• Keine Ergebnisse gefunden

3 . C o n s ti tu ti o n o f s ta rs

N/A
N/A
Protected

Academic year: 2021

Aktie "3 . C o n s ti tu ti o n o f s ta rs"

Copied!
15
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

3–1

3 . C o n s ti tu ti o n o f s ta rs

3–2 Constitutionofstars1

C o n s ti tu ti o n o f s ta rs

Inordertosolvethestructureequationsthephysicalpropertiesofthestellar materialandinteractionwiththeradiationfieldneedtobeknown. 1.Equationofstate:

ρ ( P ,T ,X

i

)

c

P,

δ

,∇ad 2.Opacities:

κ ( P ,T ,X

i

)

3.nuclearreactionratesandenergyproduction(incl.neutrinolosses):

r

ij

( P ,T ,X

i

)

,

ǫ ( P ,T ,X

i

)

,

ǫ

ν

( P ,T ,X

i

)

3–3 Equationofstate1

E q u a ti o n o f s ta te : T h e id e a l g a s

Idealgas:

P = n k T

with

ρ = n µ m

Hand

m

H

=

1

.

6605·1024

g

P=ρkT µmHρ=µmHP kT lnρ=lnP−lnkT+lnµmH dlnρ=αdlnP−δdlnkT+(ϕdlnµmH) α=∂lnρ ∂lnP=1δ=−∂lnρ ∂lnT=1(ϕ=∂lnρ ∂lnµ=1) Deviationsfromidealgascausedbyradiationpressureandionisation canbedescribedviaα,δ(andϕ),whichwilldeviatefromunity. 3–4 Equationofstate2

M e a n a to m ic w e ig h t

fullyionisedplasma:Element

i

withcharge

Z

i,massfraction

X

i,atomicweight

µ

iandpartialdensity

ρ

i,Partialnumberfraction: nii µimH=ρXi µimH Totalpressure: P=Pe+X iPi=ne+X ini! kT =X iZini+X ini! kT=X i(1+Zi)nikT=X i

ρ µimHXi(1+Zi)kT meanatomicweight(completelyionised): 1 µ=X i

Xi(1+Zi) µi neutralplasma: 1 µ=X i

Xi µi

(2)

3–5 Equationofstate3

M e a n a to m ic w e ig h t

Meanatomicweightpernucleon 1 µ0=X i

Xi µi meanatomicweightperelectron(completeionisation:

Z

ielectronsperion) 1 µe=X i

XiZi µi hydrogenµi Zi

=

1helium

=

4 2

=

2metals≈2 1 µe=X+1 2Y+1 2Z=X+1 2Y+1 2(1−X−Y)=X+1 2 µe=2 X+1completeionisation(partialionisation:later) 3–6 Equationofstate4

N o n -i d e a l e ff e c ts : ra d ia ti o n p re s s u re

Prad=1 3u=a 3T4 →P=Pgas+Prad=ρkT µmH+a 3T4 definition:β=Pgas P1−β=Prad P ρ=µmH kT

P−a 3T4 α=∂lnρ ∂lnP=P ρ∂ρ ∂P=P ρµmH kT=P Pgas=1 β δ=−∂lnρ ∂lnT=−T ρ∂ρ ∂T=−T ρ −µmH kT2 P−a 3T4 −µmH kT

4a 3T3 =T ρ ρ T+µmH kT

4a 3T3 =1+1 ρµmH kT

4a 3T4=1+4Prad P−Prad=P−Prad+4Prad P−Prad =P+3Prad P−Prad=1+3Prad P 1Prad P=1+3(1−β) 1−(1−β)=43β β ϕ=∂lnρ ∂lnµ=1

3–7 Equationofstate5

N o n -i d e a l e ff e c ts : ra d ia ti o n p re s s u re

energydensitypermass(monoatomicgas=3degreesoffreedom) u=3 2kTn ρ+aT4 ρ Withρ=µmHn

ad

=

1+(4+β)(1β) β2 5 2+4(4+β)(1β) β2 limitingcases: withoutradiation:

β

→1⇒∇ad2 5 radiationpressure:

