• Keine Ergebnisse gefunden

Pseudo-nitzschia copepods by calanoid seriata Induction acid production of domoic in the toxic diatom Aquatic Toxicology

N/A
N/A
Protected

Academic year: 2022

Aktie "Pseudo-nitzschia copepods by calanoid seriata Induction acid production of domoic in the toxic diatom Aquatic Toxicology"

Copied!
10
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

ContentslistsavailableatScienceDirect

Aquatic Toxicology

jou rn al h om ep a ge :w w w . e l s e v i e r . c o m / l o c a t e / a q u a t o x

Induction of domoic acid production in the toxic diatom Pseudo-nitzschia seriata by calanoid copepods

Anna Tammilehto

a,∗

, Torkel Gissel Nielsen

b,c

, Bernd Krock

d

, Eva Friis Møller

e

, Nina Lundholm

a

aNaturalHistoryMuseumofDenmark,UniversityofCopenhagen,Sølvgade83S,DK-1307CopenhagenK,Denmark

bNationalInstituteofAquaticResources,DTUAqua,SectionforOceanecologyandClimate,TechnicalUniversityofDenmark,DTU,Kavalergården6, DK-2920Charlottenlund,Denmark

cGreenlandClimateResearchCentre,GreenlandInstituteofNaturalResources,Nuuk,Greenland

dAlfredWegenerInstitut-HelmholtzZentrumfürPolar-undMeeresforschung,ÖkologischeChemie,AmHandelshafen12,27570Bremerhaven,Germany

eDepartmentofBioscience,Roskilde,AarhusUniversity,Frederiksborgvej399,POBox358,4000Roskilde,Denmark

a r t i c l e i n f o

Articlehistory:

Received16August2014 Receivedinrevisedform 26November2014 Accepted28November2014 Availableonline5December2014

Keywords:

Domoicacid Pseudo-nitzschiaseriata Calanus

Diatom Toxinproduction Grazing

a b s t r a c t

ThetoxicdiatomPseudo-nitzschiaseriatawasexposeddirectlyandindirectly(separatedbyamembrane) tocopepods,CalanushyperboreusandC.finmarchicus,toevaluatetheeffectsofthecopepodsondomoic acidproductionandchainformationinP.seriata.ThetoxicityofP.seriataincreasedinthepresenceof thecopepods.Thisresponsewaschemicallymediatedwithoutphysicalcontactbetweentheorganisms suggestingthatitwasinducedbypotentialwaterbornecuesfromthecopepodsorchangesinwater chemistry.DomoicacidproductionmayberelatedtodefenseagainstgrazinginP.seriataalthoughitwas notshowninthepresentstudy.Toevaluateiftheinductionofdomoicacidproductionwasmediated bythechemicalcuesfromdamagedP.seriatacells,liveP.seriatacellswereexposedtoaP.seriatacell homogenate,butnoeffectwasobserved.ChainformationinP.seriatawasaffectedonlywhenindirect contactwiththecopepods.Thisstudysuggeststhatthepresenceofzooplanktonmaybeoneofthefactors affectingthetoxicityofPseudo-nitzschiabloomsinthefield.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Manyphytoplanktonspeciesproducetoxicsecondarymetabo- lites, whose functions are still unknown in most groups of microalgae.Thesecondarymetabolitedomoicacid(DA)isapotent neurotoxin produced by several species in the diatom genus Pseudo-nitzschiaPeragallo(reviewedinLelongetal.,2012;Trainer etal.,2012).DAmayaccumulateinorganisms grazingontoxic Pseudo-nitzschiaspeciesandafterwardsbetransferredtohigher trophiclevels(e.g.Scholinetal.,2000;McHuronetal.,2013)where itmayleadtoamnesicshellfishpoisoning(ASP).Thesymptomsof ASPincludee.g.nausea,diarrhea,short-termmemoryloss,paraly- sisandinextremecases,death.

ThefirstrecordedASPincident,whichaffectedmorethan100 humanstookplaceinPrinceEdwardIsland,Canada,in1987,and

Correspondingauthor.Tel.:+4535330854.

E-mailaddresses:atammilehto@snm.ku.dk(A.Tammilehto),tgin@aqua.dtu.dk (T.G. Nielsen), Bernd.Krock@awi.de (B. Krock), efm@bios.au.dk (E.F. Møller), nlundholm@snm.ku.dk(N.Lundholm).

itwascausedbyconsumptionofDA-contaminatedbluemussels (Batesetal.,1989).TheeffectsofDAonseabirds,sealionsandfish havebeenstudied(Fritzetal.,1992;Scholinetal.,2000;Lefebvre etal., 2012), whereas there isnot muchknowledge ofpossible effectsofDAon,e.g.planktonicgrazerssuchascopepodsthatfeed onDA-producingPseudo-nitzschia.Shawetal.(1997)studiedthe effectsofdissolvedDAonthecopepodTigriopuscalifornicusgrazing onthenon-toxicdiatomThalassiosirapseudonana.Reducedgraz- ingduetoDAwasnotobserved,butDAwastoxictothecopepods andcausedmortalityatrelativelylowconcentrations(Shawetal., 1997).InmostgrazingstudiesontoxicPseudo-nitzschiathecope- pods haveaccumulatedDA,but noapparentadverse effects on grazers,e.g.reducedgrazing,weredetected(Lincolnetal.,2001;

Tester et al., 2001; Maneiroet al., 2005; Leandro et al., 2010).

Hence,thepotentialroleofDAasagrazingdeterrenthasnotbeen supported.However,Bargu etal.(2003)foundkrilltofeeddis- continuouslyontoxicPseudo-nitzschiamultiseries,andthesame observationwasmadebyTammilehtoetal. (2012)whenfeed- ingcopepods,CalanusfinmarchicusandC.hyperboreus,withtoxic P.seriata.Bothstudiessuggestedthatthegrazerssufferedfrom physiological incapacitation. The indication that DA mayaffect http://dx.doi.org/10.1016/j.aquatox.2014.11.026

0166-445X/©2014ElsevierB.V.Allrightsreserved.

(2)

grazingbycopepodshasimplicationsforthephytoplankton,and maygivetoxicspeciesanadvantageovernon-toxicones(Huntley etal.,1986).ToinvestigatewhetherDAdeterscopepodgrazingon thetoxicPseudo-nitzschiaspecies,andwhatthepotentialmodeof actionis,furtherstudiesarestillneeded.

