• Keine Ergebnisse gefunden

Vertical coordinates

N/A
N/A
Protected

Academic year: 2021

Aktie "Vertical coordinates"

Copied!
24
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Schär, ETH Zürich

Vertical Coordinate Formulations for Atmospheric Models

Christoph Schär ETH Zürich schaer@env.ethz.ch

Supplement to Lecture Notes

“Numerical Modeling of Weather and Climate”

April 3, 2007

Schär, ETH Zürich

2

Vertical coordinates

z = const p = const

σ = 0

σ = 1 p = ps p = 0 σ = const

Terrain-following coordinates (

σ

-coordinates)

Terrain-following coordinates in ocean models

Height coordinates Pressure coordinates

(2)

Schär, ETH Zürich

Outline

Introduction to terrain-following coordinates

Coordinate transformations Pressure coordinates Isentropic coordinates

Sigma coordinates

Smooth terrain-following coordinates

Schär, ETH Zürich

4

Terrain-following Sigma coordinates

σ = 0

σ = 1 p = ps p = 0 σ = const

Surface pressure:

p

s

= p

s

(x,y,t)

p = 0

p = p

s

σ = 0

σ = 1 Special case: upper boundary at p t = 0

σ := p p

s

σ-coordinate:

General case: upper boundary at p t = const

σ := pp

t

p

s

p

t

σ-coordinate:

(3)

Schär, ETH Zürich

Terrain-following Sigma coordinates

5 10 15 20 25 [km]

5 10 [km]

Schär, ETH Zürich

6

1 30 38 46 5 1

1 21 28 30 1 0.1

Terrain-following hybrid coordinates

p=const

σ=const Hybrid coordinates:

• transition between two different coordinate formulations here: σ-coordinates at low levels, p-coordinates at high levels

• finer descretization at lower levels

(4)

Schär, ETH Zürich

Example of hybrid coordinate

Standard coordinate setting in the aLMo (COSMO) model of MeteoSwiss and DWD σ-based hybrid coordinate

15

10

5

z [km]

Schär, ETH Zürich

8

Outline

Introduction to terrain-following coordinates Coordinate transformations

Pressure coordinates Isentropic coordinates

Sigma coordinates

Smooth terrain-following coordinates

(5)

Schär, ETH Zürich

Basic considerations and objectives

physical space

(1) Transformation should simplify structure of governing equations:

(Example: continuity equation)

height-coordinates:

pressure-coordinates:

∂u

x

  

 

p

+ ∂v

∂y

  

 

p

+ ∂ω

p = 0

∂ρ

∂t + ∂ ( ) ρu

x + ∂ ( ) ρv

y + ∂ ( ρw )

∂z = 0

(nonlinear, prognostic) (linear, diagnostic)

(2) Transformation should map computational domain on a simple grid:

physical space

complex computational

domain

computational space

simple

grid

Schär, ETH Zürich

10

Implementation of coordinate transformations

uj+1,kuj−1,k

2Δx +ωj,k+1−ωj,k−1

2Δp =0

Example: two-dimensional continuity equation Step 1:

Transform equations

Step 2:

Descretize equations

∂ρ

∂t + ∂ ( ) ρ u

x + ∂ ( ρ w )

z =0 height-coordinates

z = const

∂u

x

  

 

p

+ ∂ω

p =0 pressure-coordinates

p = const

descretized p-coordinates

j+1 j j–1

k+1 k k–1

(6)

Schär, ETH Zürich

Transformation of wind

u := Dx

Dt , v : = Dy

Dt , w := Dz Dt Wind vector in (x,y,z)-coordinates

u ˜ := D x ˜

Dt , ˜ v : = D y ˜

Dt , ˜ w := z Dt Wind vector in generalized coordinates

( ˜ x , ˜ y , ˜ z )

ω : = D p D t

Vertical wind in (x,y,p)-coordinates

[hPa/s] Note: ascending ω < 0, descending ω > 0

θ

.

