• Keine Ergebnisse gefunden

The Viability Kernel Algorithm for Computing Value Functions of Infinite Horizon Optimal Control Problems

N/A
N/A
Protected

Academic year: 2022

Aktie "The Viability Kernel Algorithm for Computing Value Functions of Infinite Horizon Optimal Control Problems"

Copied!
27
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Working Paper

The Viability Kernel Algorithm for Computing Value Functions of Infinite Horizon Optimal Control

Problems

Jean-Pierre Aubin & He'line Frankowska

WP-95-98 September 1995

id IlASA

International Institute for Applied Systems Analysis A-2361 Laxenburg Austria

E b m

Telephone: +43 3236 507 Fax: +43 2236 71313 E- Mail: info@iiasa.ac.at

(2)

The Viability Kernel Algorithm for Computing Value Functions of Infinite Horizon Optimal Control

Problems

Jean-Pierre Aubin &' He'line Frankowska

WP-95-98 September 1995

W o r k ~ n g Pcpcrs ar4, iIAterim reports OIL work of t h e Int,ernaticr,il lnstitutp for A,>,sied Systems Analysis a n d have received only limited review. k'iews or opinions expressed herein d o not necessarily represent those of t h e Institute, its National Member Organizations, or other organizations supporting t h e work.

7 0 11 ASA

International Institute for Applied Systems Analysis A-2361 Laxenburg Austria

.L A.

..

B.w Telephone: +43 2236 807 Fax: +43 2236 71313 cl E-Mail: info~iiasa.ac.at

(3)

The Viability Value Funct

Kernel Algorithm for Computing ions of Infinite Horizon Optimal

Control Problems

Jean-Pierre AUBIN & Hblkne FRANI(0WSKA

Abstract

M'e cl~aracterize in this paper the epigraph of the value function of a discounted infinite 11orizo11 o p t ~ n l a l control problem as the viability kernel of an auxiliary differential inclusion.

'11en the viability kernel algorithm applied to this problem provides the value function of the discretized optimal control problem as the supremum of a nondecreasing sequence of f:~~.ctic.ns iteratively defined. CVe also use the fact that ark xpper Painl-ve-I<uratowski limit of closetl viability domains is a viability tlonlain to prove the convergence of the discrete \-a111e functions.

(4)

Introduction

The concept of viability kernel of a closed subset under a differential inclusion has been introduced in [2, Aubin] in the 1985 meeting in honor of Professor Ky Fan. It is the largest closed subset contained in a given set which is viable under lhis differential inclusion. Furtllerr?l~re, Pierre Cardaliaguet, IIblhne Frankowska, Marc Quincampoix, Patrick Saint-Pierre and their collaborators found algorithms allowing us to compute the via- bility kernels, which run on personal computers for small dimensions. (see [22,23, Franliowska & Quincampoix], [28, Quincampois & Saint-Pierre], [29, Saint-Pierre], [14,15,16, Cardaliaguet, Quincampoix & Saint-Pierre]). On the other hand, the concept of viability kernel happened to be a very useful tool for studying other problems, such as the construction of absorbing sets ant1 attractors, veforillulating Lyapunov stability, solving the target prob- lem, characterizing and constructirlg Lyapunov functions, devising the Moil- tagnes Russes Algoritllnls for finding a global miniinuln of a lower semicon- tinuous function, characterizing and constructing minimal time functions, invariant iuanifolds of a system of differential inclusions, constructing feed- back maps dunlping chattering controls, deriving the differeiltial equation governing heavy solutions, constructing cascades in hierarchical dynainical ganles, ctc., without nlentioning in details their ecoilomic and biological ap- plications wllich inotivated this concept in the first place (see tlle papers I)y tlle preceding authors and [G,i,S, Aubin

SL

Frankowska], [9, Aubin &

Najnlan], [ l o , Aubin

SL

Seube], [13, Bonneuil & Miillers], [17, Cartelier &

Miillers], [19,1S, Clkment-Pitiot

SL

Doyen], [24, Gorre

1,

[25,26, Miillers], [27, Quincampois], [30, Seube] for instance).

In this paper of the special issue of Journal of Mathematical Analysis and Applications in honor of Professor I<y Fan, we illustrate this point by char- acterizing the epigraph of the value function of a discounted infinite horizon optiinal control problem as the viability kernel of an auxiliary differential inclusion. Then the viability kernel algorithm applied t o this problein pro- vides the value function of the discretized optimal control problem as the supremuin of a nondecreasing sequence of functions iteratively defined. We also use the fact that an upper Painlevk-I<uratowshi limit of closed viability doinains is a bJnbility tlomaiil to prove the convergence of +lie discrete value functions.

' l ' h ~ ( I J r ~ , l ~ ~ l i c s ( U , f ' j cf , .lltrol sy:r.c?n: with a ; i ~ : t ) ~ kedbacks arc

(5)

described by

i ) x f ( t ) = f ( x ( t ) , ~ ( t ) ) i i ) u ( t )

E

U ( x ( t ) )

where the s t a t e space

S

and the control space

Z

are finite dimensional vector spaces, I T :

Y

*" Z associates wit11 each state :c the set U ( x ) of feasible colltrols (in general state-dependent) and f : Graph(U) h X describes the tlyllarnics of the system.

Observe t h a t s t a t e collstraints are ilnplicitly taken into account in tlle defillitioll of tlle donlaill of tlle feedback map U.

Let us denote by S ( x o ) the set of state-control pairs (x(.), u(.)) solutions t o the control problem (1) starting from n.0 a t time 0.

Under adequate assunlptions on l1 and f , Viability Tlleorem 6.1.4 of L r ~T H E O R Y , ~ ~[3, Aubin] provides necessary and sufficient contlitions [ ~ ~ ~ ~ for tllc nonemptiness of the solution map S for every initial s t a t e mo

E

Dom(lJ).

Let us introduce now a lower senlicontinuous ful~ction

a.ssumed t o be convex with respect to v.