Thepresence of grazersmayaffectphytoplankton morphol- ogy,suchasthelengthofchainsandcolonysize(HessenandVan Donk,1993;JakobsenandTang,2002;Jiangetal.,2010;Selander et al.,2011; Bergkvist et al., 2012)and physiology (Janget al., 2003).Theseresponsesmayreducetheriskofbeinggrazed,i.e.

thedefensemechanismisinducible.Selanderetal.(2006)found thatwaterbornecuesfromthecopepodAcartiatonsainducedpara- lyticshellfishpoisoningtoxin(PST)productioninthedinoflagellate Alexandriumminutum,whichledtoreducedgrazingofA.tonsaon A.minutum.Ithasalsobeenshownthatthechemicalandmorpho- logicalresponsesmaytakeplacesimultaneously(Selanderetal., 2012).Such inducible defensesmay bebeneficial in conditions wheretheriskofbeinggrazedisunpredictable,ase.g.inmarine environments,giventhatdefensivetraitsarecostly(Karbanand Baldwin,1997).Inadditiontothepotentialcuesreleasedbythe grazers,mechanicaldamage ofthealgaemaysignaltherisk of grazing,especiallywhenfeedingis“sloppy”,evenifthemessage maynotalwaysbereliablesincealgaealsolyse,e.g.duetoattack byviruses(VanDonketal.,2011).Theeffectofmechanicaldam- ageonthepotentialinducibledefensesinphytoplanktonhasbeen rarelystudied(reviewedinVanDonketal.,2011;seeLampertetal., 1994;Lürling,1998).Itispossiblethatthechemicalsreleasedby thegrazersandthedamagedcellsinteracttoproducethepotential signalthateventuallyinducesthedefensereactioninthephyto- plankton(VanDonketal.,2011).Indicationsthatthepresenceof thecopepodsmayenhanceDAproductioninP.seriatawerefound byTammilehtoetal.(2012),wheretheDAcellquotainP.seriata increasedafter12hinthepresenceofC.hyperboreus.Inthesame studynoincreaseinDAwasfoundinthepresenceofC.glacialisor C.finmarchicus.

Inthepresentstudyweexploredthefollowingquestions:

1)DoesthepresenceofthetwocopepodspeciesCalanushyper- boreusandC.finmarchicusinducephysiologicalormorphological responses,i.e.enhancedDAproductionorchangesinchainfor- mationinPseudo-nitzschiaseriata?

2)Arethepotentialcuesinvolvedintheinducedresponsechemical orisphysicalcontactrequiredtoelicitthem?

3)CanthepotentialtriggersbereleasedfromdamagedP.seriata cellsonly,withoutthepresenceofthecopepods?

2. Materialsandmethods

2.1. Studyorganisms

The copepods Calanus finmarchicus and C. hyperboreus were collectedfromDisko Bay(6914N,5323W) ata 300-m-deep monitoringstation(Madsenetal.,2001;Hansenetal.,2012)during thespringbloominApril2012.DiskoBayislocatedonthewestern coastofGreenland.Thecopepodsweresampledfromtheupper 100musingaWP-2net(200␮m),transportedtothelaboratory inthermoboxes,pickedindividuallyusingastereomicroscopein ice-chilledpetridishesandkeptinthedarkattheinsitutemper- atureforamaximumof1weekin0.45-␮mfilteredseawaterand fedwithThalassiosirasp.priortotheexperiments.Thereafter,the copepodswerestarvedfor24h.TheDA-producingP.seriatastrain P5G3wasisolatedasdescribedinTammilehtoetal.(2012)and grownin50%silica-reducedL1-medium(GuillardandHargraves, 1993)at12:12light:darkcycle.ThelengthandwidthofP.seriata cellswere64.8±3.9(SD)␮mand5.5±0.8(SD)␮m,respectively.

Fig.1.Schematicdiagramoftheincubatorwithtwoflasksconnectedviatwo2-␮m polycarbonatemembranes(diameter4.5cm).FlaskA:Pseudo-nitzschiaseriataplus copepods(exceptinthecontrol);flaskB:P.seriataonly.

2.2. Inductionexperimentswithcopepods

Theinductionexperimentswereconductedinincubatorscon- sistingoftwopolystyrenetissuecultureflasks(Sarstedt)(volume 710mlflask−1)thatwereconnectedthroughtwoholes(4.5cmin diameter)coveredby2.0-␮mpolycarbonatemembranestoallow waterexchangebetweenflasks(AandB)buttopreventexchange ofcopepodsandalgalcellsbetweentheflasks(modifiedfromTang, 2003;Fig.1).Non-toxicaquariumsilicone(DanaLimaquariumsil- icone579)wasusedtogluethefiltersontothepolystyreneflasks andtoconnecttheflasks.Thepermeabilityofthe2-␮mpolycarbo- natemembranewastestedvisuallybyobservingthetransportof fooddyefromoneflasktotheother.Tang(2003)usedsimilarmem- branesandreportedreachingthediffusionequilibriumof∼50%and 90%after3and5days,respectively.Theincubators(flasksAand B)bothcontainedP.seriataculture.ThecopepodsandP.seriata cellswereaddedtoflaskAseparatedbythe2.0-␮mpolycarbonate membranefromtheP.seriatacellsinflaskB(Fig.1;Table1).

Theseawaterusedfortheexperimentswascollectedatleast 1weekbeforestartingtheexperimentstominimizethepotential cuesoriginatingfromthefield.Thesalinity35waterwasfiltered (0.45-␮mporesize)andstoredat4±2C.Bothflasks(AandB) oftheincubatorswereinoculatedwithP.seriataataconcentra- tionof1000cellsml−1,correspondingtoanaverageof162␮gCl−1 (forcalculationsseeTammilehtoetal.,2012).Thiscellconcentra- tionwasachievedbypoolingtogetherfourP.seriatabatchcultures (forgrowthconditionsseeSection2.1,thebatchcultureshadbeen grownfor9days)inearlystationaryphase(16,000cellsml−1 in 1.1l)anddilutingitwith16.9lof0.45-␮mfilteredseawater(=a pooledculture)onthedaywhentheexperimentwasstarted.To measuretheDAconcentrationofP.seriatabeforetheexperiments, triplicatesubsamples(100ml)ofP.seriataweretakenfromthe

Table1

Experimentalsetupoftheincubationexperimentswithcopepodsandhomogenized Pseudo-nitzschiaseriatacells,showingthecontentsofflaskA,containingcopepods orhomogenizedP.seriata(exceptinthecontrol)pluslivealgae,andB,containing onlylivealgae.

Experiment Treatment Flask

A B

Copepods Control Algae Algae

C.hyperboreus Copepodsand algae

Algae C.finmarchicus Copepodsand

algae

Algae

Damagedcells Control Algae Algae

Cellhomogenate addition

Homogenized algaeandalgae

Algae

(3)

pooledcultureusinga100-mlsyringeandfilteredontoGF/Ffil- tersusinggentlevacuum.Thesampleswerestoredat−20Cuntil analysis.Afewhoursbeforetheexperiments,activelyswimming copepodswere addedtotheflasks filledwith0.45-␮mfiltered seawaterandkeptat4C.

