman- ner(Pflaumet al.,1997; Ravanat,2012).Differentvariations of thesemethodshavebeendeveloped,includingcomet-basedassays thatenablehigh-throughputassessmentofcellularDNAdamage (Wood etal.,2010)and methodsthatcombinethecometassay andinsitufluorescenthybridization(FISH)todetectoxidizedbases atthesequencelevel(Shaposhnikovetal.,2011).Alimitationof glycosylase-basedmethodsisthattheyrelyonthecompleteenzy- maticprocessingofalldamagedbasespresentandthesubstrate specificityoftheglycosylase(Ravanat,2012).Forexample,Fpgis notentirelyspecificfor8-oxo-dGonly,asitwasreportedtorec- ognizealsootheroxidationproductssuchasFapy-dGandFapy-dA sites(Pougetetal.,2000)aswellasalkylationdamage(Speitetal., 2004).

Similartothecometassay,theautomatedFADUassayallows thequantificationofDNAstrandbreaksinwholecellsinahigh- throughputmanner(Brunneretal.,2012;Debiaketal.,2011;Garm etal.,2013;Kappesetal.,2008;Mangerichetal.,2010;Moreno- Villanuevaetal.,2009,2011).Thismethodisbasedonapartial denaturation/unwindingofdoublestrandedDNAundertime-and temperature-controlledalkalineconditionsina96-well-platefor- matusing an automated liquid handling device. Subsequently,

addition of the fluorescent probe SYBR Green is employed to quantifythestateofDNAunwinding,i.e.,fluorescenceintensities inverselycorrelatedwiththenumberofDNAstrandbreaks.The objectiveofthecurrentstudywastodevelopanFpg-basedFADU methodtodetectoxidativeDNAdamage ina highthrough-put mannerbyadaptingoftheautomatedFADUassayandtovalidate thismethodbycomparingitwithresultsfromLC–MS/MSanalysis.

2. Materialsandmethods

AllchemicalswereofanalyticalgradeandobtainedfromSigma–Aldrich,Fluka orMerck.

2.1. FADU-Fpgmethod 2.1.1. PlasmidDNAtreatment

AsaDNAmodelsystem,a14-kbpplasmid(pAcHLT-A-His6)wasamplified inEscherichiacoliDH5cellsandextractedusingaDNApurificationGigaPrepKit (Qiagen).EachDNAsamplewaspreparedintriplicatescontaining104␮gofDNA.

SamplesweresupplementedwithuricacidorMnSOD(AbFrontier)andtreatedwith 100–400␮MfreshlypreparedSin-1(Calbiochem)for40minat30C.Sampleswere thendividedintoaliquotsof4␮gand100␮gofDNAforFADUandLC–MSanalysis, respectively.

2.1.2. Fpgtreatment

Eachsamplewasincubatedwith8UFpgandNEB1Buffer(NewEnglandBiolabs) for30minat30C.Samplesweredilutedin280␮lFADUsuspensionbuffer(250mM meso-inositol,10mMsodiumphosphate,1mMMgCl,pH7.4)andquadruplicates weretransferredintoa96-wellplatewhichwaspositionedintotheFADUpipetting robot.

2.1.3. AutomatedstepsoftheFpg-FADUassay

Theliquidhandlingdeviceaswellasitspositioninghavebeendescribedpre- viously(Moreno-Villanuevaetal.,2009).Theoriginalprotocolwasadaptedto optimizethemethodforthedetectionofFpg-generatedstrandbreaksinacell-free system.Thetemperatureofthecoolingdevicewasmaintainedat2Cthroughout theentireexperiment.First,70␮lofFADUureabuffer(9Murea;10mMNaOH;

2.5mMcyclohexyl-diamine-tetraacetate;0.1%sodiumdodecylsulfate)weredis- pensedintoeachwell.Immediatelythereafter,70␮lofalkalinebuffer(0.425parts FADUureabufferin0.2MNaOH)wasadded.Thesubsequentincubationstepof theoriginalprotocolwasomittedtoavoidtotalunwindingoftheplasmid.Avol- umeof140␮lofneutralizationbuffer(14mM␤-mercaptoethanol;1Mglucose)was addedatarateof200␮l/s.Finally,156␮lofSybrGreen(MoBiTec)diluted1:8.33in waterwasaddedandsamplesweremixedbypipettingavolumeof400␮lupand downatarateof100␮l/s.Fluorescenceintensitywasmeasuredina96-well-plate fluorescencereaderat492nmexcitation/520nmemission.

2.2. 8-oxo-dGdetectionbyLC–MS/MS

2.2.1. DNAhydrolysisanddephosphorylationofnucleotides

DNAwasdesiccatedundervacuumandhydrolyzedtonucleosidesbyacombi- nationofnucleaseP1,DNaseI,phosphodiesteraseI(USB-Affymetrix,SantaClara, CA),andalkalinephophataseinthepresenceofdeaminaseinhibitorsandantioxi- dantsasdescribedpreviously(Taghizadehetal.,2008).Enzymeswereremovedby centrifugationat16,400×gfor20minthrougha10,000MWcut-offspinfilter(Pall).

