• Keine Ergebnisse gefunden

The Metric Average of 1D Compact Sets

N/A
N/A
Protected

Academic year: 2022

Aktie "The Metric Average of 1D Compact Sets"

Copied!
13
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Robert Baier, NiraDyn and ElzaFarkhi

Abstrat. Westudypropertiesofabinaryoperationbetweentwoom-

pat sets depending on a weight in [0;1℄, termed metri average. The

metriaverage isused inspline subdivision shemes for ompat setsin

IR n

,instead oftheMinkowskionvexombination ofsets,toretain non-

onvexity[3℄. SomepropertiesofthemetriaverageofsetsinIR,likethe

anellationproperty,andthelinearbehavioroftheLebesguemeasureof

the metri average with respet to the weight, are proven. We present

analgorithmforomputingthemetriaverageoftwoompatsetsinIR,

whihareniteunionsofintervals,aswellasanalgorithmforreonstrut-

ing one of themetriaverage's operands, given the seondoperand,the

metriaverageandtheweight.

x1. Introdution

Inthispaperwestudypropertiesofabinaryoperation,termedmetriaverage,

between twoompatsetsA;BIR.

For two ompat sets A;B in IR n

and a weight t 2 [0;1℄, the metri

averageof AandB withweight tis givenby

A

t B=

tfag+(1 t)

B

(a) : a2A [

t

A

(b)+(1 t)fbg : b2B ;

where

A

(b)isthesetofalllosestpointstobfromthesetA,andtheaddition

aboveisthe Minkowskiadditionofsets.

Themetriaverageisintroduedin[1℄forpieewiselinearapproximation

of set-valuedfuntions. It is usedin spline subdivisionshemes for ompat

sets, toreplae the average between numbers [3℄. With this binary average,

the limitset-valued funtionof aspline subdivisionshemeoperatingon ini-

tialdataonsistingofsamplesofaunivariateLipshitzontinuousset-valued

funtion, approximatesthesampledfuntionwitherrorofthe orderof O(h),

for samples h distane apart [3℄. Thus the limitset-valued funtions of the

spline subdivision shemes retain the non-onvexity nature of the approxi-

matedset-valuedfuntions,whileif we usethe Minkowskiaverageinstead of

ApproximationTheoryX 1

CharlesK.Chui,LarryL.Shumaker,andJoahimStoekler(eds.),pp.1{13.

Copyrighto

2001byVanderbiltUniversityPress,Nashville,TN.

ISBN0-8265-xxxx-x.

Allrightsofreprodutioninanyformreserved.

(2)

the metri average, any limit is onvex, and the spline subdivision shemes

failtoapproximateset-valuedfuntionswithnon-onvex images[4℄.

The metriaveragehas manyimportantproperties [1℄,[3℄. Itis asubset

of theMinkowskiaveragetA+(1 t)B,generallynon-onvex, reovering the

set Afor t=1, andB fort=0. Here weonsider themetri averageas an

operationbetween ompat setsinIR. Inthis settingthe metriaverage has

several more important properties, suh as the anellation property whih

guarantees that for a given weight t, if the metri average and one of its

operandsare known, thenthe seond operand is determined uniquely. Suh

a property is valid for Minkowskisums, only for onvex sets, and not valid

for non-onvex ones. Whileredundantonvexifyingparts mayappearin the

Minkowskiaverageofnon-onvexsets,therearenoredundaniesinthemetri

average of ompats in IR. In this sense the metri average of sets in IR is

optimal.

Wealsoshowthattheomputationofthemetriaverageisnotostlyand

doesnotrequiretheomputationofdistanes. Bypresentinganalgorithmfor

thealulationofthemetriaverage,weprovethatthenumberofoperations

required is linear in the sum of the numbers of losed intervals in the two

operands,independentlyofthe weightparameter.

ThemetriaverageforsetsinIRisimportantinthereonstrutionof2D

setsfromtheirross-setions,andmoregenerally,inapproximatingset-valued

funtions withimagesinIR.

Here is an outline of the paper: Denitions and notation arepresented

in Setion 2. Properties of the metri average for 1D sets are presented in

Setion3,without proofs. Analgorithmfor alulatingthemetriaverage is

giveninSetion4. Theanellationpropertyisderivedfromanalgorithmfor

the reonstrutionof the set Afrom the sets B;C and the weight t2 (0;1)

whenC =A

t

B. Thisis doneinSetion5,whereaentraltheoremfor the

validityoftheanellationalgorithmisstated. Themainproofsarepostponed

tothe lastsetion.

x2. Denitions and Notation

DenotebyK (IR n

)the setofallompat,nonempty subsetsofIR n

, byC(IR n

)

thesetofallompat,onvex,nonemptysubsetsofIR n

andbyK

F

(IR)theset

of all ompat, nonempty subsets of IR whih arenite unionsof nonempty

intervals.