TheexperimentswerestartedbyaddingC.hyperboreusorC.

finmarchicustoflaskA,twooreightcopepods, respectively,per flask.Thecontrolincubator(flaskA)containednocopepods.Forcell counts,a3-mlsamplewastakenfromeachflaskandfixedwith1%

(finalconcentration)acidicLugol’ssolution.Thegrazingtreatments andthecontrolswererunsimultaneouslyinquadruplicateandin triplicate,respectively.Theincubatorsweremountedonaplankton wheelrotatingat1.3rpm.Theexperimentwasrunfor8daysat 4±2Cusinga 12:12light:darkcycleundera lightintensityof 100␮molphotonsm−2s−1.

CellandDAconcentrations werequantifiedagainondays2, 5 and 8. Both flasks (A and B) were sampled simultaneously, andtheflaskswererefilledfilteredseawater.Onday2,thecell concentrationsampleswerefixedwith10%glutaraldehyde(final concentration)topreservethechains.AcidicLugol’ssolution(1%

finalconcentration)wasusedforfixationontheotherdaysandthe sampleswerecountedwithinthreemonthsaftertheexperiments.

Onday3,19mlofP.seriatabatchculture(350,000cells,culture grownfor12days)wasaddeddirectlytotheflaskswithcopepods (flaskA)toensurethatthecopepodshadenoughP.seriatacellsfor grazing.ThesamevolumeofP.seriatawasaddedtothecontrolflask Atoensuresimilartreatmentofthegrazingandthecontrolflasks.

Thedilutionsduetosamplingandaddingcellsonday3werecon- sideredincalculatingthegrowthandingestionrates.Thegrowth ratewascalculatedaccordingtoFrost(1972)andtheingestionrate accordingtoHarrisetal.(2005)(forformulasseeTammilehtoetal., 2012).

Attheendoftheexperiment(day8),samplesweretakenfor cellcounts(4ml),DA(200ml)andchlorophyll-aconcentrationof P.seriatacells.InadditiontomeasuringtheparticulateDAconcen- trationofthecellscollectedonGF/Ffilters,a3-mlsampleofthe filtratewastakentomeasuretheconcentrationofdissolvedDA.

Thefiltratesampleswerestoredat−20Cpriortoanalysis.TheDA cellquotawascalculatedbydividingtheamountofDAcollectedon theGF/Ffilter(P.seriatacells)bythecellnumber.Inaddition,the ratiobetweendissolvedDAandcellnumberswascalculated.To measurechlorophyll-aconcentration,a100-mlsamplefromeach flaskwasfilteredontoGF/Ffiltersusinggentlevacuum.Thefilters werethenextractedin5mlof96%ethanolfor24h(Jespersenand Christoffersen,1987)and measuredfluorometricallybeforeand afterHCladdition,usingaTurnerfluorometer(TD-700)calibrated againstachlorophyll-astandard.Thenumberofcopepodsperflask wasrecordedattheend oftheexperiment and theircondition checkedvisually.

2.3. InductionexperimentwithdamagedP.seriatacells

FlaskAcontainedliveandhomogenizedP.seriatacellsandflask BonlyliveP.seriatacells(Table1).TheP.seriatahomogenatewas preparedbyfilteringaknownvolumeofcultureontoa2.0-␮m polycarbonatefilterusinggentlevacuum,afterwhichthecellson thefilterwerehomogenizedusinganautoclavedmortar.Inthe controls, both flasks containedonly live P.seriata cells. Allthe incubatorswerefilledwithaged0.2-␮mfilteredseawaterwitha salinityof30andP.seriataculture(15mlof50,000cellsml−1)was addedtoeachflasktoreachafinalconcentrationof1000cellsml1. ThehomogenateofP.seriataculture,correspondingtotheconcen- trationof1000cellsml−1 in710mlwasaddedintoflaskA.The filterwasrinsedwith a knownvolumeof 0.2-␮mfilteredsea- watertocollectthehomogenate.Toensurethatthecells were crushed,thehomogenatewascheckedvisuallyusinganinverted

microscope(OlympusCKX31)at200×magnificationbeforeuse.

ThehomogenatewasaddedtoflaskAdirectlyafterhomogeniza- tionandcarewastakentokeepthehomogenatecoolatalltimes.

Afterfillingtheincubatorswith0.2-␮mfilteredseawaterandtheP.

seriataculture,1.65mlofthehomogenatewasaddedtothetreat- mentflaskAandthesamevolumeof0.2-␮mfilteredseawater intothecontrolflaskA.Boththehomogenateandcontroltreat- mentswereruninquadruplicate.Theincubationexperimentwas run ona plankton wheel (1.1rpm)for 8 days at 3±1C using 12:12light:darkcycleunder alight intensityof100␮molpho- tonsm−2s−1.

Samples for cell and DA concentrations were collected and treatedasdescribedinSection2.2.Thehomogenateofdamaged P.seriatacells wasprepared andadded tothetreatmentflasks dailyduringtheexperiment (days0–7)toprovidefreshpoten- tialcues,andatthesametimeanequalvolumeof0.2-␮mfiltered seawaterwasaddedtothecontrolflasks.TheP.seriatacultures usedforinoculatingtheexperimentalincubatorsandformaking cellhomogenateweregrownat4Cusing12:12light:darkcycle underalightintensityof100␮molphotonsm2s1andwerehar- vestedatlateexponentialtolatestationaryphase(culturesgrown for16–23days).

Subsamples(50ml)formeasuringdissolvedinorganicnitrogen (ammonium,nitrateandnitrite),dissolvedinorganicphosphorus (phosphate)and dissolvedsilica atthebeginningoftheexperi- mentweretakenfromtwoextraflaskssimilartothecontrolflasks andthesameflaskswereusedformeasuringpH.Attheendof theexperiment(day8)pHwasmeasuredfromalltheBflasks.pH wasmeasuredusinganalyticalpH-meter(Radiometer).Thenutri- entsamplesattheendoftheexperiment(day8)werecollected fromonecontrolflaskBandonetreatmentflaskB.Thesamplefor dissolvedsilicaanalysiswaspassedthrougha5.0-␮mpolycarbo- natefilterandthosefornitrogenandphosphorusanalysesthrough GF/Cfilters.Thenutrientfiltrateswerefrozenat−20Cimmedi- atelyaftersamplingandlateranalyzedattheAarhusUniversity (Denmark)onaflowinjectionautoanalyzer,followingHansenand Koroleff(1999).DAanalysesfortheincubationexperimentswere conductedasdescribedinTammilehtoetal.(2012).Thedetection limitforDAwas10ngsample1.

2.4. Microscopy

Pseudo-nitzschiacellconcentrationsandchainlength(number ofcellsinperchain)wereenumeratedinaSedgewick-Raftercham- berusinganinvertedmicroscope(NikonTMSandOlympusCKX31) at100×magnification.Aminimumof400cellswascountedineach sampleandifasamplecontainedfewerthanthis,atleasthalfof thecellsinthecountingchamberwerecounted.Thelengthand widthofthecellsweremeasuredusingOlympusBX53microscope at400×magnification.