2.2.2. ReversephaseHPLCpre-purification

ALC-10ATHPLCsystemfromShimadzuwasusedfor8-oxo-dGpre-purification equippedwithaPhenomenexSynergi4-␮mHydro-RPC1880A(250mm×4.6mm) column.Asolventgradientofacetonitrilein8mMammoniumacetatewassetata flowrate0.7ml/min(forgradientcompositionseeSuppl.Table1).Thedetectionwas performedusingUV–visspectroscopyat260nm.The8-oxo-dGcontainingfractions werecollectedataretentiontimeofapproximately37–42min.

2.2.3. LC–MS/MSanalysis

8-oxo-dGquantificationwasperformedwithanHPLC(Waters2695Separa- tionsModule)coupledtoatriplequadrupolemassspectrometer(WatersMicromass QuattroMicro).AreversedphaseHypersil-GoldcolumnC18(ThermoScientific;

150mm×2.1mm;3␮mparticlesize)wasusedandelutedisocraticallywith98.5%

ofH2Osupplementedwith0.1%aceticacidand1.5%ofacetonitrilesupplemented with0.1%aceticacidataflowrateof0.3ml/min.Detailedchromatographicsett- ingsarelistedinSuppl.Table2.22.5␮lofeachsamplewasanalyzedinasingle LC/MS–MSrun.ThemassspectrometerwasusedintheESI+MS/MSmodewith settingsindicatedinSuppl.Table3.Fordetection,themultiplereactionmonitoring (MRM)modewasused,andtransitionofm/z284.0168.0for8-oxo-dGwasmoni- tored.Allmeasurementswereperformedintechnicalduplicates.Theareafromone samplewasconvertedintoamountinfmolusingexternalcalibrationcurves.The averagewascalculatedfromthetechnicalduplicatesinfmol.

(3)

Fig.1. WorkflowoftheFADU-Fpgmethod.

3. Results

3.1. AnalysisofSin-1-inducedDNAdamageinaplasmidDNA model

HerewepresentanovelFpg-basedmethodtodetectoxidative DNAdamageinacell-freesystem(Fig.1),usingamodifiedprotocol oftheFADUassay(Debiaketal.,2011;Moreno-Villanuevaetal., 2009,2011).

A14-kbpplasmid,mimickingthemtDNAmolecule,wastreated withtheONOOgenerator3-morpholinosydnonimine(Sin-1).Sin- 1 is thought tomimic thephysiological situationin cells as it decomposestoproduceequimolaramountsofNOandO2−•and thestable end-productSin-1C(Fig. 2).Thisresultsin a contin- ualfluxofONOO overextended periodsresultinginoxidative andnitrosativeDNAdamage(Fig.2)(Cuietal.,2013;Dedonand Tannenbaum,2004;Feelischetal.,1989;Hoggetal.,1992).Itwas shownpreviouslythattheDNAdamageprofilegeneratedbySin- 1mainlycomprisesFpg-sensitivelesionsandtoa lesserextend alsoDNAsinglestrandbreaks(Epeetal.,1996).ToconvertSin- 1-inducedoxidativeDNAlesionsintosingle-strandbreakthatcan bedetectedbytheFADUmethod,theoriginalFADUprotocolwas adaptedbyincubatingSin-1-treatedDNAwithFpg(Fig.1).There- after,samplesweredilutedinasuspensionbuffer,distributedin a96-wellplateandsubjectedtothesuccessiveautomatedaddi- tionofsolutionsbytheliquidhandlingdevice(Fig.1).ThenSYBR Greenfluorescencewasdeterminedusinga96-well-platefluores- cencereader.TheoriginalFADUprotocolwasfurthermodifiedto adaptthemethodfortheapplicationtodetectFpg-sensitiveDNA lesions.Thedilutionofthealkalinebuffer,thesuppressionofthe alkalineunwindingstepandthemaintenanceofaconstanttem- peratureat2Cwerenecessarytopreventcompleteunwinding oftheDNAandtoallowasensitivedetectionoftheFpg-induced strandbreaks.Thetotalhands-ontimerequiredforthesestepsis lessthananhourandthenumberofsamplesanalyzedconcurrently isabout20inquadruplicates.Throughputcanbefurtherenhanced

byincreasingthenumberof96-wellplatesprocessedatthesame timebythepipettingrobot.

TodetermineoptimalworkingconcentrationofFpg,samples wereincubatedwithincreasingconcentrationsofFpgafterDNA had beentreated with400␮MSin-1 (Fig. 3A). The number of Fpg-sensitivelesionsdetectedinthepresenceofSin-1increased until a threshold wasreachedstarting at an Fpgconcentration of 0.1U/␮l. This concentration, at which all Fpg-sensitive sites were cleaved, wasused for all subsequent FADU experiments.

It isimportanttonotethatSin-1 onlyaffectedDNAunwinding in thepresenceof Fpg(Fig.3B),thus implyingthat inoursys- tem,Sin-1generatesmainlyoxidativeDNAlesionsanddoesnot directly generate DNA singlestrand breaks in large quantities.