We consider t h e discounted optimal control problem

l/,(xo) := inf

1

eaTl,V(u(r), u ( r ) ) d r

E

[0, +m]

(.T(..>~L(.))E-C(.O) 0

In this paper, we shall prove t11a.t the value function V, of the optimal control p r o l ~ l t m is the smallest o f the lower semicontinuous nonnegative ex- tended functions V satisfying the following monotonicity property: From any initial state uo

E

D o m ( V ) starts a solution t o control problem (1) satisfying

which is equivalent to

inf ( D - V i . r )( f(.c, u ) ) f TV(x, u))

+

n I f l 7 ( z )

5

0

< J E C T ( X )

\,re refer t o [l, Aubin] or to Chapter G of D I F F E R E N T I A L I N C L U S I O N S , [4, ,4ubin

8~

Cellina], ? n d t o [21? Fra.ulio\t~slia

k

Pla.skacz] for an exposition of the consr;queilces o ; bell ti n,n inequ.?;~ 1.1 an(! of generalized .;olutior>:

:

'-mt

:,

contingent a.nd viscosity) t o Ha.milton-Jacobi-Bel1ma.n equations.

(6)

Actually, we shall characterize the epigra,ph of the value function as the viability kernel of an auxiliary differential inclusion. This being done, we apply the viability kernel algorithm to this e p i g r q h , wllich provides the value fullctioll of the discretized problem. In this way, we obtain an algorithm for colnputillg the discrete value function. This (approximated) discrete value fullctioll is the11 used for a,pprosi~nating an optimal solution. Finally-, we shall prove the convergence of the discrete value functions in an adequate sense.

The a.uthors aclinowledge personal communications of Daniel Gabay for pointing out in pa,rticular the relations between the viability kernel algorithm applied for a,pproximating the value function of an infinite llorizon optimal control problem and algorithllls obta,ined in [ l l , Bertsekas] for computing the value funct,ioll of stocllastic optimal control problems. They thank him warmly.

1 Decreasing Cost Functions

Tlle evolution of a colltrol systenl ( U , f ) with a priori feedback map of con- trols is governed by

Observe that state (viability) constraints are implicitly taken into ac- count in tlle definition of the domain of tlle feedback map U by setting I< := Dom(U).

\Ire recall tlla,t a control systenl is said t o be a A4erchc~u,d system if i ) Graph(l1) is closed aad tlle values l l ( x ) are convex

bi) f is continuous and a,ffine with respect t o tlle colltrols (4) i i i ) f a,nd U have linear growth

In this paper, we shall assume once and for all that: the state space X and the control space Z are finite dimensional vector spaces, U : X -ci Z associate? with each state x the state-dependent set U ( x ) of feasibis controls and f : Grapll(l1) .Y describes the dynalnics of the system and that they

(7)

1 ) ( I T , f ) is a Marchaud coiltrol systein

i i ) \ I r : (n., u ) E G r a p h ( U ) l Y ( z , v ) E

R+

is a nonnegative lower senlicontinuous function convex with respect t o v

zii) 3 c

>

0 s ~ c l z t h a t V ( 2 , n ) E G r a p h ( 1 7 ) , l V ( z , v )

5

c(l1zll

+

1)

( 5 ) We denote by L1(O, m;

S,

eatclt) tlle Lebesgue space of classes of mea- surable functioiis from [O, oo[ t o X integrable for t h e weighted measure eatdt and by kV;)'(O, oo;

S )

tlie space of functions x(.) E L1(O, oo; X, e a t d t ) such t h a t their distributional derivative belongs t o L'(0, m;

X).

Denote by S ( z o ) tlie set of state-control pairs ( x ( . ) , t i ( - ) )

E

11/,1l1(0, w ; /X)X L1(O. m; 2, entdt) solutions t o tlle control system ( 3 ) starting a t 20, i.e., sucll t h a t x ( 0 ) = .co.

Therefore, tlle discounted cost

is well defined over tlle solutiolls of tlle control problem.

Theoreill 1.1 Asszin~e thcrt hypothesis ( 5 ) hol$s true and th(1t V : X +-

R+

U {+m) is a izoizizegntive cxteizdccl lozl~er. sei~zicorztirzz~ozis fi~nctioiz (re- gwr-clccr! ( I S a cost fun.ctioiz).

TT'c clsatrme t,l~nt there exists (1 positivc corzsfnrzf c sucli fhnt

T h e n the two follozuing properties trre equivcilent:

1. For. nizy iiziticll state xo E D o m ( V ) , there exists n solzrtion (x(.), u(-)) E S ( z o ) to the corztrol systeiiz (3) iizoizotoize iiz the sense that:

(8)

Furthernaore, if eve denote b y

then llle naoizotorze sol~itions ure gyoverrzed b y the optinaul regulation law:

for alnlost all t

>

0, ~ ( t ) E R v ( s ( t ) )

Reinark - If we a.ssume a.lso t11a.t there exists a constant p

>

0 such t h a t

'd ( x , 71) E Gra.ph(U), IV(z, u )

+

aV(..c)

>

pll f ( z , u)ll

then Ekeland's Variational Principle and property (8) imply t h a t there exists a n equilibrium of t h e control system.

Proof of Theorein 1.1 - We introduce t h e set-valued m a p G :

X

x

R -- X

x

R defined by

C;(x, ,w) := { ( f ( x , , u ) , X )

I

71 E l i ( n : )

s:

X+clLu E [-c(llzII+l), -l.T'(z, v)]) (9) 1. It is clear t h a t t h e graph of G' is closed and its values a r e convex and nonelnpty by assulllption ( 6 ) . Its growth is linear by construction.

l'urthermore, the epigraph of V is a closed viability donlain of G : take er E

IT(%)

achieving t h e lllininlulll of t h e lower selnicontinuous function D I V ( . c ) ( f ( x . . ) )

+

ICr(x, .) on the conlpact subset U ( x ) . It satisfies

by assunlptioll (S), so t h a t the pair ( f ( x , v ) , - u V ( z ) - l V ( x , v ) ) belongs t o t h e contingent cone t o t h e epigraph of V a t ( x , V ( z ) ) . It also belongs t o t h e contingent cone t o t h e epigraph of V a t ( 2 , w ) for every

7u

>

V ( x ) . Indeed, this assumption nleans t h a t there exist sequences

h,

>

O converging t o 0, v, converging t o f ( x , v ) a n d d, converging

t o -I/I'(x, v) - a V ( r ) such t h a t ( x

+

h,v,, V ( z )

+

h,,cl,) E I p ( V ) . Therefore, for any 7u

>

V ( x ) , we obtain

( R:

t

ll,lLun, ,111

+

h,d,) = (3:

+

IL,,,u,, \J-(x)

+

h,d,)

+

(0, ( w --- I' ( 2 j ) )

E GCl,(l")

+

(0)

x

R+ = GCp(V)

dntl C O ~ I ~ ~ . l u e ~ ~ t l y , t h e pair ( 1 \.;, : I ) , - r ~ [ / ( z ) - IV(.c, 1 1 ) ) belongs t o t h e contingent cone t o t h e epigraph of V a t ( z , to).