TheLebesguemeasureofthesetAisdenotedby(A). TheHausdordistane

between the sets A;B2 K (IR n

) ishaus (A;B). The Eulideandistane from

a point a to a set B 2 K (IR n

) is dist(a;B) = inf

b2B

ka bk

2

. The set of all

projetionsof a2IR n

onthe setB2K (IR n

)is denotedas

B (a):=

b2B : ka bk

2

=dist(a;B) :

The setdierene ofA;B2K (IR n

)isAnB=fa : a2A; a62Bg.

AlinearMinkowskiombinationoftwosetsAandBis

(3)

for A;B2K (IR )and;2IR.

TheMinkowskisumA+BorrespondstoalinearMinkowskiombinationwith

==1. ThelinearMinkowskiombinationwith;2[0;1℄,+=1,is

termedMinkowskiaverageorMinkowskionvexombination.

Asegmentis denotedby[;d℄=f+(1 )d : 01g,for;d2IR n

.

Denition 1. Let A;B 2 K (IR n

) and 0 t 1. The t-weighted metri

average ofAandBis

A

t B=

tfag+(1 t)

B

(a) : a2A [

t

A

(b)+(1 t)fbg : b2B (1)

where thelinearombinationsin (1)areintheMinkowskisense.

The setsA;B2K

F

(IR)aregivenas

A= M

[

i=1 [a

l

i

;a r

i

℄ B=

N

[

j=1 [b

l

j

;b r

j

℄: (2)

Eahintervalisproper,i.e.theleftendpointis notbiggerthanthe rightone,

equalityispossiblewhihstandsforaso-alledpoint(ordegenerate)interval.

The intervalsareorderedinan inreasingorder, i.e. a r

i

<a l

i+1 andb

r

j

<b l

j+1

for allrelevanti;j.

Weextendthe representation(2)toaommonlosedintervalontaining

theonsideredsetsbyaddingpointintervalstotheleftandtotherightofthe

sets:

A= M+1

[

i=0 [a

l

i

;a r

i

℄; B= N+1

[

j=0 [b

l

j

;b r

j

℄; (3)

where

x

min

=a l

0

=a r

0

=b l

0

=b r

0

<minfa l

1

;b l

1 g ja

l

1 b

l

1

j; (4)

x

max

=a l

M+1

=a r

M+1

=b l

N+1

=b r

N+1

>maxfa r

M

;b r

N g+ja

r

M b

r

N j: (5)

ThishoieguaranteesthatC=A

t

Bishangedonlybytheadditionofthe

pointintervalsfx

min

gandfx

max

gforanyt2[0;1℄. DenoteX=[x

min

;x

max

℄.

The \holes"of eahset, namelythemaximalopenintervalsinX,whih

donotintersettheset,playanimportantrole,aswellastheirenters. Denote

the holesby

H A

i :=(a

r

i

;a l

i+1

); i=0;:::;M; H B

j :=(b

r

j

;b l

j+1

); j =0;:::;N; (6)

andtheirentersby

a

i :=

a r

i +a

l

i+1

i=0;:::;M; b

j :=

b r

j +b

l

j+1

; j=0;:::;N: (7)

(4)

The dualrepresentationof AandB is:

A=Xn

A; where

A= M

[

i=0 H

A

i

; (8)

B=Xn

B; where

B= N

[

j=0 H

B

j

: (9)

The t-weighted metriaverage A

t

Bis denotedbyC,

C =A

t B=

L+1

[

k=0 [

l

k

; r

k

℄; (10)

where l

0

= r

0

=x

min ,

l

L+1

= r

L+1

=x

max

, andthe enter of the k-th hole

H C

k

=( r

k

; l

k+1

)is denotedby

k .

x 3. Properties of the MetriAverage

The followingpropertiesof themetriaverageareknown[3℄:

Let A;B;C2K (IR n

)and0t1,0s1. Then

1. A

0

B=B; A

1

B=A; A

t

B=B

1 t A:

2. A

t

A=A.

3. A\BA

t

BtA+(1 t)Bo(A[B).

4. haus (A

t B;A

s

B)=jt sjhaus(A;B):

The followingpropertiesarevalidforsetsinIR.

Proposition 2. Let A;B2K (IR),C;D2C(IR),t2[0;1℄. Then

(a) C

t

D=tC+(1 t)D,

(b) (A

t

B)=t(A)+(1 t)(B).

() (A

t

B)=t(

A)+(1 t)(

B).

The proofof the rstassertionfollows triviallyfrom the denition. The

third assertion is proven inthe last setion. The seond one follows diretly

from thethird.

In the following we present two properties of the metri average whih

arevalidfor setsinK

F (IR).

Proposition3. LetA;B2K

F

(IR),andletH(A)denotethenumberofholes

of A. Then foreveryt2(0;1)

(a) H(A

t

B)H(A)+H(B)

(b) The number of operations neessary for the alulation of A

t B is

O(H(A)+H(B)).

The rstassertion is proven in the lastsetion. The seond one follows

from thealgorithmpresented inthesequel.