ThismayberelatedtothefactthatONOO reactswithCO2 to formONOOCO2(DedonandTannenbaum,2004).WhileONOO itself,mainlycausesdeoxyriboseoxidation(i.e.,strandbreaks)and someguanineoxidation,ONOOCO2causesmainlyguanineoxi- dation(DedonandTannenbaum,2004).ItislikelythattheSin-1 concentrationsasusedinourexperimentalsettingarenotusing upthedissolvedCO2 inthebuffer,resultinginthegenerationof ONOOCO2.Thisinformationisofhighrelevanceasotheroxidiz- ingagents,suchasH2O2,havebeenshowntodirectlygenerate DNAsinglestrandbreaksalongsidetooxidativedamage,render- ingthespecificdetectionofoxidativeDNAlesionsinthesecases particularlybiased(unpublishedobservation).

TostudytheeffectofincreasingSin-1concentrationsonthe generationofoxidativeDNAlesions,plasmidDNAwastreatedwith Sin-1concentrationsupto400␮M.Fpg-sensitiveDNAlesionssig- nificantlyincreasedwithSin-1concentrationsinadose-dependent manner(Fig.4A).Itwasanessentialpartofthisworktovalidate theFADU-Fpgmethodby comparingittoanotherstate-of-the- art analytical method used for the detection of DNA oxidation products.Tothisend,8-oxo-dGlevelswereanalyzedinthesame samplesinparallel byLC–MS/MS. Asimilarapproach wasused previouslytocalibrateanFpg-basedCometassay(Pougetetal., 2000).Previousstudiesdemonstratedthat8-oxo-dGlesionsmake

(4)

18

N N

II!

<c 1 \

II!

<c . . ! \

N- N 0 N- N 0

/ \ _ / / \ _ /

\ Sin lA

~

~

0

ONOOCOi

nitrosoperoxycarbonate

··!r'> ~

... A)--\

0

ONOO peroxynitrite

dO

".,~~>=0 ... A)--\

8 oxo dO dR and other damage

products

.._ _ _ _ _ _ _ _ _ No·

Sin IC

Fig. 2. Sin-1-induced formation of8-ox~G in DNA.

up of 75% of the total number Sin-1-induced Fpg-sensitive DNA damage sites (Epe et aL, 1996), suggesting that 8-oxo-dG forma- tion gives a conservative estimate for the number of Fpg-sensitive guanine oxidation events. In our study basal levels of 8-oxo-dG, as determined by LC-MS/MS, were in the range of 1-10 lesions per 106 bp which is consistent with published reference values (Ravanat, 2012; Taghizadeh etal., 2008). The resulting curve ofSin- 1-induced 8-oxo-dG lesions confirms the dose-dependent increase of oxidative lesions observed in the FADU-Fpg method (Fig. 48).

Results obtained from the FADU-Fpg and the LC-MS/MS analy- sis showed similar sensitivity and a highly significant positive correlation (r2 of 0.998) (Fig. 4C) indicating that the FADU-Fpg method indeed detects oxidative DNA lesions in a sensitive and dose dependent manner.

A

~so

~ 40 c: ~

"' 30

f:!

0

~ 20 c:

Cl) 10

"'

E

-•· w/o Sin-1 -s- 400 11M Sin·1

.--)

~ u 0

···I"· . .- ....

~.-

..

~

.... .

~,

... .,.-... '

-r-t

0 0.1

Fpg [U]

10

3.2. Scavenging ofSin-1 oxidation in a plasmid DNA model

The automated FADU-Fpg method requires little sample prepa- ration and offers a rapid and reliable measurement of oxidative lesions, thus making it a suitable method for screening the antiox- idant properties of enzymes and small molecules.

To study the antioxidant properties of MnSOD, which catalyze the dismutation of superoxide into oxygen and hydrogenperoxide, plasmid DNA was supplemented with increasing concentrations of MnSOD (0.94-75 ng/~tl) prior to Sin-1 incubation. Both FADU-Fpg and LC-MS/MS measurements highlight the ability of MnSOD to scavenge ONoo- and concur in demonstrating a dose-dependent protection of the DNA against Sin-1-induced oxidation by MnSOD (Fig. SA and B). Again, a highly positive correlation between results

B 5'

40000

~

fl

30000 c: Cl)

~

e

0 ::s ii:

20000 10000

Fig. 3. (A) Fpg treatment leads to dose-dependent strand break formation in plasmid DNA treated with Sin-!. Plasmid DNA was treated with or without 400 ~M Sin-1 and then incubated with increasing concentrations of Fpg ( 4-800 mU/~1). (B) Samples treated without or with 400 ~M Sin-1 (without Fpg incubation). Experiments were performed in quadruplicates and data are expressed as means± SEM.