(9)

Hence cCp(V) being a closed viability domain of G ( . , .), there exists a solution ( a ( - ) , ID(.)) t o differential illclusion

for alillost all t

2

0 , ( : c l ( t ) , 7u1(t)) E G ( x ( t ) , u l ( t ) )

starting from ( x u , I r ( . r O ) ) a t tirrle O and viable in the epigraph of V Jnequalities

2. C:onversely, let u s coilsider a solutio~l ( x ( . ) , u ( . ) ) t o the coiltrol system . r l ( t ) = f ( n . ( t ) , u ( t ) )

~vhicll is monotone:

We shall prove t h a t there esists uo E l J ( x o ) such t h a t

~ , r ~ ( . r ~ ) ( . f ( ~ ~ , Q , ) )

+

I I ~ ( R . O , 110)

+

( l I / ( x O )

I

0 ( 1 0 ) T h e above ~noilotoilicity conditio~l means t h a t

Setting

and

(10)

Since lT is upper selllicolltilluous with compact values, we call associate with ally E

>

0 a n 70 €]O,E] such t h a t U ( x ) C B ( U ( x o ) , & ) whenever d ( x , xo)

2

110. Since f is continuous, we deduce t h a t

for r snlall enough. Hence, since f is affine with respect t o u ,

Since I\' is lower scmicontinuous, we can associate with any u, an 11, €10, i'] sucll t h a t

Since B(U(a:"), E ) is compa.ct, it call be covered by a finite number r of such l~alls. Lct u s set 11 := nlini,o,,,.T 11;. Therefore, for ally u E lT(xo), we ca.n find a, control u ; such t1)a.t 1111 - ?iill

5

I];, SO t h a t

I-Icnce, for cvery E

>

0, there esists 11 such t h a t for every x E B ( x o , 7 ) and every 71 E l T ( . e ) ,

(u, IY(x, 21)

+

E ) = ( u , , Il'(x, 2 1 )

+

E )

+

(21 - 21;, 0 )

Let us consider now 21(r) E 1 T ( x ( r ) ) a11d a such t h a t d(xo, x ( r ) )

5

7

whenever r

5

a. We deduce t h a t

Siilce t h e epigraph of I l ~ ( r c o , " ) is closed a,nd convex, this i~tlplies th a t

(11)

Let h,,

>

0 be such t h a t

lim - e a l ( x ( r ) , ( ) ) T = i n i f - e a T I Y ( x ( r ) , u ( r ) ) d r It-o+

IL

. o

I"

Since u ( z ( r ) ) E U(s.(r)) C B ( U ( z o ) , & ) for r small enough, and since tlle values of U are convex and compact, we infer that

Since this set is compact, a, subsequence (again denoted by) u, con- verges t o sollle uo E U(zo).

Tllcrefore, by talcing tlle lilllit wllell I?. -- m, we deduce t h a t

Since this is true for every E , we infer that

Therefore

I ~ ' ( . Z . ~ , u o )

5

l i ~ n inf - c f l T I V ( n . ( ~ ) , u ( T ) ) $ T IL--O+ I? . o

I"

We thus conclude fro111 (11) that ILh, coI1verges t o f(.uo, uo) and that Ah,, converges t o some X satisfying

.o that property (10) 1s satisfied Tlle last statelllellt translates the fact that for alnlost all t

2

0, tlle derivative of tlle viable solution ( x f ( t ) . 111'(f)) belongs t o tlle contingent cone of tlle epigraph of V.

(12)

Remark - \.lTe refer to Propositioli 9.4.7 of V I A B I L ~ T Y T H E O R Y , [3, Aubin] for conditions under wllich the optimal regulation map is lower selliicontinuo~ls, so that it call have continuous selections, nlininlal selections and othel. types of selection procedures.

As a consequence, we deduce the followillg

Theorem 1.2 1Ve add to the hypothesis of Theorena 1.1 the assumption that the cost fzrnction V is continuous on its domain. Then the two following properties are equivtlleizt:

1. For clny iiziticll stclte x, E Do111(l/), there exists n solutioiz to the control systenz ( 3 ) stclrtiizg fronz x, at tin^ s clrztl stltisfyiizg l~roperty:

2, 1; i.s (1 contirzgeizt solution to the l-l~nzilton-Jcrcob iizequality (8).

Proof - \\re associate with h -- Of tlle grid j l ~ , ( j = 1 , .

.

.) and we build a solution x h ( . ) E S ( x o ) to differential inclusioll (1.1) by using Theorem 1.1 iteratively: for j = 0, we take xI,(.) on the interval [0, h] satisfying (7). For j

>

0, we consitler the solutioil starting a t x h ( j h ) and satisfying

Setting .xl,(t) := yj(t-jlz) ant1 '?lh(t) := ~ l ~ ( t - j l z ) 011 tlie interval [ j k , ( j + l ) h ] , we see t h a t the solutioll sa.tisfies

Let t

>

s be fixed. Since the Convergence Tlleorenl implies that the image

S ( x o ) is compact in C(0, a;

S ) x

L1(O, cxl, 2, eatdt) wllen the first space is si:~)j)lied with the colllpact topology and tlle second with the weak topol- o;y, a subsequeuce (al;ai~ deuotetl) (x,,(.), zIh(.)l cc-luverges to sc,nle solutic 1

( L ( . ) , ' i ~ ( . ) j E S ( x O ) 111 C ( s , t ;

S ) x

L 1 ( ( s , t); 2).

,411 adaptation of the proof of the Convergence Theorem implies the folln~ving propr.i.ty.

(13)

Leinina 1.3 A s s u n ~ e thot 14' : ( x , v ) E Grapli(U) + 14'(x,v) E R+ is a lower senzicontirztro.ucss ft~izctioiz coizvez with respcct t o v . T h e n the fuizctional

f ~ i i ~ C(.s, t ;

S )

x L 1 ( s , t , X ) to R U { + w ) i s l o u ~ e r senzicontinuou,s wiccn C ( s , t ; -%-) is supplied tuitlz the uizifornz coizv~rgeizce and L 1 ( s , t , X ) with the

tilecik convergeizce.