(5)

Proposition 4. Let A 0

;A 00

;B2K

F

(IR). Thenfor anyt2(0;1)

A 0

t B=A

00

t

B=)A 0

=A 00

: (11)

The proof of this laim follows from the onsiderations in setion 5. It

an be extended to sets in K (IR ), sine all relevant statements arevalid for

setsonsistingof aninnitenumberof ompatsegments.

Tounderstandthenatureofthe metriaverageoftwosetsAandB,we

distinguishfourtypesofholes inAwithrespettoB, andvieversa:

Denition5. LetH A

i

beaholeofA. Aordingtoitspositionwithrespet

toB,H A

i

isalled:

1. pairedwithaholeofB,ifthereisaholeH B

j

ofB,suhthata

i 2H

B

j and

b

j 2H

A

i .

2. pairedwith apointin B,ifthe enter a

i 2B.

3. leftshadow ofaholeof B,ifthereisaholeH B

j

of B, suh thata

i 2H

B

j ,

andb

j a

l

i+1 .

4. rightshadowofaholeofB,ifthereisaholeH B

j

ofB,suh thata

i 2H

B

j ,

andb

j a

r

i .

Clearly, eah holeof Abelongstoexatly oneof theaboveategories of

holes withrespettoB,andvieversa.

NotethatH A

0

ispairedwithH B

0

bythehoieofx

min

,andsimilarly,H A

M

is pairedwithH B

N

by thehoieofx

max .

WhenAisaveragedwithBandt2(0;1℄,eahholeofAreatesa\hild"

holeof C,whihinherits thetypeofitsparentwithrespettoB,asisstated

below.

Proposition6. LetH A

i

andH B

j

beholesofAandB,respetively,t2[0;1℄

andC =a

t B.

1. IfH A

i

andH B

j

arepaired,thenthe interval

H C

=tH A

i

+(1 t)H B

j

isahole ofC, pairedwithbothH B

j

andH A

i .

2. IfH A

i

ispairedwithapointofB,thenfor t>0theinterval

H C

=tH A

i

+(1 t)fa

i g

isahole ofC, pairedwiththepointa

i 2B.

3. IfH A

i

isaleftshadowof H B

j

,then fort>0theinterval

H C

=tH A

i

+(1 t)fb r

j g

isahole ofC, andaleftshadow ofH B

j .

4. IfH A

i

isarightshadowof H B

j

, thenfort>0the interval

H C

=tH A

+(1 t)fb l

g

(6)

isahole ofC, andaright shadowofH B

j .

The proof ofthispropositionis postponed tothelastsetion.

InterhangingtherolesofAandBandreplaingtwith1 tinProposition

6, weget that for t2(0;1)some holes of C are generatedby holes of A,or

respetively,by holes of B, by thefour ways presented above. The following

proposition, proved in the last setion, states that every hole of C has this

property.

Proposition 7. Let H C

=( 0

; 00

)beaholeofC =A

t

B, t2[0;1℄. Then

H C

isobtained eitherfrom aholeof A,byone ofthe fourwayspresented in

Proposition6,orfromahole ofB, inasymmetriway.

Inthe next examplewehaveplottedthe one-dimensionalsetsA,B and

thesetC

t

=A

t

Binonepiture,givingBatthey-oordinate0,Aaty=1,

andC

t

aty= tfor t= 1

4

; 1

2

; 3

4

(seeFigure 1).

The linesonneting the boundary points of A topoints of B and vie

versa,show whih holes of Aareonneted withwhih holes orpointsof B,

aording to their type with respetto B, and similarly for the holes of B.

These linesgivetheholesof C

t

whenrossedwiththeliney=t.

C = B 0 C 1/4 C 1/2 C 3/4 C = A 1

1 3 4 5 6.5 14 16

0 1 5 6 7.5 8 9 10 11.5 14

Fig. 1. ThesetsA,BandC

t

ofExample8.

Example 8. Considerthe twosets

A=[0;1℄[[5;6℄[[7:5;8℄[[9;10℄[[11:5;14℄;

B=[1;4℄[[5;6:5℄[[14;16℄:

Forthese twosets apossibleX is [ 2;20℄. The metri averageC

t

=A

t B

is C

t

=Xn

C

t , where

C = t( 2;0)+(1 t)( 2;1)

[ t(1;5)+(1 t)f3g

[ tf5g+(1 t)(4;5)

(7)

[ t(6;7:5)+(1 t)f6:5g [ t(8;9)+(1 t)f6:5g

[ t(10;11:5)+(1 t)(6:5;14)

[ t(14;20)+(1 t)(16;20)

:

The end points of X and of A;B;C

t , x

min

= 2; x

max

= 20, are not

present inthepiture.

The holesof thesetAarerelated tothesetBasfollows:

Thehole(1;5)ispairedwithapointinB,eahoftheholes(6;7:5),(8;9)

is aleftshadow ofaholeof B,thehole (10;11:5)is pairedwithaholeof B.

The holesof thesetB arerelated tothe setAasfollows:

The hole (4;5)is aright shadow of ahole of A andthe hole (6:5;14) is

pairedwithahole ofA.