:= D t

Vertical wind in (x,y,θ)-coordinates

[K/s] Note: Dθ/Dt=0 for adiabatic flows

Schär, ETH Zürich

12

Transformation of advection operator

Advection in (x,y,z)-coordinates

D D t = ∂

t + D x D t u {

x

  

 

y,z

+ D y D t v {

y

  

 

x,z

+ D z D t w {

z

  

 

x,y

D D t = ∂

t + D x ˜ D t

˜ u {

x ˜

  

 

y ˜ ,˜ z

+ D y ˜ D t

˜ v {

y ˜

  

 

x ˜ ,˜ z

+ D z ˜ D t

˜ w {

z ˜

  

 

x ˜ , ˜ y

D D t = ∂

t + ˜ u

x ˜

  

 

y ˜ ,˜ z

+ ˜ v

y ˜

 

 

x ˜ ,˜ z

+ ˜ w

z ˜

  

 

x ˜ , ˜ y

Advection in generalized coordinates

( ˜ x , ˜ y , ˜ z )

The advection operator is defined as the total derivative

The transformed advection

operator has the same

formal structure as its

Cartesian counterpart

(7)

Schär, ETH Zürich

∂ χ

s

s

x

  

 

z

Transformation of derivatives

Transformation of z-coordinates to s-coordinates:

New coordinate defined by

s=s(x,y,z) or z=z(x,y,s) Invertibility implies strictly monotone functions

∂χ

∂z = ∂ χ

∂s

s

∂z

Transformation of ∂χ/∂z

z = const s = const

∂ χ

x

 

 

z

∂ χ

x

  

 

s

∂ χ

x

 

 

z

= ∂ χ

x

 

 

s

+ ∂ χ

s

s

x

 

 

z

Transformation of (∂χ/∂x) z

Schär, ETH Zürich

14

Outline

Introduction to terrain-following coordinates Coordinate transformations

Pressure coordinates

Isentropic coordinates Sigma coordinates

Smooth terrain-following coordinates

(8)

Schär, ETH Zürich

Pressure coordinates

In pressure coordinates, all variables are expressed as χ=χ(x,y,p,t). For instance, the pressure field p(x,y,z,t) is described by

z (x,y,p,t) height [m]

z-coordinates

pressure at 3150 m

p-coordinates

height of 700 hPa surface

The geopotential is the potential of gravity:

g = ∂φ ∂ z

The geopotential height is a gravity-adjusted height accounting for variations of g=g(x,y,z).

z

g

= φ g

o

= 1

g

o

g(z)dz

z=0

z

g

o

=9.81 m/s

2

or φ (x,y,p,t) geopotential [m

2

/s

2

] or z g (x,y,p,t) geopotential height [m]

Schär, ETH Zürich

18

∂u

x

 

 

p

+ ∂v

y

 

 

p

+ ∂ω

p =0

DT D t = ω

ρc

p

+ H

∂φ

p = – 1 ρ

D Dt = ∂

∂t + u

∂x

  

 

p

+v ∂ dy

 

 

p

+ω ∂

∂p

ω = Dp Dt

Dv

Dt + fu = – ∂φ

∂y

  

 

p

+ F

y

Du

Dtfv = – ∂φ

∂x

  

 

p

+ F

x

Hydrostatic system in pressure coordinates

Horizontal momentum equations

Hydrostatic equation Equation of state

Thermodynamic equation Continuity equation

p = ρ R T

with and

Fx, Fy, H

Externally specified force and heating rate

φ

=g

oz

Geopotential

(9)

Schär, ETH Zürich

Outline

Introduction to terrain-following coordinates Coordinate transformations

Pressure coordinates Isentropic coordinates

Sigma coordinates

Smooth terrain-following coordinates

Schär, ETH Zürich

21

Isentropic coordinates

θ = T p

ref

p

 

 

R cp

pref 1000 hPa reference pressure R 287 J/(K kg) gas constant for dry air

cp 1004 J/(K kg) specific heat of dry air at constant pressure

Definition: The potential (or isentropic) temperature θ of an air parcel at pressure p is the temperature that the parcel would acquire if adiabatically brought to some reference pressure p ref .