(We refer t o Proposition 6.3.4 of D I F F E R E N T I A L I N C L U S I O N S , [4, Aubin &

Cellina], for tlie proof of this Lemma.) Hence

Let t

>

s 1)e approsilnatcd by jl,h

>

khlZ so that

.I h h

( ' ~ ~ ~ ~ ~ 1 / ( ~ / , ( j ~ l 2 ) ) -

+

e a T I ~ V ( ~ ~ ( ~ ) , ~ a ( r ) ) d r

5

0

k,, h

Tlle f~ulctioii I/ I~eiiig continuous on its domain, illequality ( 1 2 ) ensues.

2 The Optimal Cost Functions

A cost fuilctioll I / :

.Ti

7 R+ U {+m) I~eiilg given, there is no reason wliy the ilio~~otollicity property of Tlieoreni 1.1 sllould hold true. However, we call construct the smallest lower seinicontiiiuous cost function larger tllan or equal to I T , i.c., the slllallest nonnegative lower semicontii~uous colltil~gel~t solutioil I , t o the I-Iamiltoii-Jacobi inequalities ( 8 ) larger than or equal t o 1 '.

Theorein 2.1 ils.suinr thtit 1~ypotliesi.s ( 5 ) holds true ant1 that V :

X -

R+

u

{+m) ti rzonncycrfzve eztcntlcd lower semzcoiztin.uous fuizction.

T h ~ i z t h e w czists ( I sri~ullcst izonizegt~tive lo u ~ e r semzcontznuous solutioiz I/, :

_Ti

r R+ U { t o o ) to the contingent Ift~rnilton-Jacobi inequalities ( 8 ) largcr tht~iz or equtil to 1/ (which c t ~ n br the coizstaizt t o o ) , which thus enjoys ,he irionotoizlcity 1)ropertg. t/ xo E D o n ( : ), t h ~ r r -3xists one solutioiz to (3)

'clr.tzr,g f ~ o m :, o f tirr7~ 0 (irld s c ~ t ~ s f y i i ~ g

(14)

Proof - I3y Tlieorenl 4.1.2 of VI..ZBILITY T H E O R Y , [3, Aubin], we know tlia,t there exists a largest closetl via.bility domain

h' c

C p ( V ) ( t h e vial~ility kernel of tlie epigra,pli of V ) of tlie set-valued 1na.p ( x , ,w) 2.

G(x,

,w) defined by (9). If it is empty, it is tlie epigraph of the constant fuilction equal t o $00.

If not, we have t o prove tliat it is the epigra.1111 of tlie iloilnegative lower seiilicontilillolls fiiilctioli If, tlefined by

we are 1ool;ing for. Indeed, since the viahility kernel is tlie largest closed viability dolllain of tlie epigrapli of IT, tlie epigrapli of ally solution t o the coiltillgelit inequalities (8) 1)eiiig a closed viability domain of the set-valued i m p G, is colitained in the epigraph of If,, so tliat V, is smaller tlian any lower selllicolitilluolls solutioil t o ( 8 ) larger tlian V. Since

it i b therefore e~iough t o ~ l i o w that

+

(0)

x R+

C

K.

In fact, we ])love zj ,A4

c

Dom(l1) x

R+

is (1 closetl elztrbzlity domain of 6 , t h r n .so is t l ~ r .s?~bscl

Ol)viously, ,tl+ is closed. To see tliat G ( x , ti))

n

T M + ( x , to)

# 0,

let

By a~suillption, there exists u E U ( x ) slicll tliat ( f ( x , u), d ) belongs t o tlie contingent coiie to itl a t the point ( x , I / h ( x ) ) E

M

wliere rl E - t ~ w

+ 1-0

II.rI)

+

1). -I17(x, u 11. Hence, there exist sequences

IL, >

0 coilverging t o

0, I ) , , coiive~.ging t o f ( x , u ) ant1 dn coiivergiiig t o d such t h a t

This proves tliat IT, is tlie s~nallest lower seinicoiiti~~uous fuilction satisfying ( S ) larger than or equal t o I * .

(15)

3 Infinite Horizon Optimization Problems

Denote by S l ( z o ) the set of solutions ( n : ( . ) ; u ( . ) ) to tlie control system ( 3 ) sta.rting from xo a t time t .

Tlie smallest lower selnicontinuous cost function I/, is closely related t o the value funclioll

w

u b ( t , x 0 ) := inf

/

e a T W ( x ( r ) , z ~ ( r ) ) d r E [ O , +m[ ( 1 4 )

. ( , 7 ( € S ( t

of the intertelnporal discou~ited optimizatioll problem over t h e solutions ( x ( . ) , u(.)) t o the control system starting a t time t from xo of the discounted

functional ,x

1

C ' ~ ~ \ ~ : ( T ( T ) , z ~ ( r ) ) d r

Theorein 3.1 i l s s u ~ ) z r tltcit hypothesis ( 5 ) holds true cliztl that the domain Ii := Do111(U) is clo.sed. Thrrz the value function

u b ( t ,

s ) (liz(1 the smallest lotrcr ser~zzco~zti~tiotts filizctiorz I/, sntisfyiny ( 7 ) larger than or eqvc~l to the irztlzcc~tor filrzctiorz

GI,

of Ii are related by the fornzuln:

I;icrthrr.r~orc. a solutiorz ( 2 ( . ) , H ( . ) ) E S ( z o ) to (3) sutisfies iizrquulity ( 7 ) for if nrzd orily if it i s (111 ol)tirii(~l .solution to the i r z t e r t e n 2 ~ ) o ~ l ol)tintizu-

tior) pr.oblrr,t:

e a t l d ( 2 ( t ) ) - e a s l / , ( ? ( s ) )

+ 1'

ear\

t ' ( f

( r ) , G ( r ) ) d r = 0 ( 1 7 )

the12 the optirilnl solutioils to tlze ir2tertenipol.ul oljtzmizatioiz problem (ire

~lovcrized 671 t l ~ p o~~tiirt(c1 1 . t ~ ~ :7$2'012 I(~zu:

for allnost all t

>

0, u ( t ) t R , ( ; c ( t ) )

(16)

Proof

1. Let ( z ( - ) , u ( . ) be a lllollotolle solutioli with respect t o I/, starting from

2.0. \Iie deduce in particular tliat, I - being nonnegative,

Since 14' is nonnegative, the sequence

6'

eUTlY(z( r ), .u(r))dr is non- decreasing, so tliat, taliilig tlle lilllit wl1k;l t

-

+CG, we obtain

2. \\:e ol~serve t h a t ally solutioll (.2.(.),

a(.))

liiolloto~le with respect t o the value funct.ioll in tlle sense tl1a.t

is a a optinla1 solution t o the illterternporal opti~nization problem be- cause

Furthermol.e, property

holds true.