2.5. Statisticalanalyses

Changesover timewithin eachtreatmentwere testedusing repeatedmeasuresANOVA(RMANOVA),andtheFriedmantestwas usedasanon-parametricalternative.Pairedsamplesweretested usingthepairedt-testorthenon-parametricMann–WhitneyU- test.Thedifferencesbetweenmeansweretestedusingthet-test (twosamples)andone-wayANOVA(threeormoresamples)or thenon-parametricMann–WhitneyU-testandtheKruskall–Wallis test.NormaldistributionwastestedusingtheShapiro–Wilktest andhomogeneityofvariancesusingLevene’stest.Ifthedataset violatedtheassumptionofnormaldistributionorhomogeneityof variances,itwaslntransformed.Iftheassumptionsofnormality orvariancehomogeneitywerenotfulfilled,evenafterthetrans- formation,anon-parametrictestwasused.TheX2-testwasused

(4)

tocomparetheproportionsofcellsinsinglecellsandchains(three categories:singlecells,2-cellchainsand3-ormorecellchains) usingtheproportionsinthecontrolastheexpectedfrequency.A commonsignificancelevelof0.05wasapplied.

3. Results

TheDAcellquota(toxicity)ofP.seriataincreasedduringthe experimentwithbothC.hyperboreusandC.finmarchicus,incon- trasttothecontrolwheretheDAcellquotaofP.seriataremained stable(Fig.2).ThetoxicityofP.seriataincreasedinbothsidesofthe incubators,i.e.bothwhencellswereindirectphysicalcontactwith thecopepods(flaskA)andalsowhenthecopepodsandthealgae werephysicallyseparatedintodifferentcompartmentsandonly waterexchangebetweenthecompartmentswasallowedthrough a2-␮mpolycarbonatemembrane(flaskB).Onday0,theDAcell quotaofP.seriatawasbelowthelimitofdetection.Thegreatest toxicityincreasewasrecordedwhenP.seriatawasindirectphys- icalcontactwithC.hyperboreus,risingfromundetectedto13.1pg DAcell−1(day8mean)inflaskA(Fig.2A).ThetoxicityofP.seriatain flaskAwithC.hyperboreusincreasedsignificantlyduringtheexper- iment(RMANOVA,F2,6=58.4,p<0.01),andpost-hocanalysiswith BonferroniadjustmentshowedthetoxicityofP.seriatatobesignif- icantlyhigherondays5and8thanonday2(p<0.05andp<0.01, respectively)(Fig.2A).InflaskBwithcuesfromC.hyperboreus,a

Fig.2. Domoicacid(DA)cellquota(pgDAcell−1,mean±SD)ofPseudo-nitzschia seriataindifferenttreatmentsondays0,2,5and8.(A)FlaskAwithcopepods (exceptcontrol);(B)flaskBcontainingonlyalgaewithcuesfromthecopepods (exceptcontrol).Onday0,DAcellquotameasuredfromthepooledculture.Inthe control,n=3andinthecopepodtreatments,n=4.

Table2

Domoicacid(DA)cellquotaofPseudo-nitzschiaseriata(pgDAcell−1)anddissolved DAconcentrationintheculturefiltrate(ngDAml−1)onday8(mean±SD)inflaskA, containingcopepods(exceptcontrol)andflaskB,withcuesfromcopepods(except control).

Cellular(pgDAcell−1) Filtratea(ngDAml−1)

A Control 0.10±0.04 bd

C.hyperboreus 13.1±1.98 17.0±5.55

C.finmarchicus 4.15±1.52 bd

B Controlb 0.01±0.00 bd

C.hyperboreus 0.51±0.25 bd

C.finmarchicus 2.62±0.89 bd

abd=measurementbelowthelimitofdetection.

bOnemeasurementofcellularDAbelowthelimitofdetection.

significantincreaseintoxicity(RMANOVA,F2,6=5.6,p<0.05)was alsoseen,butpost-hocanalysiswithBonferroniadjustmentcould notrevealsignificantpairwisedifferences(Fig.2B).Thetoxicityof P.seriataalsochangedsignificantlywheninphysicalcontactwith C.finmarchicus(RMANOVA,F2,6=30.3,p<0.01),reachingthehigh- estlevelonday5(7.3pgDAcell1,mean)(Fig.2A).Thepost-hoc analysiswithBonferroniadjustmentshowedthatthetoxicitywas significantlyhigheronday5thanonday2(p<0.05).InflaskBwith cuesfromC.finmarchicus,thetoxicityofP.seriatachangedsignif- icantly(RMANOVA,F2,6=36.3,p<0.001)andwashigherthanin flaskBwithcuesfromC.hyperboreus,butlowerthaninflaskA withC.finmarchicus(Fig.2).Thepost-hocanalysiswithBonferroni adjustmentrevealedthatthetoxicityofP.seriatainflaskBwith cuesfromC.finmarchicuswassignificantlyhigherondays5and8 thanonday2(p<0.01andp<0.05,respectively).Inthecontrols, thetoxicityofP.seriatadidnotchangeinflaskA(Friedman’stest, X23=4.2,p=0.24)norinflaskB(Friedman’stest,X32=3.4,p=0.33) duringtheexperiment(Fig.2).

TheDAcellquotaandtheconcentrationofdissolvedDAinthe mediumonday8werecomparedbetweentreatments(Table2).

CellularDAwasdetectedinallthetreatments,althoughsubstan- tially less in thecontrols compared to the grazing treatments, especiallyinflaskA(Table2).DissolvedDAwasobservedonlywith C.hyperboreusinflaskA,whereasintheotherflask,themeasure- mentswerebelowthedetectionlimit(bd)(Table2).TheDAcell quotawassignificantlyhigherintheflaskswiththecopepodsthan inthecontrolandalsohigherwithC.hyperboreusincomparison to C. finmarchicus (one-way ANOVA, F2,8=68.6, p<0.001, post- hocanalyseswithBonferroniadjustment:control-C.hyperboreus:

p<0.001,control-C.finmarchicus:p=0.025,C.hyperboreus–C.fin- marchicus:p<0.001)(Fig.2;Table2).InflaskBonday8,theDA cellquota(lntransformed)wassignificantlyhigherwithcuesfrom C. finmarchicuscompared tothe control and withcuesfromC.

hyperboreus;C.hyperboreuswasalsosignificantlyhigherthanthe control(one-way ANOVA,F2,8=171.2,p<0.001,post-hocanaly- seswithBonferroniadjustment:control-C.finmarchicus:p<0.001, C.hyperboreus–C. finmarchicus: p=0.001,control-C.hyperboreus:

p<0.001)(Fig.2;Table2).TheconcentrationofdissolvedDA(exter- nalDAinthemedium)onday8wassignificantlyhigherinflaskA withC.hyperboreusthaninthecontrolflaskA(bd)(Kruskall–Wallis test,X22=8.9,p=0.012,post-hocpairwisecomparison,p=0.009), showingthattheP.seriatacellsalsoexcretedorleakedthetoxin (Table2).TheconcentrationofdissolvedDAwithC.finmarchicus wasnondetectableinflaskA,however,andit didnotdiffersig- nificantlyfromC.hyperboreusorthecontrol(non-censoredvalues wereused).InflaskB,theconcentrationsofdissolvedDAwithcues fromC.hyperboreusandC.finmarchicusandinthecontrolwereall belowthelimitofdetection(Table2).TheamountofdissolvedDA perP.seriatacellinflaskAwithC.hyperboreuswas21.3±19.9pg DAcell−1.