(5)

FADU

0 100 200 300 400 0

10 20 30 40 50

*

*

Conc. Sin-1 [μM]

Decreaseinfluorescence[%]

LC-MS/MS

0 100 200 300 400 0

5 10 15

20 *

Conc. Sin-1 [μM]

Foldinductionof8-oxo-dG comparedtocontrol

Correlation FADU vs LC-MS/MS: Sin-1

0 2 4 6 8 10 12 14 16 0

10 20 30 40

50 r2=0.998

Fold induction of 8-oxo-dG compared to control

Decreaseinfluorescence[%]

A B C

Fig.4.Sin-1inducesFpg-sensitiveDNAlesionsand8-oxo-dGinplasmidDNAinadose-dependentmanner.PlasmidDNAwastreatedwithincreaseinconcentrationsofSin-1 (50–400␮M).DNAdamagewasanalyzed(A)byFADU-Fpgand(B)byLC–MS/MS(8-oxo-dG).(C)Alinearregressionanalysiswasperformed.Samplesofeachexperiment weredistributedintoaliquotsforFADU-FpgandLC–MS/MSmeasurements,respectively.Datarepresentmeans±SEMof3independentexperiments.FADUexperimentswere performedintechnicalquadruplicates,LC–MS/MSmeasurementsintechnicalduplicates.r2representsthelinearregressioncoefficient.Statisticalanalysiswasperformed byone-wayANOVAtestfollowedbyBonferroni’sposttest,*P<0.05.

frombothmethodswasobserved,withr2=0.89(Fig.5C),how- ever,theFADU-Fpgmethodshowedhigherreproducibilitythan LC–MS/MSmeasurements.

Uricacidisproducedfromxanthinebyxanthineoxidase.Itis knowntobeapowerfulantioxidantthatisabundantlypresentin humanblood(Amesetal.,1981).Afterapre-incubationofplasmid DNAwithuricacidinconcentrationsupto100␮M,sampleswere treatedwith100␮MSin-1.BothFADU-FpgandLC–MS/MSmea- surementsrevealedadose-dependentdecreaseinSin-1-induced oxidativeDNAlesionsstartingatauricacidconcentrationof25␮M (Fig.6AandB).CompleteprotectionofDNArequireduricacidcon- centrationsabove50␮M.Valuesmeasuredbybothmethodsagain correlatedwellwithanr2=0.96(Fig.6C).

4. Discussion

The main drawback of available Fpg-based and LC–MS/MS- basedmethodsistherequirementofelaboratesamplepreparation andprocessingsteps.Wehavebeenabletoovercomethislimita- tionbyestablishinganFpg-basedmethodfordetectingoxidative DNA damagelesions inisolated DNA onthebasis of the high- throughput FADU method (Brunner et al., 2012; Debiak et al., 2011; Garmet al., 2013;Kappes et al., 2008; Mangerichet al.,

2010;Moreno-Villanuevaetal.,2009,2011).TheFADU-Fpgmethod wasvalidatedusingaplasmidDNAmodelmimickingmtDNAin combinationwiththeONOOgeneratorSin-1(Fig.2).AnFpgpre- incubation step hasbeen added to the original FADU protocol thatallowsthedetectionofoxidativeDNAlesions,bygenerating strandbreaksthatcanbedetectedbytheFADUmethod.Wehave controlledthevalidityofthemethodbymeasuring8-oxo-dGlev- elsusingLC–MS/MSanalysiswhichallowsunambiguouschemical selectivity(Taghizadehetal.,2008).

AnotableadvantageofthemodifiedFADU-Fpgmethodover the HPLC-based methods is the quantity of DNA necessary for theanalysis.While25–50␮gisrequiredforLC–MS/MSanalysis, only 1␮gof plasmid DNA per measurement was sufficient for theFADU-Fpgmethod.Moreover,theLC–MS/MS-basedmethodis unfavorableforscreeningpurposes,becauseitisrathercostlyand time-consuming.Inparticular,samplesmustundergoanumberof criticalprocessingsteps,i.e.,digestion,dephosphorylation,filter- ing,vacuum-concentration,pre-purificationbyHPLC,andanalyte detectionbyLC–MS/MS.Also,samplesarepurifiedandanalyzed sequentiallybyHPLCandLC–MS/MS,demandingadditionaltime.

Foranumberof20samplesmeasuredinquadruplicates,atime periodofaround3daysisrequired.Incontrast,thesameamountof samplescanbemeasuredwiththeFADU-Fpgmethodinlessthan

FADU

0 5 10 15 20 25

0.1 1 10 100

0

* * *

Conc. MnSOD [ng/μl]

Decreaseinfluorescence[%]

LC-MS/MS

1 2 3 4

0.1 1 10 100

0

Conc. MnSOD [ng/μl]

Foldinductionof8-oxo-dG comparedtocontrol

Correlation FADU vs LC-MS/MS: MnSOD

1.5 2.0 2.5 3.0 3.5 0

5 10 15 20 25 r2=0.89

Fold induction of 8-oxo-dG compared to control

Decreaseinfluorescence[%]

A B C

Fig.5. MnSODprotectsDNAagainstSin-1-inducedDNAdamageinadosedependentmanner.PlasmidDNAwastreatedwith100␮MSin-1andsupplementedwithincreasing concentrationsofMnSOD.Oxidativedamagewasanalyzed(A)byFADU-Fpgand(B)byLC–MS/MS(8-oxo-dG).(C)Alinearregressionanalysiswasperformed.Samplesofeach experimentweredividedintoaliquotsforFADU-FpgandLC–MS/MSmeasurements.Datarepresentmeans±SEMof3independentexperiments.FADU-Fpgexperimentswere performedintechnicalquadruplicates,LC–MS/MSmeasurementsintechnicalduplicates.r2representsthelinearregressioncoefficient.Statisticalanalysiswasperformed byone-wayANOVAtestfollowedbyBonferroni’sposttest,*P<0.05.