In isentropic coordinates, all variables are expressed as χ=χ(x,y,θ,t).

Disdvantage: The invertibility condition (i.e., existence of an inverse coordinate transformation) implies that isentropic coordinates are restricted to flows with ∂θ/∂z>0.

θ

.

: = D θ D t = 0

Advantage: Isentropic coordinates are particularly attractive for adiabatic flows, as the

vertical velocity (=diabatic heating rate measured in K/s) vanishes, i.e.

(10)

Schär, ETH Zürich

Example 1: gravity waves

(Doyle and Smith, 2003, QJ)

Height [m]

Vertically propagating gravity wave

W [m/s]

1 2 3 4 5 6 7

Trapped gravity wave

8

280 289 298 307 316 325

280 289 298 307 316 325

Idealized simulations showing

θ

and w (U=20m/s, from left to right)

Trapped gravity waves are non-hydrostatic features and not represented in the hydrostatic isentropic

framework

Schär, ETH Zürich

23

Example 2: Cold front

(Neiman, Shapiro, Fedor, 1993, MWR, 121)

(11)

Schär, ETH Zürich

Isentropic coordinates

θ = θs θ = θt

θ = const

θ = const θ = const

Schär, ETH Zürich

25

Fx, Fy, H

Externally specified force and heating rate

φ = goz

Geopotential

Montgomery potential €

∂σ

∂t + ∂(σu)

x

  

 

θ

+ ∂(σv)

y

  

 

θ

+ ∂(σ θ)

.

∂θ = 0

c

p

T θ = ∂M

∂θ

D Dt = ∂

∂t + u

∂x

  

 

θ

+ v

∂y

 

 

θ

+ θ

.

∂θ

Dv

Dt + fu = − ∂M

∂y

  

 

θ

+ F

y

Du

Dtfv = − ∂M

∂x

  

 

θ

+ F

x

Hydrostatic system in isentropic coordinates

Horizontal momentum equations

Hydrostatic equation Equation of state

Thermodynamic equation Continuity equation

p = ρ R T with

φ = gz with

M = φ + c

p

T

σ := − 1 g

∂p

∂θ

D t = θ

.

(12)

Schär, ETH Zürich

Grid structure in θ -coordinates

k = K+1/2

k = 1/2

vertical section

k = K–1/2 k = K–3/2

k = 3/2 k = K k = K–1

k = 1

horizontal section

j–2 j–1/2

j–1 j+1/2

j j+3/2

j+1

i–1 i–1/2

i i+1/2

i+1 i+3/2

i+2

u v v, σ, M u

M, σ, θ, θ, p

.

θ = θs+(k–1/2)Δθ

θ, θ, p

.

θ = θs

θt = θs+(k–1/2)Δθ

s+KΔθ

k = 5/2 k = 2

Schär, ETH Zürich

29

Simplified system in isentropic coordinates

Simplifications: ∂/∂y = 0, D/Dθ = 0, F = 0, f = 0

θ = θs θ = θt

θ = const

θ = θ

t

p

t

= const

θ = θ

s

M

s

= c

p

T + gz

s

Boundary conditions:

• upper boundary is horizontal isentropic surface

• lower boundary is isentropic surface

∂σ

∂t + ∂(σu)

x

  

 

θ

= 0

Du Dt = − ∂M

∂x

  

 

θ

π = ∂M

∂θ

D Dt = ∂

∂t + u

∂x

  

 

θ

Momentum equations

Continuity equation

Hydrostatic equation

with

with

σ = − 1 g

∂p

∂θ

π = c

p

T

θ = c

p

p p

ref

 

 

R cp

with

Exner function

(13)

Schär, ETH Zürich

Step 3: Diagnosis of Montgomery potential => M n+1

Step 2: Diagnosis of pressure and Exner function => p n+1 , π n+1 Integration

Step 1: Integration of momentum and continuity equations => u n+1 , σ n+1

∂σ

∂t + ∂(σu)

x

  