SeeFigure 1forthe waytheseholes indueholes inC

t

=A

t B.

x4. Algorithmfor Computingthe Metri Average

In this setion we propose an algorithm for alulating the metri average

C =A

t

B, oftwogivensetsA;B2K

F

(IR),andt2(0;1).

Relying on Propositions 6 and 7, we onstrut the holes of the set C

onsidering the generating holes of A andB, in an order from left to right,

determining thetypeofeah hole.

Algorithm for alulating C=A

t B

Given aret2(0;1); A;B2K

F

(IR)of theform (3).

1. H C

0 :=tH

A

0

+(1 t)H B

0

; i:=1; j :=1; k:=1:

2. WhileiM andj N,

(a) IfH A

i

is arightshadowof H B

j 1 ,then

H C

k :=tH

A

i

+(1 t)fb l

j

g; k:=k+1; i:=i+1.

(b) Else,ifH B

j

isarightshadowof H A

i 1 , then

H C

k

:=tfa l

i

g+(1 t)H B

j

; k:=k+1; j:=j+1.

() Else,ifH A

i

is aleftshadowof H B

j ,then

H C

k :=tH

A

i

+(1 t)fb r

j

g; k:=k+1; i:=i+1.

(d) Else,ifH B

j

isaleftshadowof H A

i ,then

H C

k

:=tfa r

i

g+(1 t)H B

j

; k:=k+1; j :=j+1.

(e) Else,ifa

i

<b r

j ,then

H C

k :=tH

A

i

+(1 t)fa

i

g; k:=k+1; i:=i+1.

(f) Else,ifb

j

<a r

i ,then

H C

k :=tfb

j

g+(1 t)H B

j

; k:=k+1; j :=j+1.

(g) Else(H A

i

andH B

j

arepaired)

H C

k :=tH

A

i

+(1 t)H B

j

; k:=k+1; i:=i+1; j:=j+1.

End ofthe loop.

3. L:=k 1; C=Xn

L

[

k=0 H

C

k

:

Eah hole of A,B belongs exatlytoone of the ases desribed inStep

(8)

theotherset,isonnetedtoasinglepointoftheothersettogenerateahole

of C (ases (a)-(f)of Step2). Notethatthe ondition(e)(resp. (f))heked

aftertheondition(a)(resp.(b))yieldsthattheholeH A

i

(resp. H B

j

)ispaired

withapointof B(A).

Notealsothattheorderoftheholesfromthelefttotherightyieldsthat

alltherightshadowholesofagivenholeareonsideredafterit. Thatiswhy,

in the ases (a),(b) of Step 2 we hek for right shadows of the previously

onsidered holesH A

i 1 ,H

B

j 1 .

x5. CanellationProperty

Toprovethe anellationproperty(11),wepresentan algorithmwhihom-

putesthe setA,ift2(0;1); B andC(=A

t

B)aregiven.

The followingpropositionis thebasisforour anellationalgorithm.

Proposition9. Givenaret2(0;1),C=A

t

BwithholesH C

k

(0kL),

andB withholesH B

j

(0j N).

1. Let H C

k

and H B

j

bepaired anddene a 0

=a 0

k

= 1

t

r

k +(1

1

t )b

r

j

; a 00

=

a 00

k

= 1

t

l

k+1 +(1

1

t )b

l

j+1 . Ifa

0

<a 00

, then(a 0

;a 00

)XnA.

2. LetH C

k

bepairedwithapointofB,anddenea 0

=a 0

k

= 1

t

r

k +(1

1

t )

k ,

a 00

=a 00

k

= 1

t

l

k+1 +(1

1

t )

k

. Then(a 0

;a 00

)XnA.

3. LetH C

k

bealeftshadowoftheholeH B

j

,anddenea 0

=a 0

k

= 1

t

r

k +(1

1

t )b

r

j , a

00

=a 00

k

= 1

t

l

k+1 +(1

1

t )b

r

j

. Then(a 0

;a 00

)XnA.

4. Let H C

k

be arightshadow hole ofH B

j

, anddene a 0

=a 0

k

= 1

t

r

k +(1

1

t )b

l

j+1 , a

00

=a 00

k

= 1

t

l

k+1 +(1

1

t )b

l

j+1

. Then(a 0

;a 00

)XnA.

Denition 10. A hypotheti hole (a 0

;a 00

) of A is any properopen interval

(a 0

;a 00

)onstrutedinoneofthefourwaysdesribedintheaboveproposition.

Let C =A

t

B; t2 (0;1). ByProposition9, every hypotheti hole of

Ais asubsetofsome (real)holeof A. Thusthesetof allhypothetiholes is

ontainedinthesetof holesof A.

Onthe otherhand, byProposition6,everyholeof Ageneratesa\hild"

hole of C of the same type with respet to B. The proedure desribed in

Proposition9guaranteesthateveryholeof Awillbereoveredbyits \hild"

holeofC. ThusthesetofallholesofAisontainedinthesetofallhypotheti

holes of Aonstrutedfrom the holes of C. Therefore the setof all holes of

Aisequal tothesetof allhypothetiholes.