β

→0⇒∇ad1 4 3–8 Equationofstate6

N o n -i d e a l e ff e c ts : Io n is a ti o n B o lt z m a n n e q u a ti o n

occupationdensitiesoftwoboundenergylevelsofanioninthermodynamic equillibrium: ni nj=gi gjeEiEj kT

g

i

,g

j

=

statisticalweights(numberofstatesofsameenergy;see:Pauli exclusionprincipal). Usingthepartitionfunction: U(T):=X jgjeEj kT ni N=gi U(T)eEi kT

(3)

3–9 Equationofstate7

N o n -i d e a l e ff e c ts : Io n is a ti o n

generalizeBoltzmannformulatoionisation: upperstate=2-particles(Ion+freeelectron) •EnergyE=Eion+p2 2mep

=

electronmomentum •statisticalweightg

=

gup·Ge

(

p

)

; statisticalweight:ion:gup;electronwithmomentump:Ge(p) →insertintoBoltzmannformula: nup(p) nlow=gupGe(p) glowexp −Eup−Elow kT

exp

−p2/2me kT

|{z} equilibriumdistributionforfreeelectrons(Maxwelldistribution) thermalmeanvalueoverallmomenta: nup(p) nlow=gup glowexp −Eup−Elow kT

·

Z 0

Ge(p)exp

−p2/2me kT

dp 3–10 Equationofstate8

N o n -i d e a l e ff e c ts : Io n is a ti o n

StatisticalweightofthefreeelectronGe

(

p

)

continuousspectrumofstates:numberofstatesintheinterval[p,p

+

dp]? phasevolume:dΩ

=

∆x·∆y·∆z |{z} space·∆px·∆py·∆pz |{z} momentumspace

quantummechanics: Heisenberg’principleofuncertainty: ∆x·∆px≈h∆y·∆py≈h∆z·∆pz≈h HencethereisafinitenumberofphasecellsavailabledΩ

/

h3 eachcanbe occupiedwith2electronsofdifferentspin(Pauli’sexclusionprinciple). ⇒Ge(p)dp=2·dΩ h3 dΩ

=

4

π

p2 dpdV(sphericalcoordinates);electrondensityne

=

numberofelectronspervolume;ForoneelectronthereisdV

=

1

/

neavailable. dΩ=1 ne4πp2dpGe(p)=21 ne4π h3p2dp

3–11 Equationofstate9

N o n -i d e a l e ff e c ts : Io n is a ti o n

Sahaequation: nup nlow=1 ne2 2πmekT h2

3 2gup gloweEupElow kT Makinguseofthepartitionfunction

U

jforionisationstage

j

wecancomputethe densityratiooftwosubsequentstagesofionisation:

N

jand

N

j+1 Nj Nj+1=neUj Uj+1C1T3 2eχj kT=:neΦj(T)

C

1

=

1 22πmekT h23 2 ionisationfraction(

N =

PJ j=1

N

j): Nj N=

QJ1 l=j[neΦl(T)] 1+PJ m=1Qj1 l=m[neΦl(T)] 3–12 Equationofstate10

N o n -i d e a l e ff e c ts : Io n is a ti o n

Example:hydrogenplasma Ineutralhydrogen

U

I≈2 IIionisedhydrogen

U

II

=

1 NI NII=neUI UIIf(T)=2nef(T) degreeofionisation(

n

e

= N

II

,N

I

+ N

II

= N

): x=NII NI+NII=ne NI+NII (1−x)N xN=xN2f(T)→1−x 2x2N=f(T) (quadraticequationfor

x

)

(4)

3–13 Equationofstate11

N o n -i d e a l e ff e c ts : Io n is a ti o n

Example:hydrogenplasma electronpressure: Pe=nekT=(N+ne)kT |{z} Pgas

ne N+ne =PgasxN N(1+x)=Pgasx (1+x) Foranyarbitrarychemicalcomposition: Numberoffreeelectronsperatom(incl.ions): E:=ne N=x ρ=(N+ne)µmH=Nµ0mH=neµemH µ=ρ mH(N+ne)=ρ mH(1+E)N=µ0 1+E=µeE 1+E 3–14 Equationofstate12

N o n -i d e a l e ff e c ts : Io n is a ti o n

Example:HydrogenPlasma

ρ

µ

P Tund

µ =

µ0 1+Emit

µ

0

= co n st

. lnρ=−ln(1+E)+lnP−lnT+const δ=−∂lnρ ∂lnT=1 1+E∂E ∂lnT+1 applicationtohydrogenplasma:(

E = x

).differentiateSahaequation:E lnT: δ=1+1 2x(1−x) 5 2H kT +4(1−β) β (incaseofradiationpressure).