Conversely, if a solution (.?(.),6(.)) is optirna.1, it is lllolloto~le wit11 respect t o the value function, because

3. M'e also note that along optillla1 solutions, we have

:/' ,([ ~ ( 7 ) ; " { T ~ ( ( J G I + , I

(17)

Indeed, setting c ( r ) := Z(r

+

t) and C(r) := u^(r

+

t ) , we observe t h a t the pair ( c ( - ) , ?(a)) is a solution to the control system starting a t 2 ( t ) and that by a change of variables t11a.t

T h e same change of va,riables shows t h a t the pa.ir ( c ( - ) , ?(.)) is a.n optimal solution sta,rtillg froill f ( t ) a,t time 0.

4. Therefore, tlle function s. r U Y O , s.) satisfies property

Since the solution map S ( . ) is upper semicontinuous with compact valucs from

S

t o C(0, m;

_Y) x

L1(O, m,

.Y)

when C(0, oo; X ) is sup- plied wit11 the ~ o ~ u p a c t convergence aild L'(0, m,

x)

with the weak colllrergence by Theorem 3.5.2 of V I A B I L I T Y T H E O R Y , [3, Aubin], tlle h l a s i n ~ u m Tlleoreill (see for illstance Theorem 1.4.16 of S E T - V A L U E D A N A L Y S I S , [5, Aubiil & Franl<owsl<a]) and Lenlma 1.3 inlply t h a t the value function s. r llb(O, n.) is lower semicontinuous.

Therefore, by Theorem 1.1, llb(O, .) is a. lower semicontinuous solution t o the Hamilton-Jacobi inequality ( S ) and thus, larger than or equal t o If,. IIy virtue of ( I s ) , it is then equal t o 1 6 .

R e i n a r k - h,Ionotoi~c solutiolls t o a control systenl enjoy asymptotic properties we just mention without proof:

T h e o r e m 3.2 TITe posit tllc crsstrntptiol~.~

elf'

Tlteore-ellt 3.1 a n d tue assunae tllnt I< := Dorn(lJ) is contpact. Then tllc optirnnl solution l ~ n s "alnaost cluster. poi~ats" (2,, 6,) satisfging

!\'L lefcl

I,,

11, Aubin] 01 t o ell 1,scr. (; of U ~ I ~ E I I E N ' T I A L ~ N C L U S I O N S , [.1. Aubin

L

Cellina] for the precise definition of "almost convergence" and further asy~nptotic properties of u~onotone solutions.

E x a m p l e : S o l u t i o n s w i t h M i n i i n a l L e n g t h

(18)

Solutions with millinla1 length are obtained in tlle particular case wllen 14f(x, ,u) =

11

f (x, u )

11

since

nleasares tlle iengtll of the ,olutioi~ t o tlle differential equation x l ( t ) = f ( x ( t ) , u ( t ) ) . Tllen tlle optimal solutions are sollitions with minimal length and the donlain of tlle value function is the subset of initial states from which there exists a t least one solution t o tlle control systenl with finite length.

Furtl~ermore, any sollition with ~ninilnal length converges when t

-

oo t o

an equilibrium x, of the system. i.e., a solution t o f(R:*, tl,) = 0 & TL, E [[(x,) (see chapter O: of [4, i l u l ~ i n

S:

Cellina]).

4 The Discrete Viability Kernel Algorithm

Let the tliscretization step h €10,

;[

I)e fixed. LVe shall approxinlate the set- valued map U 11y set-valued ]naps li". tlle nlap f by nlaps fIL : ~ r a p l l ( l i ~ ) ++

.i7 ant1 llle function 1Tf hy nonnegative functions l l r h : G r a p l l ( l ~ ~ ) +, R+.

T l ~ e control system is replaced by tlle discrete c o n t r o l s y s t e m

h h I h h I h h

V s

1

0, xs+l := xs

+

Ibf L ( ~ : s , u s ) where u j E U ( x S ) (20) and we denote by S h ( s o ) the set of solutions ( x h , u h ) = ((xk, t ~ t ) ) , ~ ~ of the discrete system (20) starting from an initial state .TO E D o r n ( ~ ' 7 ) .

\Ve define the discrete value function of the discrete optimal control probleln by

As in the continuous case, we sllall cllaracterize the discrete value func- tion as the snlallest lower sernicontilluous llonnegative function y h which is not increasing along a t least one solution t o the discrete control prob- lcnl in tbe following sense: from any 2.0

e

~ o ~ l l : ~ ' ) starts one solution ( x h , uh) t s h ( r o ) t o the discrete control system (20) sa~lsfying for every O < s < t .

(19)

L\ie slrall associate with tlre function Ir'' its syntllesis map Rf, defined by

providing tlre solutiolis ( f h , G") to the discrete control system (20) whicll are lnonotone with respect to Vh:

h - h - h

:= 3 ;

t

Ir f ( x , , u s ) wlrere iit E R;(")

XS+1 (22)

lire set lf: := ,I/i,;h, llle indicator of the domain ~ i ' k f (lh and we define recursively the non decreasing sequence of fiinctions 1:: 1,y tlie "viability 1;erirel algorithm"

Theorelm 4.1 ilssurne that Uh is up1)er sen~icorttirzuou.s with conzpact i m - rrges, that f i s corztinuorrs cr~tcl tlr.crl! bViL is lower senticontirzuous witlt respect to tlte control. Let

2

qbI,-h be ( I loeoer scrnicorztinuous ezteizdecr! function.

Front nny xo E D O ~ I I ( U ~ ) , starts orze solr~tioiz ( x h , uh) E s h ( x O ) to the rli.screte control s y s t e n ~ (20) ~(ltisfyirzg ( 2 1 ) if and only if satisfies

Fur.thernzore, tlte discrete ~rnlue firnctioil zo h

u;(o,

.zO) i s tlte snzallest l o u ~ e r seinicorztirzuows ft~nctiori

~ , h

larger tl~crn or equal to $ljh satisfying (31) (~rzd can be obtcliized through:

ulht rr thc ftritctior~s I.,{(' (/r*e defiizetl r~ccursivtly by tlzc "tiability kc rnel alyo- ritltii?" (29).

