• Keine Ergebnisse gefunden

Mathematics for Engineering I

N/A
N/A
Protected

Academic year: 2021

Aktie "Mathematics for Engineering I"

Copied!
2
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Brandenburg Technical University (BTU) Cottbus

Chair of Mathematics for Enineering Prof. Dr. R. Reemtsen, Dr. F. Kemm

Mathematics for Engineering I

Problem Sheet No. 7, December 03/04, 2007 www.math.tu-cottbus.de/˜kemm/lehre/erm

Class Problems

1. Check whether the lines g1, g2 are skew, parallel, or intersect in one point. If they intersect, also try to determine the point of intersection. If they are skew lines, determine the distance between g1 and g2.

a)

g1 : ~x=

 1 0 0

+t

−1 1 1

; g2 : ~x=t

 1 1 1

.

b)

g1 : ~x=t

 2

−1 2

; g2 : ~x=

 2 2 0

+t

 0 0 1

.

2. Let E be a plane in space, defined by x1+x2−x3 =−4.

a) Rewrite the plane in the Hesse normal form.

b) Find a parameter representation of this plane.

b) Find a lineg that is orthogonal to E.

3. Let a lineg1be given by the equationsx1+x2 = 1 andx3 = 0. Find the intersecting line which is orthogonal to g1 and runs through the point (1,1,1).

4. For the line in the plane given by the pointsA= (2,3) andB = (−10,−2) compute a) a parameter representation of the line,

b) the Hesse normal form of the line, c) the distance of the line to the origin,

d) the shortest position vector pointing from the origin to the line.

(2)

Homework

1. Check whether the lines g1, g2 are skew, parallel, or intersect in one point. If they intersect, also try to determine the point of intersection. If they are skew lines, determine the distance between g1 and g2.

a)

g1 : ~x=

 0 1 2

+t

 3 2 2

; g2 : ~x=

 1 1 1

+t

 4 2 1

.

b)

g1 : ~x=t

 2 3 1

; g2 : ~x=

 1 2 3

+t

 3 1 2

.

2. Let E be a plane in space, defined by 2x1−x2−3x3 = 2.

a) Rewrite the plane in the Hesse normal form.

b) Find a parameter representation of this plane.

c) Find a lineg that is orthogonal to E.

3. The line g1 runs through the points (1,−1,1) and (−1,−1,−1).

The line g2 runs through (−1,1,1) and (1,1,−1).

a) Give a point-direction equation for each of both lines.

b) Evaluate the points of intersection of the lines gi with the plane x3 = 3.

4. Let a lineg1be given by the equationsx2+x3 = 1 andx1 = 0. Find the intersecting line which is orthogonal to g1 and runs through the point (2,−1,3).

5. For the plane in the three dimensional space which is given by the points A= (1,0,0), B = (3,−2,2) andC = (2,−4,−2) compute

a) a parameter form of the plane, b) the Hesse normal form of the plane,

c) the distance of the plane to the origin,

d) the shortest position vector pointing from the origin to the plane.

6. Solve the following equations and inequalities:

|x−5| ≤ |x2−7|,

|x+ 2| − |2−x|= 2|x|. 7. Solve the following equations in the complex plane:

z9 =−1, z2+ 2i= 1.

Referenzen

ÄHNLICHE DOKUMENTE

Pinch and slide the side edge guides to the sides of the paper cassette, and then slide the front edge guide to adjust to the paper size3. Load A4 paper toward the front edge guide

Dies erg¨anzt die Ergebnisse, dass die Gerade durch I und den Schwer- punkt G des Dreiecks der geometrische Ort der Punkte ist, deren baryzentrische Ko- ordinaten projektiv linear in

Then the number of swtiches in the first k positions for 2N consecutive per- mutations ist at most kn. In other words, the number of ≤ k-sets of n points is at

Кинетическая теория колебаний параметров поточной линии Состояние равновесных производственных процессов может быть описано моделями теории очередей (TQ-model)

Il s’agit essentiellement de régions métropolitaines, en particulier des régions métropolitaines (Lisbonne, Athènes, Prague, Budapest, Varsovie, Bratislava, Francfort (Oder)).

Fishes most frequently taken in this biotope consisted of Lutjanus, Epinephelus, Scomberoides, Sphyraena, Caranx, Acanthurus, Ctenochaetus, Variola, Pempheris, Epibulus,

the current commercial availability of a wide range of such means of delivery raises the danger of their acquisition and employment by a range of non-State actors

The spectra were recorded in the region from 8.0 to 40.0 GHz with a conventional microwave spectro- meter 2 equipped with an 8m-absorption cell and employing 33