 

θ

= 0

Du Dt = − ∂M

∂x

  

 

θ

π = ∂M

∂θ

D Dt = ∂

∂t + u

∂x

  

 

θ

Momentum equations

Continuity equation

Hydrostatic equation

with

with

σ = − 1 g

∂p

∂θ

π( p) = T

θ = c

p

p p

ref

 

 

R cp

with

Simplified system in isentropic coordinates

Simplifications: ∂/∂y = 0, D/Dθ = 0, F = 0, f = 0

Schär, ETH Zürich

31

k = K+1/2

k = 1/2

vertical section

k = K–1/2

k = 3/2 k = K k = K–1

k = 1

u σ, M

θ = θs + (k–1/2)Δθ

p

θ = θs

θt = θs + KΔθ θ = θs + (K–1/2)Δθ

θ = θs + (1/2)Δθ θ = θs + (1/2)Δθ θ = θs + (K–1)Δθ

k

k+1/2 θ = θs + kΔθ

i i –1/2 i+1/2

Grid structure with simplified θ -coordinates

Primary model variables

σi,k (k=1,.. K)

isentropic density

Mi,k (k=1,.. K)

Montgomery potential

ui+1/2,k (k=1,.. K)

horizontal velocity

pi,k+1/2 (k=0,.. K)

pressure

(14)

Schär, ETH Zürich

Step 1: Integration of momentum and continuity equations

Introduce vertical descretization: σ

k

, M

k

, u

k

For each level k, the resulting system is formally identical with the shallow-water equations.

∂u

k

∂t + u

k

∂u

k

∂x = − ∂M

k

∂x

  

 

θ

∂σ

k

∂t + ∂ (σ

k

u

k

)

x

  

 

θ

= 0

The isentropic system can be interpreted as a stack of shallow-water layers. The integration of the momentum and continuity equations employs the same methods as those in a shallow-water model. After a time-step, the variables u

i,k

and

σi,k

will be known at time t+

Δt.

Du

Dt + ∂ ( h + H )

∂x = 0

∂H

∂t + ∂(uH )

∂x = 0

Isentropic system Shallow-water system

Schär, ETH Zürich

33

Step 2: Diagnosis of pressure and Exner function

Diagnose p

n+1

from σ

n+1

:

σ = − 1 g

∂p

∂θ

σ

in+1,k

= − 1 g

p

i,k+1 / 2n+1

p

i,k−1 / 2n+1

Δθ

π = c

p

T

θ = c

p

p p

ref

 

 

R cp

Compute π

n+1

from p

n+1

:

Integrate from top to bottom

p

i,k−1 / 2n+1

= p

i,k+1 / 2n+1

+ gΔθσ

i,kn+1

σ

k

p

k+1/2

p

k–1/2

Requires upper b.c.

p

K+1/2

p

K+1/2

(15)

Schär, ETH Zürich

π

i,k−1 2

= M

i,k

M

i,k−1

Δθ

π = ∂M

∂θ

Step 3: Diagnosis of Montgomery potential

Diagnose M

n+1

from π

n+1

:

Requires lower b.c.

M

k=1

M

k=1

M

i,kn+1

= M

i,k−1n+1

+ Δθπ

i,k–1/ 2n+1 Integrate from bottom to top

π

k–1/2

M

k

M

k–1

Schär, ETH Zürich

35

Outline

Introduction to terrain-following coordinates Coordinate transformations

Pressure coordinates Isentropic coordinates

Sigma coordinates

Smooth terrain-following coordinates

(16)

Schär, ETH Zürich

∂u

x

 

 

p

+ ∂v

y

 

 

p

+ ∂ω

p =0

DT D t = ω

ρ c

p

+ H

∂φ

p = – 1 ρ

D Dt = ∂

∂t + u

∂x

  

 

p

+v ∂ dy

  