Proof - We introduce the set-valued maps G~ :

S x

R 2.i

X

x R defined by

G"'(x, w) := { ( x

+

6 f h ( x , a ) , w - a h ~ u - lil\,lz(x, ~ ) ) } ~ ~ ~ h ( ~ )

(20)

Assuille that

M

C X x

R+

is a closed viability donlain of Gh in the sense that for ally ( x , tu) E

M ,

there esists u E l i h ( x ) such that

( x

+

lLfl"x, u ) . ( 1 - rl1L)lu - 1L11f1"(2, u ) ) belongs t o .lW. As in the co~ltiiluous ca.se, we observe that

is also a closed viability donlaill of G h .

If a fililctioil V h satisfies ( 2 4 ) , its epigraph is a closed viability domain of GI+ take 1 1 E liIL(n.) achieving the nlininlunl of the lower serllicoiltinuous function V h ( n .

+

l l f h ( x , .))

+

1 ~ 1 t ' ~ ( n . . .) 011 the coinpact subset u h ( x ) . It satisfies lr''(n.

+

1 l j h ( x , v))

+

I L I / V ~ ( . G , L ) )

5

( 1 - ol2)Vh(n') by assumption ( 2 4 ) , so that tlie pair (n.

+

l z f h ( x . u ) , ( 1 - n l ~ ) t r ) - l ~ l l ~ " ( n . , v ) ) belongs t o t h e epigraph of V 1 ' a t ( x , to).

lIeuce fp( Vrh ) being a closed vial~ility (lolllain of G ~ ( . , .), there esists a solutioil to the discrete set-valued dynanlical systtnl

starting from ( x u ,

v ~ ( . L . " ) )

and \.iable in tlie epigraph of V h .

This implies tliat

MI!!+^

= ( 1 - c~lz)u(! - 1 1 1 4 f ~ ( x : , u)). Multiplying both sitlcs by ( 1 - nh)-l'-' and sumnlii~g froin s t o t - 1, we deduce that

Taliiilg s = 0, we infer that inequality ( 2 1 ) is satisfied since w$ = V 1 " x o ) ant1 since \ / I L ( x ; )

<

Conversely, it is ol~vious that a flillctioll V h sucl, that from ally x0 E

~ o i n ( l i ~ ) , starts one solution (.ch, u h ) E S h ( x O ) t o the discrete colltiol sys- tem ( ' L O ) satisfying ( 2 1 ) satisfies inequalities (24): it is enough t o take

t

= 1

ill ( 2 1 ) .

If the epigiaph of does not satisfy ('L4), one call prove as in the continuous cast t [ ~ n t its viability Iternel i5 t l ~ - pigraph of a function ciecoted 11y .:1 It is theu the slllallest of the lower selllicontilluous fuilctioils larger lllall or rqual l o

q l , h

\vllic11 ~atisfies either ( 2 1 ) or ( 2 4 ) .

The . ; o l ~ .c J ~ S alon i'.llich t h f z ~ l l c t i ~ ' rr, i m p : ~ , t le ar7 o 1ocs1y given 1)y .cs+, h = xk t 11 jt' (.$, ul,') \r.here u s t R:,(Z;).

(21)

Since the functioll

vh

is nonnegative, inequalities

t - l

11 x ( 1 - ~ib)-T-lllr'L(sj", uj")

<

v h ( x 0 )

On the other hand, the value functioll s o H u;(o, s o ) is lower semicon- tinuous a.nd satisfies along an optimal solution (i$, iih) inequalities

because

Hence property ( 2 4 ) is satisfied, so that xu +- 11lh,(0,x0) is larger than or equal t o xu +- l:(.xU). Therefore, they arc cqual.

It rcnlains to prove fornl~lla (2.5). Since

: C

satisfies property (24) and i:, larger than or equal to ?+!lIit,, we see Illat we can associate with any s a n elenlent .rr E lT1'(.2.) ~ 1 1 ~ 1 1 that ( 2

+

1, f I L ( x , lr), ( 1 - nh)l/;(x) - h l v h ( x , u ) ) 1)elongs t o El,( $,Iit, ) = U0111( l ~ " )

x R+,

so that

Therefore, 1/y(x)

<

l,,$(x). itre thus clleck recursively that if v,h(z)

5

1 :(x), then, by (24),

i l l f t l E r , t L ( z ) ( ~ , h ( ~

+

h fiL(x, 11))

+

I I I . c / ~ ( ~ , u ) )

<

i n f 7 1 E L i ~ ( r ~ ( 1 ~ ~ ( x

+

IL fi'(x, t i ) )

+

I L ~ \ ' ~ ( T , u ) )

<

( 1 - ( i h ) \ f , ( x )

~ " l l l a 1 ] ~ , i , . ~ d , . : L C &!lGLe t,llat 1)

'

>::l]3,L2e \,':,' ,;<>;,l:,ji*?* rt>ij,,i t.) L

If so, it. will Ile larger t,han or equal to I,?, and thus, equal t o it. By

(22)

col~strllctiol~ of t l ~ e functiol~s I/:, we call a.ssociate with any n: a.n element

11, E u h ( z ) such that

~/,"(n:

+

h fh(.x, u,))

+

hlVh(x, u,,)

5

( 1 - u l t ) ~ , h + ~ ( n : )

5

( 1 - ( l h ) f l ( x ) Since l l h ( x ) is C O I I I ~ ~ C ~ , there exists a subseclliel~ce (agaiu denoted by) u, coi~vergillg to sollle

ii

E l i h ( z ) . The secjuence of fuilctiolls V,h being nonde- creasing, we tletluce that

LTtl(.x

+

11 f h ( x ,

c)) 5

lirn inf P;I"(x

+

h f h ( x , u,,))

n-~3.j

Therefore, since 1Vh is lower selllicolltil~liolls wit11 respect t o u, we infer t h a t I ' ~ ( x

+

h f ' y x , ~ ) )

+

hIYh(x,.12)

5

liln il~f,,,, vnh(z

+

h f h(.x, u,))

+

It lim inf,,, IYh(z, u,)

<

liln infn-,(l',h(x

+

h fl"x, u,,))

+

~ I I ~ ~ ' ( . T , u,,))

5

( 1 - (LIZ) 1iln iilf,-,x(l/~+l(x)

5

( 1 - ( ~ l l ) L " ~ ( x ) This iinplies that

ivhich proves t.he cla.iin.

5 Convergence of Discrete Value Functions

The nest qllestiol~ we may a.sli is tllc following: 1.5 the limit of tr seqtrelzce of rliacrete fi~rzction.s. 11; a lorller. ser~licorttir,rrou.s f ~ l i z c t i o ~ ~ snti,sfyi~zg (S)?