3–15 Equationofstate13

N o n -i d e a l e ff e c ts : Io n is a ti o n

Example:HydrogenPlasma specificheat

c

P

=

u T P

+ P

v T P

u

consistsof •kineticenergyofionsandelectrons •ionisationenergy u=3 2(n+ne)kT ρ+uion=

3 2(n+ne)kT (n+ne)µmH+uion =3 2kT µ0mH(1+E)+uion 3–16 Equationofstate14

N o n -i d e a l e ff e c ts : Io n is a ti o n

Example:HydrogenPlasma

E = x

forHydrogenplasma. cP= 5 2(1+x)+Φ2 H G(x) k µmH mit

Φ

H

=

5 2

+

χH kTand

G ( X ) =

2 x(1x)

χ

Histheionisationenergyofhydrogen(13.6 eV). Forradiationpressure:5 25 2+4(1β)(4+β) β2. ∇ad=Pδ TρcP=2+x(1−x)ΦH 5+x(1−x)Φ2 H (withoutradiationpressure) hydrogenconvectionzoneintheSun

(5)

3–17 Equationofstate15

N o n -i d e a l e ff e c ts : Io n is a ti o n

ingeneral:numberofelectronspernucleus E=ne N=X νi

ZiX r=0xr i with

ν

i

=

ni N

=

Xiµ0 µi

x

r i=degreeofionisationfor

r

-thstageofionisationofelement

i

. internalenergy: uion=X i

Xi µimH

ZiX r=0xr i

r1X s=0χs i

δ, c

P⇒∇ad needsnumericalsolution(

P

radtobeconsidered)

c

P:specificheatatconstant(total)pressure

P = P

gas

+ P

rad 3–18 Equationofstate16

L im it s fo r th e v a lid it y o f S a h a -B o lt z m a n n e q u a ti o n s

e.g.centreofthesun:

P

e

=

2

.

6·1017dyn cm2,

T =

17·106

K

n

H

=

1026

cm

3 Sahaequationyields

x =

0

.

76,⇒24%of hydrogenshouldbeneutral! pressureionisation:decreaseofionisation potentials potentialseverelydisturbed,ifthedistance oftheatomsequaltheirdiameters.

3–19 Equationofstate17

L im it s fo r th e v a lid it y o f S a h a -B o lt z m a n n e q u a ti o n s

hydrogenatom: Bohr’sRadius

a

0, principlequantumnumber

n

, Radius:

a = a

0

n

2 distance:

d =

3 4πnH1 3 equate: a=d⇒n2=1 a0 3 4πnH1 3 InsertdensityofthecentreoftheSun

n

2

=

0

.

26, ⇒eventhegroundstateshouldnotexist. Sahaequationvalidfor

d >

10

a

0: ρmax0mHnion<3µ0mH 4π(10a0)3 =2.66·103 µ0g cm3 3–20 Equationofstate18

N o n -i d e a l e ff e c ts

Degeneracy Athighdensity,Maxwell-distributionisnolongerapplicablebecauseofthePauli exclusionprincipleofquantummechanics⇒Fermidistribution later! Whicheffectdominates? Pgas=Prad⇔k µ0mHρT=a 3T4 ⇔T ρ1 3= 3k aµmH1 3 =3.2·107 µ1 3

(6)

3–21 Opacity1

O p a c it y

Whenwederivedtheequationofenergytransportbyradiationweassumedthat wecanuseanwavelengthindependentopacity.However,opacitycanbea strongfunctionofwavelength.Fourbasictypesofopacitysources: bound–bound Photonisabsorbedbyatom,whichisinan excitedstateafterwardslineabsorption)

bound–free “Photo-ionisation”:anelectronisknockedfree fromanatom.Thresholdenergyforthis processedges 3–22 Opacity2

O p a c it y

free–free Anfreeelectronpassingbyannucleus absorbsaphotoncontinuousabsorption. (inverseprocessisknownasbremsstrahlung.)