 

p

+ω ∂

∂p

ω = Dp Dt

Dv

Dt + fu = – ∂φ

∂y

 

 

p

+ F

y

Du

Dtfv = – ∂φ

∂x

  

 

p

+ F

x

Hydrostatic system in pressure coordinates

Horizontal momentum equations

Hydrostatic equation Equation of state

Thermodynamic equation Continuity equation

p = ρ R T

with and

p = 0 : ω = 0

p = p

s

: ω = ∂p

s

∂t +v

s

⋅∇

h

p

s

Boundary conditions at top:

Boundary conditions at surface:

φ= g z

s

Schär, ETH Zürich

37

p

s

∂t +∇

σ

⋅ ( p

s

v ) + p

s

∂ σ ˙

∂σ =0

DT Dt = RT

c

p

σp

s

ω + H

σ p

s

= ρ RT

∂φ

∂ σ = − RT σ

Du

Dtfv = − ∂φ

∂x

  

 

σ

RT p

s

∂p

s

∂x + F

x

D Dt = ∂

∂t + u

∂x

  

 

σ

+ vdy

  

 

σ

+ σ ˙ ∂

∂σ

σ = ˙ D σ Dt

Hydrostatic system in sigma coordinates

Horizontal momentum equations

Hydrostatic equation Equation of state

Thermodynamic equation Continuity equation

with and

ω = σ ∂p

s

∂t + u ∂p

s

∂x + v ∂p

s

∂y

 

  + σ ˙ p

s

p = 0 : σ = 0, ˙ σ = 0 p = p

s

: σ =1, ˙ σ = 0 Boundary conditions at top:

Boundary conditions at surface: φ= g z

s

(17)

Schär, ETH Zürich

k = 1/2

k = K+1/2 p = ps, σ = 1

p = 0, σ = 0

vertical section σ = p / ps

k = 3/2 k = 5/2

k = K–1/2 k = 7/2

k =1 k =2 k =3

k = K horizontal section

j–2 j–1/2

j–1 j+1/2

j j+3/2

j+1

i–1 i–1/2

i i+1/2

i+1 i+3/2

i+2

u v T, v u

Τ, φ, σ

.

, ω φ, σ

.

, ω

σ = (k-1/2) Δσ

Grid structure in σ -coordinates

Schär, ETH Zürich

39

Vertical wind and surface pressure tendency

If the variables u, v, T, p

s

are known, the vertical wind may be diagnosed Integrate continuity equation from σ’=0 to σ’=σ

Solve for vertical wind:

Prognosis of surface pressure tendency: Integrate from σ’=0 to σ’=1

σ ˙

σ ∂p

s

∂t + ∇

σ

⋅ ( p

s

v )

0 σ

d σ + p

s

σ ˙

σ

= 0

σ ˙ (σ ) = − σ p

s

∂p

s

∂t − 1

p

s

σ

⋅ ( p

s

v )

0 σ

d σ

p

s

∂t = − ∇

σ

⋅ ( p

s

v )

0 1

d σ

p

s

∂t + ∇

σ

⋅ ( p

s

v ) + p

s

∂ σ ˙

∂σ =0 =>

(18)

Schär, ETH Zürich

Integration in sigma-coordinates

Variables u, v, T, p

s

and φ known at time t

• Computation of surface pressure tendency ∂p

s

/∂t

• Diagnosis of vertical wind

• Computation of tendencies ∂u/∂t, ∂v/∂t and ∂T/∂t

• Time step for u, v, T and p

s

to time t+Δt

• Diagnosis of gepotential φ

Variables u, v, T, p

s

and φ known at time t+Δt

σ ˙

Schär, ETH Zürich

41

Outline

Introduction to terrain-following coordinates Coordinate transformations

Pressure coordinates Isentropic coordinates

Sigma coordinates

Smooth terrain-following coordinates

(19)

Schär, ETH Zürich

Alpenpanorma (Bella Tola)

Real topography is extremely complex.

This implies awkward terrain-following grids.