(5)

Fig.3.CellconcentrationsofPseudo-nitzschiaseriata(cellsml−1,mean±SD)ondays0,2,5and8in(A)thecontrol(flasksAandB,containingnocopepods,n=3);(B)flaskA, containingCalanushyperboreus(n=4);(C)flaskA,containingC.finmarchicus(n=4),incomparisonwithflaskBthatcontainednocopepodsbutonlyalgae.Thearrowsshow whenextraculturewasaddedtotheflaskAonday3.

P.seriata grewin allexperimentalincubators(Fig.3)and at thestartoftheexperimentcelldensitieswerethesameinflask A (Kruskall–Wallistest, X32=0.33, p=0.85) for each treatment.

The algae reachedthe highest cell density in thecontrol flask A,wheretherewerenograzersandextraculturewasaddedon day3.InflaskA,wherethealgaewereindirectcontactwiththe copepods,thecelldensitiesdecreasedduetograzing(Fig.3).The decreasewassignificant(one-way ANOVA,F2,8=55.0, p<0.001) and morepronounced withC. finmarchicusthan withC. hyper- boreus.Thepost-hocanalyseswithBonferroniadjustmentrevealed thatthecellconcentrationsweresignificantlylowerinflaskAwith C.hyperboreusandC.finmarchicusthaninthecontrolflaskA(both p-values<0.001)at theend ofthe experiment,confirming that thecopepods weregrazing onP. seriata.In flaskB, there were nodifferences incellconcentrationsbetweentreatmentsatthe start(one-wayANOVA,F2,8=0.75,p=0.50)norattheendofthe experiment(one-wayANOVA,F2,8=0.08,p=0.93).Theoverallnet growthrate(betweendays0and8)wassimilarinallBflasks(one- wayANOVA,F2,8=0.38,p=0.70),indicatinghomogeneousgrowth conditions(datanotshown).

BothC. hyperboreus and C. finmarchicus grazed onP. seriata during the 8-day incubation (Figs. 3 and 4) and no copepod mortality was detected. The mean ingestion rates during the

Fig.4. Ingestionrates(cellscopepod−1h−1,mean±SD,n=4)ofCalanushyperboreus andC.finmarchicusondays0–2,2–5,5–8,and0–8.

experimentforC.hyperboreusandC.finmarchicuswere3219and 542cellscopepod−1h−1,respectively(Fig.4), andC.hyperboreus ingestedsignificantlymorecellsthandidC.finmarchicus(t-test;

variancesnotequal;t3.06=9.0,p=0.003).Themeaningestionrate ofC.hyperboreuswashighestfromdays5to8buttherewerenosig- nificantdifferencesiningestionratesofC.hyperboreusbetweenthe differenttimepoints(RMANOVA,F2,6=1.0,p=0.42).C.finmarchicus ingestedP.seriataatsignificantlydifferentratesduringtheexperi- ment(RMANOVA,F2,6=27.6,p=0.001)andpost-hocanalysiswith Bonferronicorrectionshowedthattheingestionratewassignifi- cantlylowerondays5to8thanondays0to2and2to5(p=0.017 andp=0.005,respectively)(Fig.4).

AddinghomogenateofP.seriatatotheP.seriataculturedidnot affectthetoxicity ofthecultureduringtheexperiment(Fig.5).

Thereweresignificantdifferencesintoxicitybetweendaysinflask Awithhomogenate(RMANOVA,F2,6=8.1,p=0.020)andpost-hoc pairwisecomparisonswithoutadjustmentshowedtoxicitytobe significantlyhigheronday2thanonday8(p=0.043)(withBon- ferroniadjustmentnodifferencescouldbedetected).However,the samesignificantdifferencebetweendayswasalsodetectedinthe controlflaskA(Friedmantest,X22=8.0,p=0.018,post-hocpairwise comparisonsp=0.014).Hence,theminorchangeintoxicityonday 2inflasksAwasduetofactorsotherthanaddingthehomogenate and therewasnosignificantdifferencein toxicitybetweenthe treatments inflaskA onday2 (t-test, t6=−0.51, p=0.63). In B flasks (control and treatment), toxicity did not change signifi- cantlyduring theexperiment (Friedman test, X22=1.5, p=0.47, andRMANOVA,F1.02,3.06=0.042,p=0.86,respectively).Becausethe assumptionofsphericitywasnotmet(assessedbyMauchly’stest), theGreenhouse–GeisercorrectionwasappliedfortheRMANOVA onthetreatmentflaskB.Cellnumbersdecreasedinalltheflasksto around∼500cellsml1untilday5,afterwhichtheyremainedsta- bleorincreasedslightlyuntilday8(datanotshown).Netgrowth ratesdidnotdifferbetweenthecontrolandthetreatmentinflask A(t-test,t6=−2.3,p=0.057)norinflaskB(Mann–Whitney,U=4.0, z=−1.2,p=0.34),confirminguniformgrowthconditions(datanot shown).Dissolvedinorganicnitrogenandsilicalevelsdecreased bothinthecontrolandtreatmentincubators(flaskB)duringthe experimentandwereatthesamelevel(datanotshown).There waslittlephosphateintheseawaterused(mean1.3␮moll−1)and itsleveldidnotchangeinthecontrolbutdecreasedslightlyinthe treatmentincubator(flask B)(datanotshown).pHvalueswere 7.9inboththecontrolandtreatmentBflasksattheendofthe experiment(t-test,t6=−1.1,p=0.33).

ChangesinthechainlengthofP.seriatawereobservedinthe experimentwithcopepodsbutnotintheexperimentwiththeP.

seriatahomogenate.Theproportionofsinglecellsversuscellsin

(6)

Fig.5. Domoicacid(DA)cellquota(pgDAcell−1,mean±SD)ofPseudo-nitzschia seriatainthecontrol(n=4)andthehomogenatetreatment(n=4)ondays0,2,5and 8in(A)flaskA,withhomogenateadded(exceptcontrol),and(B)flaskB,containing onlyalgae.

chainsduringthe experiment wasmoreor less stablewhen C.

hyperboreusandC.finmarchicusgrazed onP.seriata,butonlyin theflaskswherethecopepodswereinphysicalcontactwiththe cells(flaskA),whereasinthecontrols,theproportionofcellsin chainsincreasedduringtheexperiment(Fig.6).Intheexperiment withtheP.seriatahomogenate,theproportionofsinglecellswas

∼60%throughouttheexperimentinboththecontrolandtreatment flasks(datanotshown).TheX2-testdidnotrevealrelevantdiffer- encesbetweenthecontrolandthegrazingtreatment/homogenate additionbecausesignificantdifferencesbetweenthecontroland thetreatmentsalreadyexistedatthestartoftheexperiment.