Theorem 11. Let J =fk : 0kL; a 0

k

<a 00

k

g,wherea 0

k

;a 00

k

aredened

inProposition9. ThenA=Xn

[

k2J (a

0

k

;a 00

k )

.

NotethatPropositions6,9andTheorem11 remaintrue whenB andC

are inniteunionsof ompat segments, sine their proofs donot use essen-

tially the nite number of segments. Thus the anellation property is true

(9)

Given twosets B;C 2 K

F

(IR), and a weight t 2 (0;1), we propose the

followingalgorithmfor reonstrutingA2K

F

(IR),ifC=A

t B.

Canellation Algorithm

1. J :=;; k:=0.

2. WhilekL,

(a) Computea 0

k

;a 00

k

aordingtoProposition9.

(b) Ifa 0

k a

00

k

, thenJ :=J [fkg.

3. A=[b l

0

;b r

N+1

℄n

L

[

k =0

k=2J (a

0

k

;a 00

k )

:

x6. Proofs

First weprovepropositions6,7, whih arethen usedinthe proof of Proposi-

tions2()and3(a).

Proof of Proposition 6:

1. Let H A

i

be paired with H B

j

. Denote 0

= ta r

i

+(1 t)b r

j ,

00

= ta l

i+1 +

(1 t)b l

j+1

. Toprove that H C

= ( 0

; 00

) = tH A

i

+(1 t)H B

j

is a hole

of C = A

t

B, we rstprovethat H C

\C =;. Supposethat there is

2H C

\C. Then=ta 0

+(1 t)b 0

,whereeithera 0

2A;b 0

2

B (a

0

),or

a 0

2

A (b

0

);b 0

2B. Supposethatb 0

2

B (a

0

),wherea 0

2A,anda 0

a r

i .

Then sine a 0

< b

j

, it follows that b 0

b r

j

, and = ta 0

+(1 t)b 0

ta r

i

+(1 t)b r

j

= 0

, i.e. 2= H C

, a ontradition. Similarly one gets

ontraditionsif a 0

a l

i+1

;b 0

2

B (a

0

), orif a 0

2

A (b

0

), where b 0

2 B

satises bb r

j

orbb l

j+1 .

Thuswehaveproven that H C

XnC. To verify that H C

isa hole of

C, wehavetoprovethat its endpoints areelementsof C. This follows

trivially from the denition of H C

and the fat that, for the left end

points, either b r

j 2

B (a

r

i ), or a

r

i 2

A (b

r

j

), and similarly, for the right

endpoints, eitherb l

j+1 2

B (a

l

i+1 ), ora

l

i+1 2

A (b

l

j+1 ).

TheproofthatH C

ispairedwithAandBistrivialandfollowsfromthe

relation

0

+ 00

2

=ta

i

+(1 t)b

j 2H

A

i

\H B

j .

2. LetH A

i

bepairedwithapointofB,i.e. a

i

2B. Thena r

i

;a l

i+1 2

A (a

i ),

hene 0

=ta r

i

+(1 t)a

i 2C,

00

=ta l

i+1

+(1 t)a

i

2C. Toprovethat

H C

=( 0

; 00

)is ahole ofC, wehavetoprovethatH C

\C =;. If there

is 2H C

\C,then=ta 0

+(1 t)b 0

,where eithera 0

2A;b 0

2

B (a

0

),

ora 0

2

A (b

0

);b 0

2B. Supposerstthata 0

2A;b 0

2

B (a

0

)anda 0

a r

i .

Then sine a

i

2 B, it follows that b 0

a

i

. Thus = ta 0

+(1 t)b 0

ta r

i

+(1 t)a

i

= 0

, i.e. 2= H C

, aontradition. Similarlyoneproves

the otherthreeases.

Thus( 0

; 00

)isaholeofCwith

0

+ 00

2

=a

i

2B,heneH C

ispairedwith

apointof B.

3. Let H A

i

be a left shadow of H B

j

. Denote 0

= ta r

i

+(1 t)b r

j

; 00

=

ta l

+(1 t)b r

, andH C

=( 0

; 00

). Clearly, b r

2

B (a

l

), andeither

(10)

b r

j 2

B (a

r

i ),ora

r

i 2

A (b

r

j

). Thus 0

; 00

2C. IfH C

\C =;,itistrivial

toshowthatH C

isaleftshadowof H B

j .

It remains to show that H C

\C = ;. Suppose that 2 H C

\C, i.e.

=ta 0

+(1 t)b 0

,whereeithera 0

2A;b 0

2

B (a

0

),ora 0

2

A (b

0

);b 0

2B.

Suppose rstthat a 0

2 A;b 0

2

B (a

0

)anda 0

a r

i

. Then sine a r

i

<b

j ,

it follows that b 0

b r

j

. Hene = ta 0

+(1 t)b 0

ta r

i

+(1 t)b r

j

= 0

,

i.e. 2=H C

, aontradition. The otherthreeases areprovensimilarly.