(6)

20

FADU

0 5 10 15 20 25 30 35

1 10 100

0

****

Conc. uric acid [μM]

Decreaseinfluorescence[%]

LC-MS/MS

1.0 1.5 2.0 2.5 3.0

1 10 100

0

* ***

Conc. uric acid [μM]

Foldinductionof8-oxo-dG comparedtocontrol

Correlation FADU vs LC-MS/MS: Uric Acid

1.0 1.5 2.0 2.5 3.0 0

10 20 30 40 r2=0.96

Fold induction of 8-oxo-dG compared to control

Decreaseinfluorescence[%]

A B C

Fig.6. UricacidprotectsDNAagainstSin-1-inducedDNAdamageinadose-dependentmanner.PlasmidDNAwastreatedwith100␮MSin-1andsupplementedwith increasingconcentrationsofuricacid.Oxidativedamagewasanalyzed(A)byFADU-Fpgand(B)byLC–MS/MS(8-oxo-dG).(C)Alinearregressionanalysiswasperformed.

SamplesofeachexperimentweredividedintoaliquotsforFADU-FpgandLC–MS/MSmeasurements.Datarepresentmeans±SEMof3independentexperiments.FADU-Fpg experimentswereperformedintechnicalquadruplicates,LC–MS/MSmeasurementsintechnicalduplicates.r2representsthelinearregressioncoefficient.Statisticalanalysis wasperformedbyone-wayANOVAtestfollowedbyBonferroni’sposttest,*P<0.05.

halfaday.ThefactthatintheFADU-Fpgmethodmanysamples canbeprocessedina96-wellplatesimultaneouslybytheauto- matedliquidhandlingdevicenotonlyincreasesthroughput,but alsoensuresequaltreatmentofsamples.

Despite the reported approximate specificity of Fpg toward DNAoxidationandalkylationdamage(Pougetetal.,2000;Speit etal.,2004), theside-by-sidecomparison oftheFADU-Fpg and theLC–MS/MSmethodsinourstudyresultedinhighlysignificant positivecorrelationsofFpg-sensitiveDNA lesionsand8-oxo-dG levels(Figs.4–6).ThisstronglyindicatestheabilityoftheFADU-Fpg methodtodetectoxidativeDNAdamage.

Oneimportantlimitationofourmethodisthat,sofar,itcan- notbeappliedtodetermineoxidativeDNAdamageincells,due tohighconcentrationsofureaintheFADUcelllysisbuffer,which isnecessaryforcompletecelllysis,butwhichinterfereswithFpg activity.Moreover,currentmethodsusedforextractionofgenomic andmtDNAfromcellsintroducesignificantlevelsofDNAstrand breaks,whichisincompatiblewithFADU-Fpgmeasurements.For thisreason,theFADU-Fpgmethodiscurrentlyrestrictedtothe plasmidDNAmodelasreportedinthisstudy.Furtheroptimization andadaptationsofthemethodareindicatedtoovercomethese limitations.

Ontheotherhand,theFADU-Fpgmethodinitscurrentstateis asimple,rapidandreliablehigh-throughputalternativeformea- suringrelativelevelsofoxidativeDNAdamageinplasmidDNA.A comparabletechniquethathasbeenusedformanyyearsusesiso- latedDNAfromthebacteriophagePM2incombinationwithDNA glycosylasesandelectrophoreticseparationofsupercoiled,circu- larandlinearDNA(Epeetal.,1993,1996).Thismethodallowseasy andreliabledetectionofawiderangeofDNAlesions,howeverin itspresentform,isnotavailableinanautomatedversion.Asan alternativetothismethod,theFADU-Fpgmethodisparticularly suitableforscreeningpurposes,e.g.,tostudyprotectiveeffectsof antioxidantsubstances,asourexperimentswithMnSODanduric aciddemonstrate(Figs. 5and6).Theprotective effectsofthese compoundsfollowcomplexchemicalmechanisms:Whileuricacid actsasageneralscavengerofROS(Amesetal.,1981),theprotec- tiveeffectofMnSODmayberelatedtoreduceddecompositionof Sin-1,duetoMnSOD-mediatedscavengingofsuperoxide(Feelisch etal.,1989),ordirectDNAprotectiveeffectsbybindingofMnSOD toDNA(Kienhoferetal.,2009).