4. Discussion

WeshowthatthetoxicityofP.seriatacellsincreasedsignif- icantlyinthepresenceofcopepods. Theresponseischemically mediated,i.e.itwasalsofoundwhentheorganismshadnophysi- calcontact.ChemicalcuesfromthedamagedP.seriatacellsalone didnotenhanceDAproductioninliveP.seriatacells.

ThesignificantincreaseintoxicityofP.seriatainthepresenceof copepods,butwithoutphysicalcontact,suggeststhatwaterborne cuesorchangesinwaterchemistryinducedthecellularresponse.

ThetoxicityofP.seriataincreasedmoreinthepresenceofcuesfrom C.finmarchicusthanwithC.hyperboreus,whenthecopepodswere notinphysicalcontactwiththediatomcells.However,thetoxicity ofP.seriatapeakedwhenthecellswereindirectcontactwithboth

CalanusspeciesandthehighestDAcellquotawasrecordedafter8 dayswithC.hyperboreus.Wecannottotallyruleoutthepossibility thatthetoxicityofP.seriataindirectcontactwiththecopepods increasedbecauseofselectivegrazingofthecopepodsonlesstoxic P.seriatacells.However,wefinditunlikelybecauseC.finmarchicus isnotknowntodiscriminatebetweentoxicandnon-toxicPseudo- nitzschiaspecies(Leandroetal.,2010).Moreover,therewasalarge differenceintoxicitybetweentheP.seriatacellsindirectcontact withthecopepodsandthecontrol.Instead,wewouldexpectto seeamorepronouncedchemicallymediatedresponsewhenthe copepodsandthealgaeareinphysicalcontact,sincetheresponse islikelytobeattenuatedwhenthesignalmustfirstpassthroughthe 2.0-␮mpolycarbonatemembrane.Anexplanationforthiscouldbe thatthecueshavelipophiliccomponents,whichpartiallyadsorbto thepolycarbonatemembraneanddonotentirelypassthroughit.A similarattenuationinresponsewasobservedinananalogousstudy onthePST-producingdinoflagellateA.minutuminthepresenceof threecalanoidcopepods(Bergkvistetal.,2008).

TriggersforDAproductioninPseudo-nitzschiaspecieshavebeen attributedtoenvironmentalfactors,e.g.nutrientsin relationto thegrowthphase(reviewedinBates,1998;Lelongetal.,2012), pH(e.g.Lundholmetal.,2004),andtracemetallimitationortox- icity(Maldonadoetal.,2002).Evidenceofallelopathiceffectsof DA,however,hasnotbeenfound(Lundholmetal.,2005).DAis anaminoacidandthusnitrogenisneededforitssynthesis.Since dilutedL1-medium(1/16)withreducedsilicatewasusedinthe presentstudy,withanextraadditionofmediumcontainingP.seri- ataonday3, we assumethat noothernutrient exceptsilicate (whichwasintentional)waslimitingthegrowthofthealgaein anyexperimentalflask.Thisissupportedbytheequalgrowthrates observedinflaskBofthecontrolandtreatments.InflaskAwhere thecopepodscouldgrazeonthealgae,thegrowthofP.seriatawas assumedtobesimilartotheotherexperimentalflasks,sothatthe observeddifferenceincell concentrationwasdue onlytograz- ing.Thecopepodsexcreteorleaknutrients,suchasammonium, whichmayalterthegrowthconditionsofthealgaeintheexper- imentalflaskscontainingthecopepodswithrespecttoavailable nutrientsand theirratios. Highlevelsof ammonium(>200␮M) mayleadtoincreasedcellularDAquotasinPseudo-nitzschiabut, atthesametime,mayalsoresultinloweredgrowthrates(Bates etal.,1993).Nochangeingrowthwasobserved,evenwhenthe P.seriatacellswerenotindirectcontactwiththecopepodsinB flasks,wheretheDAcellquotaincreasedsignificantly.Therefore, weassumethatfactorsotherthannutrientscausedtheincrease inDAproduction.Levelsofmajorinorganicnutrientshavebeen measuredin onlya fewstudies,which haveshownthatchemi- calsreleasedbythezooplanktoninducedeitherphysiologicalor morphologicalresponsesinphytoplankton(Selanderetal.,2006;

Longetal.,2007;LundgrenandGranéli,2010);however,thenutri- entsthemselveshavenotbeenfoundtobetheinductivefactor in thesestudies.Selanderetal. (2006)assumedthat thepossi- bleeffectofexcretions(ammonium)fromA.tonsatobenegligible at saturatingnutrient conditionsin comparison totheeffectof chemicalcuesfromA.tonsainenhancingPSTproductionA.min- utum.Thiswaslatersupportedbytheobservationthatammonium concentrationsdidnotdifferbetweenthegrazingtreatmentsand thecontrols,althoughthecell-specificPSTcontentofA.minutum increasedsignificantlyinthepresenceofA.tonsainnitrate-rich butnot inlow-nitrateconditions(Selanderet al.,2008).Colony formationinthegreenalgaeScenedesmusalsoseemstobeinduced byspecialgrazer-releasedinfochemicalsratherthanbyexcretory productsofthegrazers,orothernutrients(Lürling,2001).pHis knowntoaffectDAproductioninPseudo-nitzschiaspeciesbutthe resultsfromstudiesarecontradictory.Lundholmetal.(2004)and Trimbornetal.(2008)foundthatelevatedpHincreasedDAcell quotainP.multiseries,whereasSunetal.(2011)showedthatthe

(7)

Fig.6. PercentageofPseudo-nitzschiaseriataassinglecellsandascellsinchains(mean±SD)ondays0,2,5and8.(A)FlaskAcontrol,withoutanycopepods;(B)flaskA, containingCalanushyperboreus;(C)flaskA,containingC.finmarchicus;(D)flaskBcontrol,withoutanycopepodcuesfromflaskA;(E)flaskBwithcuesfromC.hyperboreus inflaskA;(F)flaskBwithcuesfromC.finmarchicusinflaskA.Allflaskscontainedalgae.Inthecontrol,n=3andinthecopepodtreatments,n=4.

DAlevelsofP.multiseriesincreasedwithloweredpH.Inthepresent study,pHis expectedtoincrease asCO2 is used forphotosyn- thesis,butitislikelytobecounterbalancedbytherespirationof thecopepodsthatproduceCO2.BecausepHwasnotmeasuredin thepresentstudyintheflasksthatcontainedthecopepods and becauseoftheobviously complexmechanismsbywhichitmay affectDAproduction,wecannottotallyexcludethepossibilitythat pH,atleastinpart,hadanimpactontheDAlevels.Longetal.