4. The asethat H A

i

is arightshadowof H B

j

issymmetritothe previous

ase andweomittheproof.

Proof of Proposition 7:

Let 0

= ta 0

+(1 t)b 0

, where either b 0

2

B (a

0

) for some a 0

2 A, or

a 0

2

A (b

0

) for some b 0

2 B, and let 00

= ta 00

+(1 t)b 00

, where either

b 00

2

B (a

00

)forsome a 00

2A,ora 00

2

A (b

00

)for someb 00

2B.

First weprovethat both inequalitiesa 0

a 00

; b 0

b 00

holdand atleast

one of them is strit. Clearly, ifa 0

a 00

and b 0

b 00

, then 0

00

, whih is

impossible. Next we show that a 0

> a 00

; b 0

< b 00

is impossible. We use the

inequality

maxfjb 0

a 0

j;jb 00

a 00

jg>maxfjb 0

a 00

j;jb 00

a 0

jg; (12)

whihis proven attheendofthe present proof.

Suppose, e.g. that jb 0

a 0

j = maxfjb 0

a 0

j;jb 00

a 00

jg. It follows from

(12) that a 0

= 2

A (b

0

) and b 0

= 2

B (a

0

), a ontradition. Similarly we get a

ontraditionifjb 0

a 0

jjb 00

a 00

j.

Thusa 0

a 00

; b 0

b 00

andatleastone of theseinequalities isstrit. To

provethat(a 0

;a 00

)XnA,supposethatthere existsa2(a 0

;a 00

)\A. Then

a belongstoone ofthe followingranges(some ofthem mightbeempty):

1. If b 0

ab 00

, there isb2

B (a)\[b

0

;b 00

℄,hene ta+(1 t)b2( 0

; 00

),

aontradition.

2. If a < b 0

, then there exists a(b 0

) 2

A (b

0

)\(a 0

;a 00

)\(a 0

;b 0

), suh that

ta(b 0

)+(1 t)b 0

2( 0

; 00

), aontradition.

3. The aseb 00

<ais symmetritothe previousone.

Thus(a 0

;a 00

)XnA. Similarlyone provesthat(b 0

;b 00

)XnB.

Next,weprovethattheintervals(a 0

;a 00

),(b 0

;b 00

)satisfytheonditionsof

one ofthe fourasesof Proposition6.

Assumethat(a 0

;a 00

),(b 0

;b 00

)arenon-degenerate,i.e. a 0

<a 00

andb 0

<b 00

.

We will prove that they are paired. If a

= a

0

+a 00

2

= 2 (b

0

;b 00

), for instane

a

b 0

, then either a

b 0

a 00

, implying that a 00

2

A (b

0

) and 0

<

ta 00

+(1 t)b 0

<

00

, a ontradition, or a 00

<b 0

, implying that a 0

= 2

A (b

0

),

and therefore b 0

2

B (a

0

), from whih it is onluded that in the interval

(a 0

(b 0

a 0

);a 0

+(b 0

a 0

))thereareno pointsofB. Thusb 0

2

B (a

00

)and

0

< ta 00

+(1 t)b 0

<

00

, a ontradition. The ase a

b 00

is symmetri.

Similarlyoneprovesthat b

= b

0

+b 00

2 2(a

0

;a 00

). Therefore (a 0

;a 00

),(b 0

;b 00

)are

paired.

0 00 0 00 0 00

(11)

Ifb 00

<a

,thena 00

= 2

A (b

00

)andb 00

2

B (a

00

). Hene intheinterval

(a 00

jb 00

a 00

j;a 00

+jb 00

a 00

j) there areno points of B. Let b 000

=minfb 2

B; ba 00

g,then(a 0

;a 00

)is aleftshadow of(b 00

;b 000

).

Similarly,ifb 00

>a

,wegetthat(a 0

;a 00

)isarightshadowofaholeofB.

Ifb 00

=a

,thenobviously(a 0

;a 00

)is pairedwitha

=b 00

2B.

In a similarway, if a 0

=a 00

, then(b 0

;b 00

) is ashadow of ahole inA, or

pairedwithb

=a 00

2A.

Proof of (12):

Theinequality(12)followseasilyfromthefatthatinthetrapezoidwith

verties (a 00

;0), (a 0

;0), (b 00

;1), (b 0

;1), the large diagonal is longer than the

sides, and the Pythagorean theorem. To prove the abovegeometri fat, it

is suÆienttoprovethat ifoneofthe sidesBC;AD ofthe trapezoid ABCD

(ABkCD),isnotlessthanoneofthediagonalsofABCD,thenitislessthan

the other diagonal. Suppose, for instane, that BC BD. We prove that

BC<AC. Inthe triangleBCD, theinequality ofthe sidesyieldsinequality

of the angles,

6

BCD

6

BDC. Continuing to ompare the angles, sine

ABkCD, it follows that

6

BAC =

6

ACD <

6

BCD. On the other hand,

6

BDC =

6

ABD <

6

ABC. Thus we get

6

BAC <

6

ABC, hene, in the

triangle ABC,BC<AC,whih ompletesthegeometri proof of(12).