It depends on w11a.t we understand a.s "limit": tllc appropriate concept is tlle one of loulcr cl~llir7tit tlefined in tlle following way:

Definition 5.1 Thr e p i g ~ l l ~ h of tlit l o u ~ r cl)ilimit of (1 sequence of ezteilded furzctiorls V, :

S

+

R

U {+m) i.s the ~rpper lintit of the epigraphs:

Ep(1im

n ,,_, V,,)

: = L i n ~ s u l ~

, ,,,,

Ep( V,, )

(23)

a.nd t h a t if t h e sequence is increa.sing, tlmt

We refer t o Chapter 7 of S E T - V A L U E D ANALYSIS, [5, Aubin & Frankowska]

for further details 011 epiyrclphiccll convergence.

\,lie deduce from Proposition 4.5.2 of V I A B I L I T Y T H E O R Y , [3, Aubin]

t h a t

Theorein 5 . 2 life posit the clssunlptiolzs of Tlleol-en1 1.1 und we take

uh

:=

IT, f h := f clild 1 1 ' ~ := PI'. Thc lourcr cpilinzzt of the sequence of discrete . G I I L ( I ~ ~ C S ~ f t ~ l z r t i o l ~ . ~

V,h

sntisfying

(24)

is (1 l o u ~ c r semicontinuous function sotisfyilzg ( 8 ) 1(1rgcr thcln o r cqunl to

Proof - Indeetl, Propositioll 4.5.2 of V I A B I L I T Y Tn EORY, [3, Aubin]

states t h a t if the discrete set-valued nmps G'h satisfy

( h l

) c

r p l ( G )

+

;II

V :

>

0, 3 11,

>

0

I

V 11 €10, h,], Graph -

(26) ant1 i f for every 12 the epigraph of t h e functiol~ lf h is a viability domains of tlle set-valued m a p G I ~ , then the l'ainlevd-Iinratowski upper limit of t h e epigraphs of vI' is a vial~ility d o ~ n a i n of t h e set-valued m a p G defined by ( 9 ) .

o l ~ s e r v e t h a t

G ' / ~ ( x , ~ 1- ) ( x , 7") = { ( f I L ( 5 , 7L), -(L7" - Tif h (X, ~ ) ) } ~ , ~ ~ h ( ~ ) 11,

Assunlptioll (26) is obviously satisfied when we take U" :=

IT,

f h := f and l l f l ~ = CIf since in this case G~ ( 3 . , 7 ~ ) - ( z . 7 ~ )

h

c

G'(5, w).

By Theoren1 4.1, t h e epigraph of 1""s a viability domain of G 1 5 f and only if V h satisfies ( 2 3 ) and by Theorenl 1.1, t h e epigraph of V is a viability do mail^ of G if a n d only if I/ satisfies ( 8 ) . Since t h e upper limit of t h e epigraphs of IT'' is t h e epigraph of their lower epilimit, we infer t h a t t h e lower. rpilimit of furlctions l f h satisfyiilg ( 2 4 ) does satisfy ( 8 ) . In particular, t h e lower epilinlit of lf,h satisfies ( 8 ) , so t h a t Theorem 5.2 ensues.

R . e i ~ a r k - - T I :~df:r !,il)~cllitzianity c c ~ i - ~ d i ? ; ~ : ; ; i?~lpljrli~g t h i d G' is I,i;.- scllitz, we deduce f:.ci:l 128, Quincampoix & Sa,int-Fierre] t h a t t h e uppel.

(24)

limit of t h e discrete viability kernels is t,he viability kernel. I11 this case, we deduce t h a t TI, is t h e lower epilinlit of V,h. CI

Relnark - In t h e general case, assumption ( 2 6 ) anlounts t o checking t h a t u", f a n d 14'~hatisfy t!le following condition: for every E

>

0, there exists 1 2 , > 0 ~ 1 1 ~ 1 1 t h a t , for every h €10, h,[, for every ( x h , u h ) (3raph(uh), there exists ( x . u ) E G r a p h ( U ) such t h a t

because in this ca.se, we have

References

[ I ] AUBIN J.-P. (1981) Contingent der-ivutives of set-vulued nzaps (~izd ezisterzce o j s o l t ~ t i o ~ z s to izonli~zeclr irzclusions c~izd diflerentiul inclusiorzs, Advances in LIathematics, Supplenlentary Studies, E d . Nachbill L., 160-232

[2] AlTl3IDi J.-P. (1987) ,S12zooih rrrtd Heclay ,Solutioizs to Control Pr,obler2zs, in N O N L I N E A R . 4 N D C ' O N \ ~ E X .L\NALYSIS, Eds. 13.-L.

I,ill

fi

Silllolls S.. Proceedings in l ~ o n o r of l i y Fan, Lecture Notes in pure a n d applied nlathcmatics, J u n e 24-26, 1985

[3] AUBIN J.-P. (1991) V I A B I L I T Y T H E O R Y , Birkha.user

[4] AUBIN J.-P. & CELLIN.4 A. (1984) D I F F E R E N T I A L I N C L U -

S I O N S , Springer-Velag, C4rundlehren der m a t h . Wiss.

#

264 [5] AUBIN J.-P.

SL

FR.4NIiOWSIiA H . (1990) S E T - V A L U E D A N A L -

Y S I S , Birl-1 \ lauser "

[6] AUBIN J.-1'.

S:

FRANIiOCI'SIiA 11. (1990) Irzclzr~sions uuz de'rive'es prr.rtiel1e.s gouverizc~nt (les coiztr6les de re'trouction,

(- .h.: . I : !,,,es-R.rnc! + 11. de l'Ac>,;llin~.is des Scie!icc: 31 1 851 -

,< :j (;

(25)

[i] AUBIN J.-P. & FRANIiOWSI<A H. (1992) Hyperbolic systems of portin1 di.fSerenticll iizclusions, Annali Scuola Norlnale di Pisa., 18, 541-,562

[8] AUUIN J.-P. & FRANIiOWSIiA H. ( t o a p p e a r ) P a r t i a l dtfer- trrticrl iizcltrsiort,s yo7.1eriziny ftetlbcrcl: controls, J. Convex Analysis [9] -4UBIN J.-P. 8z NAJMAN L. (1994) L'alyorithnle des nzon- fnglies russes pour 1'ol)tinzisntioiz ylobule, Comptes-Rendus d e 1'AcadCmie des Sciences, Paris, 319, 631-636

[ l o ] AUUIN J.-P.

k

SEUBE N. (1992) Apl)reizfi.ssuye c~daptcltif de lois (lt rbtro~lctioiz 11c .systZ/izes contr616.~ 11ur r6.scatrx cle izeuroizes, Comptes-Rendus tle 1'AcadCmie des Sciences, Paris, 314, 957- 963

[11] UERTSEliAS D. (1976) D Y N A M I C P R O G R A M M I N G A N D S T O C I I A S T I C CONTROL, Acadeliiic Press

[12] BERTSEIiAS D.