(2007)andLundgrenandGranéli(2010)foundnodifferencesin pHbetweenthegrazingtreatments(A.tonsaandP.globosa)and controls(onlyP.globosa).Inothersimilarinductionexperiments withcopepoditesandP.seriata,nosignificantchangesinpHwere found(N.Lundholmunpubl.).Intheexperimentwithhomogenate added,nodifferencesinpHwereobservedbetweenthecontroland treatment.

Inthepresentstudy,DAwasproducedduringtheexponential growthphase.TheDAcellquotaofP.seriataincreasedatthesame timethatcellnumbersincreaseduntilday5withcuesfromC.fin- marchicusinflaskB.Aswellonday8,P.seriatawasmoretoxic inflaskBwithcuesfromC.hyperboreusthaninthecontrol.With physicalcontactbetweenthecopepodsandthealgae(flaskA),the DAcellquotaofP.seriataincreaseduntilday5withC.finmarchicus, anduntiltheendoftheexperiment(day8)withC.hyperboreus.

Thisindicatesthatactivelydividingcellswereproducingincreas- ingamountsofDA.Thisiscontrarytothefindingsofmostearlier studieswhichshowedthatthehighestDAlevelsoccuredduring thestationarygrowthphase,whencelldivisionceased(reviewed inBates,1998;Fehlingetal.,2004;Thessenetal.,2009).Garrison etal.(1992)reportedthatP.australisproducedDAduringtheexpo- nentialphase,butconcludedthattheresultscouldbebiaseddue

totheverydensestartinginoculum,whichmighthavestressed thealgaeand,hence,enhancedDAproduction.P.australisgrown onureaproducedDAwhengrowingexponentially,buttheexpo- nentialgrowthrateof P.australiswassignificantly lowerwhen grownonureacomparedtonitrateandammonium(Howardetal., 2007).Pseudo-nitzschia pseudodelicatissima(identitynot certain) producedDAthroughouttheexponentialphase,buttheproduc- tionwassubstantiallyhigherinthelatestationaryphase(Adams etal.,2000).

Theexperimentwithcopepodsinthepresentstudywastermi- natedwhenthecultureswerestillintheexponentialgrowthphase.

Thus,higherDAcellquotasthanrecordedintheexponentialphase mighthavebeenobservedinthestationaryphase.However,with C.finmarchicusthetoxicityofP.seriatadecreasedafterday5,sug- gestingthatthepotentialchemicalsignalmayberelatedtothe activelygrazing copepods.Thisissupportedbythefindingthat theabundanceofP.seriatadecreasedtoverylowlevelsduringthe experiment,meaningthatC.finmarchicuspracticallystoppedgraz- ingbeforetheendoftheexperiment.Selanderetal.(2006)found thatcuesreleasedbythegrazingA.tonsaincreasedthePSTcon- tentinthedinoflagellateA.minutumsignificantlymorethancues releasedfromthestarvingA.tonsa.Inductionofcolonyformation inScenedesmusacutuswasalsostrongerwhenexposedtoDaphnia exudatesfromfeedingcomparedtostarvedgrazers(Lampertetal., 1994).Similarly,Lürling(1998)observedthatonlyexudatesfrom DaphniagrazingondigestiblefoodinducedcolonyformationinS.

acutus.Cuesrelatedtoactivefeedingmaythusbethemostreliable indicationoftheriskofherbivoryforphytoplankton(VanDonk etal.,2011),explainingwhycuesfromactivelygrazingconsumers mayproduceastrongerinduction.

(8)

TheproportionofP.seriatacellsinchainsindirectcontactwith thecopepodsinflaskAwasrelativelystableduringtheexperiment.

Ondays5and8withC.finmarchicusandonday8withC.hyper- boreus,theproportionofthechainswaslowercomparedtothe control.Thisislikelyduetoahigheringestionrateofchains,which maybeeasierforthecopepodstodetectduetotheirlargersize comparedtothesinglecells.Onthecontrary,intheBflaskswith- outphysicalcontactwiththecopepods,aswellasinthecontrol flasks,theproportionofchainsincreasedduringtheexperiment.

Bergkvistetal.(2012)showedthatthediatomSkeletonemamari- noireducedchainlengthinthepresenceofthreecopepodspecies;

theresponseinS.marinoiwasalsoinducedwithoutphysicalcon- tactwithA. tonsa.Grazingwassignificantlyreduced onshorter chainscomparedtolongerchains.Theauthorssuggestedthatthe suppressionofchainformationinS.marinoiwasadefensemecha- nismagainstcopepodgrazing(Bergkvistetal.,2012).Inthepresent study,noeffectsofpotentialwaterbornecuesfromthecopepods onchainformationofP.seriatawereobserved.Indeed,inalltheB flaskswithcuesfromthecopepodstheproportionofcellsinchains increasedsimilartothecontrols.InflaskA,withdirectphysicalcon- tactwiththecopepods,possiblecuesmayhavesuppressedchain formationinP.seriatabutsincethecopepodswerealsograzingthe cells,wecannotdistinguishbetweentheeffectsofthesetwofac- tors.ThisisparticularlyrelevantforC.finmarchicus,whichalmost exhaustedtheP.seriatacellsbyday5.Theincreasedproportionof cellsinchainscomparedtosinglecellsduringtheexperimentin thecontrolsshowsconvincinglythetendencyofP.seriatatoform chainsduringexponentialgrowth.

OurresultssuggestthatpotentialchemicalcuesfromP.seriata, producedbymechanicaldamage,donotinducethedefensemech- anismsaddressedinthepresentstudy(increaseinDAproduction, chainformation).Similarly,Lampertetal.(1994)andLürling(1998) didnotobserveinductionofcolonyformationinS.acutuswhenthe algawastreatedonlywiththecellhomogenateofS.acutusinstead ofDaphniaexudates.Nordidwefindanyeffectsofpossiblecues fromdamagedcellsonchainformationofP.seriata.However,we cannotexcludethepossibilitythatanychemicalcuesreleasedfrom damagedcellscouldinteractwithchemicalsfromthegrazerand thusinduceastrongersignaloftheriskofbeinggrazedupon,than ifthechemicalisreleasedonlybythegrazer.

ThehighestDAcellquotaofP.seriataobservedinthisstudy (13.1pgDAcell1)isin therangeofthehighestDA cellquotas recordedfor P.seriata, (33.6pg DAcell1; duringthestationary phase)(Lundholmetal.,1994).PriortoexposingP.seriata(P5G3)to thecopepodsinthisstudy,themeanDAcellquotaofP.seriatawas belowthelimitofdetection.Thepreviousyear,theaveragelevel was0.55pgDAcell−1(Tammilehtoetal.,2012)andasubstantially higherDAcellquota(47pgDAcell1,singlemeasurement)forthe strainwasmeasuredjust2monthsbeforethat.Thisillustratesthe decreaseinDAproductionovertimeinstrainskeptinculturefor longerperiods,evenyears(e.g.Batesetal.,1999).However,our studyshowsthattheP.seriatastrain(P5G3)usedhadnotcom- pletelylostitsabilitytoproduceDA,becauseitthenregainedit wheninducedbythecopepods.ThedecreaseinDAproductionin unialgallaboratoryculturesmaythusillustratetherelaxationofan inducibledefense.