How will this affect quality of numerical solutions?

=> Compare different coordinate formulations! <=

Schär, ETH Zürich

44

Sigma coordinates

5 10 15 20 25 [km]

5 10 [km]

(20)

Schär, ETH Zürich

Hybrid coordinates

5 10 15 20 25 [km]

5 10 [km]

Schär, ETH Zürich

46

Smooth Level Vertical (SLEVE) coordinate

5 10 15 20 25 [km]

5 10 [km]

Scale-dependent decay of terrain-features with height

Schär et al. 2003

(21)

Schär, ETH Zürich

Tested numerical schemes:

• Centered in space and time, 2nd order

• Centered in space and time, 4th order

• Upstream, 1st order

• MPDATA (Smolarkiewicz), 2nd order Numerics in conservative flux form

Idealized Advection Test

Tested coordinates:

• Sigma

• Hybrid

• SLEVE

• Height (reference)

8Δx Topography:

wave-length of 8Δx

Schär, ETH Zürich

48

Coordinates

Sigma Hybrid

SLEVE Reference

(22)

Schär, ETH Zürich

Error Fields of idealized advection test

Hybrid

SLEVE Reference

Sigma

Schär, ETH Zürich

52

Interpretation (for 2nd-order centered scheme)

Truncation error for 1D linear advection equation: ∂ρ

∂t + ∂ ( ) u ρ

∂x = 0 (a) regular grid:

Δx x

(b) general grid:

Δx x

Δx

(23)

Schär, ETH Zürich

Interpretation (for 2nd-order centered scheme)

(a) regular grid:

Truncation error E

reg

= Δx

2

6 u

3

ρ

∂x

3

+ O ( Δx

3

) 2nd-order scheme

dominates in presence of small-scale anomalies

dominates in presence of small-scale grid deformations (b) general grid:

Transformed equation with Jacobian Truncation error

J = ∂X

∂x ≈ ΔX Δx

∂ρ

∂t + J ∂ ( ) u ρ

∂X = 0

E

trans

= Δx

2

6 u

3

ρ

∂x

3

+ J

2

Δx

2

12 u

2

J

−2

∂x

2

∂ρ

∂x + 3 ∂J

−2

∂x

2

ρ

∂x

2

 

  + O ( Δx

3

)

have same leading order

Truncation error for 1D linear advection equation: ∂ρ

∂t + ∂ ( )

∂x = 0

Schär, ETH Zürich

54

Idealized Flow Test

Nonhydrostatic flow past small-amplitude topography Analytical solution

propagating hydrostatic wave

decaying nonhydrostatic wave

(24)

Schär, ETH Zürich

Idealized Flow Tests

SigmaSLEVE

MC2, N=0.01s

-1

MC2, isothermal LM, N=0.01s

-1

Schär et al. 2003, Klemp et al. 2003

Referenzen

ÄHNLICHE DOKUMENTE

samples of animals. To reduce the experimental doses, and thus the unreliability of extrapolations outside the experimental range, one could think of conducting experiments

The model that has been developed here is a decision theoretic formulation of the regulatory decision problem in standard setting and it gives a stepwise solution of how a

This follows from the fact that in order to calculate optimal effluent charges, i t is sufficient to know the aggregate volume of waste flows from the different pollution sources,

The aim of this research is to evaluate the applicability of the HiSIM model (HiSIM HV model), which is one of the CMC standard models for MOSFETs, to describe power devices

Based on the molecular parameters of the X-ray determination the IR and Raman spectra of the complex have been assigned by normal coordi-

Based on the molecular parameters of the X-ray determinations the low temperature (10 K) IR and Raman spectra of the (n-Bu 4 N) salts have been assigned by normal

Fusion protein abundance of different GFP-tagged velvet domain containing proteins and the catalytically active subunit CsnE of the COP9 signalosome were

We addressed this issue and found that ground state depletion (GSD) microscopy can resolve heterostructured nanowires with a 5-fold resolution enhancement over confocal microscopy.