Proof of Proposition 2()and Proposition 3(a):

As was proven in Proposition 7, every hole in C is generated either by

a holeof A onneted toasingle pointof B (if the holeof A is ashadow of

some hole of B oris paired with apoint of B), or, symmetrially,by a hole

of Bonnetedtoasinglepointof A,orbytwopairedholesofAandB. By

Proposition6,dierentholesof A(orofB)produedierentholesinC,and

the onlyase whentwo holes,oneof Aandoneof B,produeonehole of C

is thease ofpairedholes. Thisyieldsthelaim ofProposition3(a).

Denote by I

A

(respetively I

B

) the set of indies of holes in A (resp.

B) whih are onneted to a single point in B (resp. A). Sine for every

i2=I

A

thereexistsauniquej(i)2=I

B

suhthatH A

i

ispairedwithH B

j(i) ,then

Proposition6implies

(

C)= X

i2I

A t(H

A

i )+

X

j2I

B

(1 t)(H B

j )+

X

i2IA=

t(H A

i

)+(1 t)(H B

j(i) )

=t(

A)+(1 t)(

B):

Proof of Proposition 9:

1. LetH C

k

bepairedwithH B

j

. SineC=A

t

B,byPropositions6,7,the

onlypossibility for H C

k

is that H C

k

=tH A

i

+(1 t)H B

j

, where H A

i is a

hole ofA,pairedwithH B

j

. ThenlearlyH A

i

=(a 0

;a 00

).

2. Let H C

k

be pairedwithapoint of B, i.e.

k

2B. Then a 0

= 1

t

r

k +(1

1

t )

k

; a 00

= 1

t

l

k+1 +(1

1

t )

k

. Supposethata2A\(a 0

;a 00

). Then,sine

ais loserto

thana 0

anda 00

,there isapointa

0 2(a

0

;a 00

)\

A (

).

(12)

Hene ta

0

+(1 t)

k

2C\H C

k

,aontradition.

3. Let H C

k

be aleft shadow of H B

j

; a 0

= 1

t

r

k +(1

1

t )b

r

j

; a 00

= 1

t

l

k+1 +

(1 1

t )b

r

j

. Dene also the point a 0

s b

r

j

suh that ja 0

s b

r

j j = ja

0

b r

j j

(possiblya 0

s

=a 0

).

Weperform theproofinseveralsteps.

Step1 Firstweprovethat (a 0

;a 0

s

)\A=;.

Assume (a 0

;a 0

s

) 6= ;, i.e. a 0

< b r

j

< a 0

s

, and suppose that there is

a2A\(a 0

;a 0

s

). Thenfor b r

j

there isa(b r

j )2

A (b

r

j )\(a

0

;a 0

s

). Thus

ta(b r

j

)+(1 t)b r

j 2(

r

k

; l

k+1

)\C,whih is aontradition.

Step2 Weprovenow that(a 0

;a 00

)\[a 0

s

;b

j

℄\A=;.

Supposethatthereisa2A\(a 0

;a 00

)\[a 0

s

;b

j

℄. Thensineab

j ,it

followsthatb r

j 2

B

(a).Heneta+(1 t)b r

j

<ta 00

+(1 t)b r

j

= l

k+1 .

On the other hand, ta+(1 t)b r

j

> ta 0

+(1 t)b r

j

= r

k

. Thus

ta+(1 t)b r

j 2(

r

k

; l

k+1

)\C, whih isaontradition.

Clearly,ifa 00

b

j

, theproof isompleted. In allnext steps wesupposethat

b

j

<a 00

.

Notethat thepoint l

k+1

2C isobtained eitherby

l

k+1

=ta(b)+(1 t)b; where b2B; a(b)2

A

(b); (13)

orby

l

k+1

=ta+(1 t)b(a); where a2A; b(a)2

B (a

00

): (14)

In Steps3and4wesupposethat(13) holdsandprovethat[b

j

;a 00

)\A=;,

whihimplies(a 0

;a 00

)\A=;. InStep5weshowthat(14)isimpossiblewhen

b

j

<a 00

.

Step3 Weprovethat[b

j

;a 00

)\A=;,inasebb r

j

in(13).

Indeed, sine 1

t

> 1, then a(b)= 1

t

l

k+1 +(1

1

t )b

1

t

l

k+1 +(1

1

t )b

r

j

=a 00

. ThisyieldsthattherearenoelementsofAintheinterval

[b;a 00

)[b

j

;a 00

).

Step4 Weprovethat[b

j

;a 00

)\A=;,inasebb l

j+1

in(13).

Assumebb l

j+1

. Deneb s

j

>

l

k+1

suh that b s

j

l

k+1

= l

k+1 b

r

j .

SuhapointexistssineH C

k

isaleftshadowofH B

j ,i.e. b

r

j

<

l

k+1

<

b s

j

<b l

j+1 .