DissolvedDAdetectedinflaskAwithC.hyperboreusisinthe rangeofthatpreviouslyreportedintheculturemediumofP.seri- ata,butthepercellproductionofdissolvedDAwasonaverage 23–250timeshigher (Fehling etal.,2004;Hansenet al.,2011).

Maldonadoetal.(2002)foundthatP.multiseriesandP.australis producedDAduringtheexponentialgrowthphaseiniron-deficient ortoxic copperconcentrations. Almostall(95%) oftheDApro- ducedwasreleasedintothemediumandtheauthorsconcluded thistobeastressreactionagainstunfavorablemicronutrientlev- els(Maldonadoetal.,2002).Inthepresentstudy,∼60%ofthetotal

DAproduced(cellularanddissolved)byP.seriatainphysicalcon- tactwithC.hyperboreuswasreleasedintothemedium.Thismay havebeenanactivestressresponsetothepresenceofagrazer, aninvoluntaryleakageofDAduetothehighintracellularDAcon- centrationoraconsequenceof“sloppy”feedingbythecopepods (Mølleretal.,2003),leadingtoreleaseofDAintothemediumfrom thedamagedcells.

In thepresent study,wedidnotseeDAtodetergrazing on P.seriatabythecopepods.However,ifDAproduction inP.seri- ataisinducedbychemicalcuesreleasedbycalanoidcopepods,it may,becauseofitstoxicity,beassumedtobeadefensemechanism againstgrazing.Inthiscase,theriskofbeinggrazedshouldbelower inthe‘induced’cellsincomparisonto‘non-induced’cells.Aspre- viouslymentioned,Selanderetal.(2006)showedthattheinduced dinoflagellateA.minutumcontainedahigherPSTcellquotathan non-inducedcellsandthattherewaslessgrazingbythecopepod A.tonsaoninducedA.minutumcomparedtonon-inducedcells.

Copepodsmayindeedstopgrazingonthepreybecauseitistoxic orotherwiseunpalatable(behavioralselection)(Teegarden,1999).

Inaddition,grazingbycopepodsmaybepreventedbyphysiologi- calincapacitationcausedbytoxicfood(Huntleyetal.,1986;Ives, 1987).Indications of C.finmarchicusand C. hyperboreusto stop grazingontoxicP.seriataafter6hduetopossiblephysiological incapacitationwerefoundbyTammilehtoetal.(2012).Barguetal.

(2003)foundasimilareffectwhenstudyingkrill.Suchatempo- ralgrazingeffectwasnotobservedinthepresentstudy,probably becauseofthelongersamplingintervals(2–3days)comparedto the3hintervalusedbyTammilehtoetal.(2012).IfDAdetersgraz- ingbycopepodsduetophysiologicalincapacitation,thecopepods areexpectedtoreducefurthergrazinguntiltheDAlevelsinthe grazerarebelowacertainthresholdlevel.Inductionofhigherpro- ductionofDAinP.seriataduetothepresenceofgrazersistherefore expectedtoresultinafasterreductionofgrazing.Withregardto grazing,this wouldgivetoxicP.seriataanadvantageatleastin bloomconditions,becausegrazingonP.seriatawouldbeimpaired.

ProvingthatthecopepodsarephysiologicallyincapacitatedbyDA requires furtherstudies.Thehypothesis thatDA causesphysio- logicalincapacitationincopepodsdoesnotconflictwithfindings showingthatcopepodsdonotselectagainsttoxicPseudo-nitzschia species,evenwhennontoxicalternativefoodisoffered(Maneiro etal.,2005;Olsonetal.,2006;Leandroetal.,2010).Thereasonis thatthenegativeeffectsofDAongrazersareexpectedtooccuronly ifDAintakebythegrazersishighenough,whichmaynothavebeen thecaseinthestudiesbyManeiroetal.(2005),Olsonetal.(2006) andLeandroetal.(2010),orthattheeffectsofpossiblephysiolog- icalincapacitationbyDAareleftunnoticed.DAmaynevertheless haveadverseeffectsonthefecundityofthegrazers,whichmaylead tosubsequentreducedgrazingpressure.However,onlytwostud- ieshaveaddressedthisquestionandfoundthatfeedingontoxic P.multiseriesdidnotaffecteggproductionoregghatchingsuccess ofthecopepodsA.tonsa(Lincolnetal.,2001)orA.clausi(Maneiro etal.,2005).Mostcopepodgrazingexperimentsontoxicphyto- planktonspecies,however,havenotlastedmorethan24h,which maybetooshortatimetodetectthepotentialadverseeffectsof phycotoxinsongrazers(Turner,2014).

AssumingthattheproductionofDAasasecondarymetaboliteis costly,itismorelikelytobemaintainedbynaturalselectionifithas severalfunctions(Wink,2003).Inthepresentstudy,nocostsofpro- ducingDAwereobserved,astherewerenodifferencesingrowth ratesbetweenthehighlytoxicandthelesstoxiccells.However, theremaybeindirectcoststhatcouldnotbedetectedinthebatch cultures,assuggestedbyBergkvistetal.(2008)andSelanderetal.

(2012)forthePST-producersA.minutumandA.tamarense,respec- tively.Inthefield,DAproductionislikelytobecontrolledbyseveral interactingfactors,whichmakesitdifficulttopredicttheformation ofatoxicbloom.ThiswasemphasizedbyMarchettietal.(2004),

Referenzen

ÄHNLICHE DOKUMENTE

The end of this period, around about 13 ka BP, was distinguished by a rather rapid transition into a warmer phase (in Central Europe the Bölling-Alleröd Interstadial) which led to

The growing importance of beet production in the Nord during the 1830s is revealed by the increasing number of sugar factories in the departement.. But many of the

Lemma 2 Let S ˜ T denote the final number of susceptibles and T the random time (number of attempts to spread the rumour) after which the process terminates in a population of size

One of the resulting transformed cell lines of the transformation with the plasmid pPha-T1-GFP and six of the transformed cell lines expressing GFP under control of the

The same amount of linear plasmid molecules was observed in both cell lines, regardless of whether they were transfected with native or crosslinked pEGFP-N1, which further con-

An increase in the number of mast cells has also been observed in cases of serous myocarditis 20, 21.. In human coronary sclerosis, and more distinctly in coronary

The Canadian IAM incorporates several sets of data and variables. These include i) gridded emissions and deposition data, ii) critical deposition loadings for sensitive receptors,

As was hypothesized, the increasing CO 2 and nitrate availability affected Asterinellopsis glacialis cell buildup, growth rate and colony size.. The cell buildup and