Recentlythe valueof theFADU-Fpgmethod intoxicological andpharmaceuticalresearchhasbeendemonstratedin astudy

inwhichthebiochemicalmechanismsoftheneuroprotectiveand anti-inflammatoryeffectsofminocycline,asemisyntheticderiva- tiveoftetracycline,wereinvestigated(Schildknechtetal.,2011).In thisstudy,theFADU-Fpgmethod,whichisdescribedandvalidated hereindetail,wasusedtodeterminetheperoxynitrite-scavenging propertiesofminocycline.Theloweffectiveconcentrationof5␮M for 50% inhibition determined in that study corresponds with standardconcentrationspresentinbrainafterrepeatedoralintake, asdeterminedinclinicalstudies(Schildknechtetal.,2011).

Inconclusion,theFADU-Fpgmethodcombinesthesensitivity andreliabilityofanFpg-basedassayforthedetectionofoxidative DNAlesionswiththedecreasedoperationtimeandhighthrough- putof an automated procedure. For this reason, theFADU-Fpg methodrepresentsausefultoolforscreeningDNA-damagingand antioxidantpropertiesofsubstancesintoxicology,pharmacology, andinthefoodindustry,wherethedevelopmentofnutraceuticals iscurrentlyofhighpriority.

Conflictofinterest

Theauthorshavedeclarednoconflictofinterest.

Acknowledgments

ThisworkwassupportedbyGrantBU698/6-1fromtheDeutsche Forschungsgemeinschaft(DFG).FundingwasalsoprovidedbytheUS NationalInstitutesofHealth(GrantsES002109andCA026731).

References

Ames,B.N.,Cathcart,R.,Schwiers,E.,Hochstein,P.,1981. Uricacidprovidesan antioxidantdefenseinhumansagainstoxidant-andradical-causedagingand cancer:ahypothesis.Proc.Natl.Acad.Sci.U.S.A.78,6858–6862.

Anson,R.M.,Hudson,E.,Bohr,V.A.,2000. Mitochondrialendogenousoxidative damagehasbeenoverestimated.FASEBJ.14,355–360.

Brunner,S.,Herndler-Brandstetter,D.,Arnold,C.R.,Wiegers,G.J.,Villunger,A.,Hackl, M.,Grillari,J.,Moreno-Villanueva,M.,Bürkle,A.,Grubeck-Loebenstein,B.,2012.

UpregulationofmiR-24isassociatedwithadecreasedDNAdamageresponse uponetoposidetreatmentinhighlydifferentiatedCD8(+)Tcellssensitizing themtoapoptoticcelldeath.AgingCell11,579–587.

(7)

Cadet,J.,Douki,T.,Frelon,S.,Sauvaigo,S.,Pouget,J.P.,Ravanat,J.L.,2002. Assess- mentofoxidativebasedamagetoisolatedandcellularDNAbyHPLC–MS/MS measurement.FreeRadic.Biol.Med.33,441–449.

Christmann,M.,Tomicic,M.T.,Roos,W.P.,Kaina,B.,2003. Mechanismsofhuman DNArepair:anupdate.Toxicology193,3–34.

Cooke, M.S.,Singh, R.,Hall, G.K., Mistry, V., Duarte,T.L.,Farmer, P.B.,Evans, M.D.,2006. Evaluationofenzyme-linkedimmunosorbentassayandliquid chromatography-tandemmassspectrometrymethodologyfortheanalysisof 8-oxo-7,8-dihydro-2-deoxyguanosineinsalivaandurine.FreeRadic.Biol.Med.

41,1829–1836.

Cui,L.,Ye,W.,Prestwich,E.G.,Wishnok,J.S.,Taghizadeh,K.,Dedon,P.C.,Tannen- baum,S.R.,2013. Comparativeanalysisoffouroxidizedguaninelesionsfrom reactionsofDNAwithperoxynitrite,singletoxygen,andgamma-radiation.

Chem.Res.Toxicol.26,195–202.

Debiak,M.,Panas,A.,Steinritz,D.,Kehe,K.,Burkle,A.,2011.High-throughputanal- ysisofDNAinterstrandcrosslinksinhumanperipheralbloodmononuclearcells byautomatedreverseFADUassay.Toxicology280,53–60.

Dedon,P.C.,Tannenbaum,S.R.,2004. Reactivenitrogenspeciesinthechemical biologyofinflammation.Arch.Biochem.Biophys.423,12–22.

Delaney,S.,Jarem,D.A.,Volle,C.B.,Yennie,C.J.,2012.Chemicalandbiologicalconse- quencesofoxidativelydamagedguanineinDNA.FreeRadic.Res.46,420–441.

Dizdaroglu,M.,2012. OxidativelyinducedDNAdamage:mechanisms,repairand disease.CancerLett.327,26–47.

Epe,B.,Ballmaier,D.,Roussyn,I.,Briviba,K.,Sies,H.,1996.DNAdamagebyperoxyni- tritecharacterizedwithDNArepairenzymes.NucleicAcidsRes.24,4105–4110.

Epe,B.,Pflaum,M.,Boiteux,S.,1993. DNAdamageinducedbyphotosensitizersin cellularandcell-freesystems.Mutat.Res.299,135–145.

Feelisch,M.,Ostrowski,J.,Noack,E.,1989. OnthemechanismofNOreleasefrom sydnonimines.J.Cardiovasc.Pharmacol.14(Suppl.11),S13L22.