Denotea 00

s

= 1

t

l

k+1 +(1

1

t )b

s

j

. Thenbythedenition ofa 00

weget

a 00

l

k+1

= l

k+1 a

00

s

=( 1

t 1)(

l

k+1 b

r

j

). Sinebb l

j+1

>b s

j and

a(b)= 1

t

l

k+1 +(1

1

t

)b, it follows that a(b) <a 00

s

. Sine a(b) is a

projetionofb,itfollowsthattherearenopointsofAintheinterval

I=[b (b a 00

s

);b+(b a 00

s )℄[b

s

j (b

s

j a

00

s );b

s

j +(b

s

j a

00

s )℄=I

0

.

Sinea 00

s

<

l

k+1

<b

j andb

s

j +(b

s

j a

00

s )=2

l

k+1 b

r

j +

1

t (

l

k+1 b

r

j )=

a 00

+(b s

j b

r

j ) >a

00

, it is easy to see that [b

j

;a 00

) I 0

I. Thus

therearenopointsof Ain[b

j

;a 00

).

Step5 Let l

k+1

=ta+(1 t)b(a),wherea2A,b(a)2

B

(a). Sinea2A,

itfollowsbySteps1,2thata62(a 0

;b

j

℄\(a 0

;a 00

),heneeitheraa 00

,

ora>b

,oraa 0

.

(13)

If a> a 00

, thensine a 00

>

l

k+1

>b r

j

, it follows that b(a)b r

j and

ta+(1 t)b(a)>ta 00

+(1 t)b r

j

= l

k+1

, aontradition.

Ifa>b

j

,thenb(a)b l

j+1

andta+(1 t)b(a)>tb

j

+(1 t)b l

j+1

>b

j ,

aontradition.

If a minfa 0

;b

j

g, then sine a b

j

, b(a) b r

j

. Hene l

k+1

ta 0

+(1 t)b r

j

= r

k

<

l

k+1

,aontradition.

Thustheonlypossibility fora2Aisa=a 00

, hene b(a)=b r

j . But,

sineb

j

<a 00

, weobtainthatb r

j 62

B (a

00

),whihis aontradition.

Thisompletesthe proof of3.

4. The asethat H C

k

is arightshadowof H B

j

issymmetritothe previous

ase andis proven similarly.

Aknowledgments. Theseondandthirdauthorswerepartiallysupported

by theIsrael Siene Foundation {Center ofExelleneProgramandby the

HermannMinkowskiCenterforGeometry atTel AvivUniversity.

Referenes

1. Artstein,Z.,Pieewiselinearapproximationsofset-valuedmaps,Journal

of Approx. Theory56(1989),41{47.

2. Dyn,N., Subdivision shemes in Computer-Aided Geometri Design, in

AdvanesinNumerialAnalysis,W.Light(ed.),Vol.II,Wavelets,Subdi-

visionAlgorithmsandRadialBasisFuntions,ClarendonPress,Oxford,

1992,36{104.

3. Dyn,N.andE.Farkhi,Splinesubdivisionshemesforompatsetswith

metriaverages,inTrendsinApproximationTheory,K.Kopotun,T.Ly-

he andM.Neamtu(eds.),VanderbiltUniv.Press,Nashville,TN,USA,

2001,95{104.

4. Dyn,N.andE.Farkhi,ConvexiationrateinMinkowskiaveragingpro-

esses,preprint.

RobertBaier

ChairofApplied Mathematis

UniversityofBayreuth

D-95440Bayreuth,Germany

Robert.Baieruni-bayr eut h.de

NiraDyn and Elza Farkhi

Shool ofMathematialSienes

SaklerFaultyofExat Sienes

TelAvivUniversity

TelAviv69978,Israel

niradynpost.tau.a.i l, elzapost.tau.a.il

Referenzen

ÄHNLICHE DOKUMENTE

Starting from a mean-field hamiltonian with pairing interaction, we use the generator coordi- nate method (GCM) and a generalized gaussian overlap approximation to derive

(In fact, the author observed that it is not hard to get that abstract theorem back from Theorem 3 using compactness argu- ments.) Putinar’s solution to the moment problem can then

In Section 5, we apply (the more abstract version Theorem 12 of) our criterion to give for the first time a purely ring-theoretic proof of a nice theorem of Handelman saying inter

11) X-shaped median apodeme on the frontal region: (0) absent; (1) present. Absent in Zorotypus weidneri. 12) Clypeus: (0) uniformly sclerotized; (1) with ante- and postclypeus.

In the literature on program impact evaluation, the popular impact parameters can the average treatment effect, the average treatment effect on the treated, the

4 illustrates the further steps of the algorithm for the fixed bounding box B 0 until we reach the desired density of grid points around the reachable set (here the distance

The following problem demonstrates for the first time that the adaptive approach based on optimization with the implicit Euler yields a way to calculate the low-dimensional

Abstract: We present a set oriented subdivision technique for the numerical com- putation of reachable sets and domains of attraction for nonlinear systems.. Using robustness