Thomsonscattering Asingle,isolatedelectronisscatteringa photoncontinuousabsorption,wavelength independent. FiguresfromM.Richmond/RIT(Rochester/USA)

3–23 Opacity3

O p a c it y

Wavelengthdependenceofopacitysources(schematic)⇒needforsomeclever averaging. 3–24 Opacity4

O p a c it y

Rosselandmean 1

κ = π a c T

Z 0

1

κ

ν

∂ B

ν

∂ T dν

Physicalinterpretationwiththefrequencydependentdiffusionequation

F

ν

=

− 1

κ

ν

∂ B ∂ T

4

π

3

ρ

T

•Contributiontotheintegralproportionaltonetflux. •Highestweightforfrequencyrangeswithhighestflux

(7)

3–25 Opacity5

O p a c it y

RelativecontributionstotheRosselandmeaninthestellarinteriorfortypical chemicalmixandconditions 3–26 Opacity6

O p a c it y

Opacitiesforsolarmix. Parameterforsolarinterior. dots=solarmodel majoreffortstocalculateopacitiesgoingon:OPAL(LosAlamos) OpacityProject(OP):Internationalcollaborations

3–27 Energyproduction1

E n e rg y p ro d u c ti o n in s ta rs

massdefect

∆ M

: thermonuclearfusionofatomicnuclei

X

tonuclei

Y

.

∆ M =

X X

M

X

M

Y energyproduced:

E = ∆ M c

2 bindingenergypernucleon:

f = [( A

Z ) m

n

+ Z m

p

M

nuc

]

c2 A 3–28 Energyproduction2

E n e rg y p ro d u c ti o n in s ta rs

netreaction:41

H

4

H e

initialmassP

M

X=4×1

.

0081=4

.

0324

m

amu finalmass

M

Y=4

.

0039=4

.

0039

m

amu massdefect

∆ M

=0

.

0285

m

amu

∆ M

=0.7%ofinitialmass

E =

0

.

0285×1

.

6605·1024 ×

(

3·1010

)

2

=

4

.

3×105

er g =

26

.

5

M eV

energyproductionpermass:

∆ E

P

M

x

m

amu

=

6

.

3×1018

er g g =

6

.

3×1014

J kg

(8)

3–29 Energyproduction3

N u c le a r re a c ti o n ra te s

Reactionrates

Coulombbarrier:

E

Coul

( r

0

)

Z

1

Z

2

M eV

averagekineticenergyofprotonsinthe coreoftheSun

T

≈107

K

E = k T =

1

ke V E

kin1 1000

E

Coul

( r

0

)

numberofparticlesinthehighenergy tailoftheMaxwelldistribution:

f ( E )

e

E kT

f ( E

Coul

) = e

1000

=

10434 numberofnucleons intheSun1057 inthevisibleUniverse1080 3–30 Energyproduction4

N u c le a r re a c ti o n ra te s

Quantummechanicaltunnelling: Probability:

P

0

= p

0

E

1 2

e

2πη

η =

r

µ

2

Z

1

Z

2

e

2 4

π ǫ

0~√

E =

r

µ

2

α Z

1

Z

2

c

E µ =

m1m2 m1+m2isthereducedmass; makinguseofthefinestructurecon- stant

α =

e2 4πǫ0~c

=

1

/

137

p

0isaconstantthatdependson

µ

inthecoreoftheSun:(

T =

107

K

):

P

0

=

1020 (1keVprotons)

3–31 Energyproduction5

N u c le a r re a c ti o n ra te s

Reactionsrates: Lab:numberofreactionsper timeinterval

dt

:(i:injectedparticles, t:targets) dN=σnids=σnivdt reactionspertime: dN dt=N τ=σ(v)vni reactionrate: r=dN dtdV=σ(v)vnint 3–32 Energyproduction6

N o n -r e s o n a n t re a c ti o n c ro s s s e c ti o n s

Fromquantummechanics:Maximumcrosssection

π λ

2 dB

λ

dB:deBroglie-wavelength

λ

dB

=

~

p =

~ √ 2

m E

crosssectionincludingtunneleffect:

σ ( E )

π λ

2 dB

P

0

( E ) = S ( E )

1

E e

2πη

η =

r

µ

2

α Z

1

Z

2

c

E S ( E )

:astrophysicalreactioncrosssection

S ( E )

mustbedeterminedinthelab. problem:crosssectionsareverysmall.Measurementsaremostlypossiblefor

E >

0

.