S:

TSITSIIiLIS J . N. (1989) P A R A L L E L A N D D I S T R I B U T E D C O ~ . I P U T A T I O N , Prentice Hall

[13] I30NNEUIL N.

Sr.

MULLER.S I i . ( t o appear) Ifinble 1)opu~lation.s i n (I. predetor-11r-ey s ~ P ~ c I ) ~ , J . Mathenlatical Biology

[I41 CARDALIAGUET P. , QUINC'AhlPOIX M. ST S A I N T - P I E R R E P. (1994) ,Sonle nlyor~tlrri?~ for cl~fii.e/zti(rl ~ ( I I I I C S tuitll two players orrcl onc tclryft, hlAhl, 25. 441-461

[ I s ] CI-ZRDALIAGUET P . , QUINCAMPOIX M . & S A I N T - P I E R R E P. (1994) Telnps 01)tiirztluz

our

Oes ~~roblkiizes avec contruiiztes ef scr.izs co1atr6labilitb 1occ1,le Comptes-Rendus de l'Acad6mie des Sciences, S&rie 1 , Paris, 318, 607-G12

[16] CARDALIACiUET P . , QUINCAMPOIX M. & S A I N T - P I E R R E P. (199.5) Nuiizericcll nzethorls for ol)tiincr.l control a n d cliflereiztial yfrnles, Cahiers de Mathema.tiques tle la Dkcision 9.510

[l'i] (:XRTELIER J .

k

MULLERS I i . (1994) A n elenztlltciry Iieyize- .sion nao(le1: A pr~elirit7ncrr~y clppronch, IIASA \VP 94-095

; I %] C L ~ ? ~ ~ E N T - P ~ ' T I D T I i . & DOYETJ L

,

~ f i n~bpear) Alod6~' ! I 1 1 cto12onziquc et ~~irrb~litC: l~ ccrs de la ressource halievtique,

(26)

[19] C L ~ A ~ E N T - P I T I O T 11.

k

DOYEN L. (1994) Le cornportement des trcteurs s u r le mcrrche' de.9 produits cle Icr p6che: une approche de viclbilite'

,

Rapport CNRS.

['LO] F R A N I ~ O W S I ~ I \ H. ( t o a p p e a r ) C O N T R O L O F N O N L I N E A R SYS-

T E M S A N D D I F F E R E N T I A L I N C I , U S I O N S . Birl-1 \ lauser "

[21] FltANIiO\ilJSIiA H. & PLASIiACZ S. (1995) A Mensurable- Upper* Sernicor~tir~uous Ificlbility Tl~eorenz f o r tubes, J. of Non- linear i\na.lysis, T M A

[22] F R A N I i O W S I i A H . & QUINCAMPOIX M . (1991) L'algorithme tle viabilitd, Comptes-Rentlus tle 1'Acadkmie des Sciences, Sbrie 1, Paris, 312, 31-36

[23] F R A N I i O W S I i A 11.

S:

QUINCAMPOIX M . (1991) Viability kc rrrels of' cl(ffcr~erltia1 ir?cl~rsiorzs with constrc~ints: c~lgor-ithnz wncl trljplictrtion.c, J. AIatb. Systems, E s t i m a t i o ~ ~ ant1 Control, 1, 371- 388

[24] CiORRE A. ( t o a p p e a r ) Tltc ~IIor~tngizts Rtrsses Algorithm irz

1 n e t 1-ic ,sl)trce .\

[2.5] MULLERS I i . (1994) Ctrsrc~t1e.s f o r clynomicc~l ynnaes, Cahiess de AIat hknlatiques de la Dkcision

[2G] AIULLERS Ii. (1994) Rcgulcrtion of'co~atrol systems with oscilla- tory cor?tr-ol by viability corz.strcrirzts, Cahiers de Math6matiques de la DCcisioll

[27] Q~J1NCAk1l'OI.Y Ail. (1'392) Diflereiztial irzcl~rsiorzs c~rad target problcr,rs, SIAM J. Control and Optimization, 30, 324-335 [2S] QIIINCAMPOIX M. k S A I N T - P I E R R E (1995) Arz algorithm

for* viability kernels iiz Hiiltlericriz ccise: Al)prozirnatiorz by dis- cr-etc vinbility kerizels, J . M a t h . Syst. Est. and Control,

[29] S A I N T - P I E R R E P. (1994) Approxinaotion of the viability kernel, Applied Mathematics & Optimisation, 29, 187-209

[:SO] S E U B E N. ( t n 31!rcar) Robust stobzli,-c~fion of ~ ~ n c e r t c i r z systenzs.

J . R'Iatl~ i" ,I 11 i?. !.

(27)

Jean-Pierre Aubiil SL Hkl6ne Frankowska CER.EMADE, Universitk Paris-Dauphine F-75775 Paris cx ( l G ) , FRANCE

Referenzen

ÄHNLICHE DOKUMENTE

Necessary and sufficient optimality conditions for a class of nonsmooth minimization problems.. Mathematical

Stochastic optimization problems with partially known distribution functions, CP-02-60, International Institute for Applied Systems Analysis,

Receding horizon control (RHC), also known as model predictive control (MPC), is a well established technique in order to deal with optimal control problems on an infinite time

These key features of our technique allow us to find limit forms of the classical transversality conditions for problems (P k ) and formulate conditions that complement the

Further, this result incorporates some additional conditions (23) and (24), where the stationarity condition (23) is analogous to the transversality condition with respect to time

On the Set-Valued Calculus in Problems of Viability and Control for Dynamic Processes: the Evolution Equation.. Kurzhanski

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361 Laxenburg, Austria... Kunhanski Program Leader System and Decision

The main purpose in this paper is t o explore ways and means of finding the kernel quasidifferentials in the sense of Demyanov and Rubinov for a certain