Floyd,R.A.,Watson,J.J.,Wong,P.K.,Altmiller,D.H.,Rickard,R.C.,1986. Hydroxyl freeradicaladductofdeoxyguanosine:sensitivedetectionandmechanismsof formation.FreeRadic.Res.Commun.1,163–172.

Garm,C.,Moreno-Villanueva,M.,Bürkle,A.,Petersen,I.,Bohr,V.A.,Christensen, K.,Stevnsner,T.,2013.AgeandgendereffectsonDNAstrandbreakrepairin peripheralbloodmononuclearcells.AgingCell12,58–66.

Gedik,C.M.,Collins,A.,2005.Establishingthebackgroundlevelofbaseoxidationin humanlymphocyteDNA:resultsofaninterlaboratoryvalidationstudy.FASEB J.19,82–84.

Halliwell,B.,Dizdaroglu,M.,1992.ThemeasurementofoxidativedamagetoDNA byHPLCandGC/MStechniques.FreeRadic.Res.Commun.16,75–87.

Hogg,N.,Darley-Usmar,V.M.,Wilson,M.T.,Moncada,S.,1992. Productionof hydroxylradicalsfromthesimultaneousgenerationofsuperoxideandnitric oxide.Biochem.J.281(Pt2),419–424.

Kappes,F.,Fahrer,J.,Khodadoust,M.S.,Tabbert,A.,Strasser,C.,Mor-Vaknin,N., Moreno-Villanueva,M.,Bürkle,A.,Markovitz,D.M.,Ferrando-May,E.,2008.DEK isapoly(ADP-ribose)acceptorinapoptosisandmediatesresistancetogenotoxic stress.MolCellBiol28,3245–3257.

Kasai,H.,Crain,P.F.,Kuchino,Y.,Nishimura,S.,Ootsuyama,A.,Tanooka,H.,1986.

Formationof8-hydroxyguaninemoietyincellularDNAbyagentsproducing oxygenradicalsandevidenceforitsrepair.Carcinogenesis7,1849–1851.

Kazak,L.,Reyes,A.,Holt,I.J.,2012. Minimizingthedamage:repairpathwayskeep mitochondrialDNAintact.Nat.Rev.Mol.CellBiol.13,659–671.

Khobta,A.,Anderhub,S.,Kitsera,N.,Epe,B.,2010.Genesilencinginducedbyoxida- tiveDNAbasedamage:associationwithlocaldecreaseofhistoneH4acetylation inthepromoterregion.NucleicAcidsRes.38,4285–4295.

Kienhofer,J.,Haussler,D.J.,Ruckelshausen,F.,Muessig,E.,Weber,K.,Pimentel,D., Ullrich,V.,Bürkle,A.,Bachschmid,M.M.,2009.Associationofmitochondrial antioxidantenzymeswithmitochondrialDNAasintegralnucleoidconstituents.

FASEBJ23,2034–2044.

Kitsera,N.,Stathis,D.,Luhnsdorf,B.,Muller,H.,Carell,T.,Epe,B.,Khobta,A.,2011.

8-Oxo-7,8-dihydroguanineinDNAdoesnotconstituteabarriertotranscription, butisconvertedintotranscription-blockingdamagebyOGG1.NucleicAcidsRes.

39,5926–5934.

Mangerich,A.,Herbach,N.,Hanf,B.,Fischbach,A.,Popp,O.,Moreno-Villanueva,M., Bruns,O.T.,Burkle,A.,2010.Inflammatoryandage-relatedpathologiesinmice withectopicexpressionofhumanPARP-1.Mech.AgeingDev.131,389–404.

Mangerich,A.,Knutson,C.G.,Parry,N.M.,Muthupalani,S.,Ye,W.,Prestwich,E.,Cui, L.,McFaline,J.L.,Mobley,M.,Ge,Z.,Taghizadeh,K.,Wishnok,J.S.,Wogan,G.N., Fox,J.G.,Tannenbaum,S.R.,Dedon,P.C.,2012.Infection-inducedcolitisinmice causesdynamicandtissue-specificchangesinstressresponseandDNAdamage leadingtocoloncancer.Proc.Natl.Acad.Sci.U.S.A.109,E1820–E1829.

Mitchell,D.L.,Meador,J.,Paniker,L.,Gasparutto,D.,Jeffrey,W.H.,Cadet,J.,2002.

Developmentandapplicationofanovelimmunoassayformeasuringoxidative DNAdamageintheenvironment.Photochem.Photobiol.75,257–265.

Moreno-Villanueva,M.,Eltze,T.,Dressler,D.,Bernhardt,J.,Hirsch,C.,Wick,P.,von Scheven,G.,Lex,K.,Burkle,A.,2011. TheautomatedFADU-assay,apotential high-throughputinvitromethodforearlyscreeningofDNAbreakage.ALTEX 28,295–303.

Moreno-Villanueva,M.,Pfeiffer,R.,Sindlinger,T.,Leake,A.,Muller,M.,Kirkwood, T.B.,Burkle,A.,2009. Amodifiedandautomatedversionofthe‘Fluorimetric DetectionofAlkalineDNAUnwinding’methodtoquantifyformationandrepair ofDNAstrandbreaks.BMCBiotechnol.9,39.

Neeley,W.L.,Essigmann,J.M.,2006. Mechanismsofformation,genotoxicity,and mutationofguanineoxidationproducts.Chem.Res.Toxicol.19,491–505.

Pflaum,M.,Will,O.,Epe,B.,1997.Determinationofsteady-statelevelsofoxidative DNAbasemodificationsinmammaliancellsbymeansofrepairendonucleases.

Carcinogenesis18,2225–2231.

Pouget,J.P.,Douki,T.,Richard,M.J.,Cadet,J.,2000. DNAdamageinducedincells bygammaandUVAradiationasmeasuredbyHPLC/GC–MSandHPLC-ECand Cometassay.Chem.Res.Toxicol.13,541–549.

Ravanat,J.L.,2012. Chromatographicmethodsfortheanalysisofoxidativelydam- agedDNA.FreeRadic.Res.46,479–491.

Ravanat,J.L.,Cadet,J.,Douki,T.,2012.OxidativelygeneratedDNAlesionsaspotential biomarkersofinvivooxidativestress.Curr.Mol.Med.12,655–671.

RossnerJr.,P.,Sram,R.J.,2012.Immunochemicaldetectionofoxidativelydamaged DNA.FreeRadic.Res.46,492–522.

Schildknecht,S.,Pape,R.,Muller,N.,Robotta,M.,Marquardt,A.,Burkle,A.,Drescher, M.,Leist,M.,2011.Neuroprotectionbyminocyclinecausedbydirectandspecific scavengingofperoxynitrite.J.Biol.Chem.286,4991–5002.

Serrano, J., Palmeira, C.M., Wallace, K.B., Kuehl, D.W., 1996. Determination of 8-hydroxydeoxyguanosine in biological tissue by liquid chromatogra- phy/electrospray ionization-mass spectrometry/mass spectrometry. Rapid Commun.MassSpectrom.10,1789–1791.

Shaposhnikov,S.,Thomsen,P.D.,Collins,A.R.,2011. Combiningfluorescentinsitu hybridizationwiththecometassayfortargetedexaminationofDNAdamage andrepair.MethodsMol.Biol.682,115–132.

Shibutani,S.,Takeshita,M.,Grollman,A.P.,1991. Insertionofspecificbasesduring DNAsynthesispasttheoxidation-damagedbase8-oxodG.Nature349,431–434.

Speit,G.,Schutz,P.,Bonzheim,I.,Trenz,K.,Hoffmann,H.,2004. Sensitivityofthe FPGproteintowardsalkylationdamageinthecometassay.Toxicol.Lett.146, 151–158.

Taghizadeh,K.,McFaline,J.L.,Pang,B.,Sullivan,M.,Dong,M.,Plummer,E.,Dedon, P.C.,2008.QuantificationofDNAdamageproductsresultingfromdeamination, oxidationandreactionwithproductsoflipidperoxidationbyliquidchromatog- raphyisotopedilutiontandemmassspectrometry.Nat.Protoc.3,1287–1298.

Tretyakova,N.,Goggin,M.,Sangaraju,D.,Janis,G.,2012. QuantitationofDNA adductsbystableisotopedilutionmassspectrometry.Chem.Res.Toxicol.25, 2007–2035.

Wallace,D.C.,Brown,M.D.,Lott,M.T.,1999.MitochondrialDNAvariationinhuman evolutionanddisease.Gene238,211–230.

Wallace,D.C.,Brown,M.D.,Melov,S.,Graham,B.,Lott,M.,1998. Mitochondrial biology,degenerativediseasesandaging.Biofactors7,187–190.

Wood,D.K.,Weingeist,D.M.,Bhatia,S.N.,Engelward,B.P.,2010.Singlecelltrapping andDNAdamageanalysisusingmicrowellarrays.Proc.Natl.Acad.Sci.U.S.A.

107,10008–10013.

Referenzen

ÄHNLICHE DOKUMENTE

Abstract The study conducted in a bacterial-based in vitro caries model aimed to determine whether typical inner secondary caries lesions can be detected at cavity walls of

Structure-based interaction prediction. The third step of our approach is shown in Figure 1c. To predict interactions on the basis of known structures, we use SCOPPI [18], a database

4. Nature of the linkages with the development and operational functions of the Regional System. Internal structure of the function. Analysis of the different relevant units and

During the last two decades, a wide variety of advanced methods for the visual exploration of large data sets have been proposed.For most of these techniques user interaction has

11 They demonstrated that sequence specific digestion catalysed by DpnII was possible but dependent on the density of immobilised double-stranded DNA (dsDNA). It was observed

The image processing pipeline comprises a preprocessing stage where the image stack data is filtered and the nucleus of interest is segmentedI. Afterwards, the images are registered

The modified and auto- mated version of the FADU assay described in the present paper enables measurement of DNA strand breaks and DNA repair in a very reliable and convenient manner

We recently published an automated version of the “Fluorimetric detection of Alkaline DNA Unwinding” (FADU) assay for measuring DNA strand breaks in human peripheral blood