1

M eV

.Butastrophysicallyinterestingrange1...10keV! ⇒oftenrelyonextrapolation

(9)

3–33 Energyproduction7

N o n -r e s o n a n t re a c ti o n c ro s s s e c ti o n s

(lhs:totalcrosssection—rhs:astrophysicalfactorS(E)) 3–34 Energyproduction8

N u c le a r re a c ti o n ra te s

Velocitydistribution r=nintvσ(v)=nintZ ovσ(E)f(E)dE Maxwell-Boltzmann-distributionforbothpartners⇒distributionofrelative velocitiesisalsoMaxwellian: f(E)dE=2 √ π

√ E (kT)3 2eE kTdE mitσ(E)=S(E)1 Ee2πηandE=1 2mv2 vσ(v)=Z 0S(E)1 Ee2πη |{z} σ(E)

r 2 µ√ E |{z} v

2 √ π

√ E (kT)3 2eE kT |{z} f(E)

dE vσ(v)=23 2 √ πµ

1 (kT)3 2

Z 0S(E)eE kTη EdE

3–35 Energyproduction9

G a m o v p e a k

mit η=2πη√ E=√ 2mπαZiZtc

S ( E )

S

0

= co n st

fortherelevantenergyrange r∼vσ∼J=Z 0eg(E)dE with

g ( E ) =

E kTη E Crosssectionforfusion: σ(E)=S(E) Eexp−r EG E! Gamovenergy:

E

G

= η

2

=

2

m c

2

( π α Z

1

Z

2

)

2

E

0isthepeakenergy 3–36 Energyproduction10

R e s o n a n t n u c le a r re a c ti o n s

Nuclearreaction

a + X

Y + b

,or

X ( a ,b ) Y

Excitedintermediatenucleus

C

formswhichcandecayviadifferentchannels (

τ

≈1021

s

): a+X→C →X+a →Y1+b1 →Y2+b2 →... →C+γ

b

1

,b

2

,. ..

neutrons,protons,α-particles,noelectrons(

τ ( β

de ca y )

≈1

s

). Energylevelsoftheexitednucleus

C

:

(10)

3–37 Energyproduction11

R e s o n a n t n u c le a r re a c ti o n s E < E

minstationarylevels⇒de-excitationtothegroundlevelbyγ-radiation, Widthofenergylevels:small

E > E

minquasistationarylevels,decayviatunnelling⇒smalllifetime

τ

⇒ largerwidth:

∆ E

·

τ

≈~(Heisenberg’suncertaintyprinciple) 3–38 Energyproduction12

R e s o n a n t n u c le a r re a c ti o n s

Oneresonanceatanappropriateenergymaydominatethereactionratetotally!

3–39 Energyproduction13

M e a s u ri n g c ro s s s e c ti o n s : L U N A

LUNA=LaboratoryforUndergroundNuclearAstrophysics(GranSasso,Italy) LUNAI-50 kV LUNAII-400 kV L’Aquila

Teramo Figure3.FloorplanoftheLaboratoriNazionalidelGranSasso (LNGS).TheplacesallocatedforthetwoLUNAaccelerator facilitiesaremarked. rhs:Rep.Prog.Phys72,086301(2009) 3–40 Energyproduction14

M e a s u ri n g c ro s s s e c ti o n s : L U N A

400KVacceleratorofLUNA Figure2 TheLUNAsetup.Thetwobeamlinesareintheforeground,andtheacceleratorisinthebackground.The beamlineontheleftisdedicatedtothemeasurementswithsolidtargets,whereastheoneontherighthosts thewindowlessgastarget.Thesetupforthestudyof3He(4He,γ)7Beisshownduringinstallation;theshield isonlypartiallymounted. Annu.Rev.Nucl.Part.Sci.60,53(2010)

(11)

3–41 Energyproduction15

M e a s u ri n g c ro s s s e c ti o n s : L U N A

400KVacceleratorofLUNA 4He+ beam 4×10–4 mbar 3He

0.7 mbar 3He

Water-cooled collimators Diameter: 15 mmDiameter: 7 mmLead shield LeadLead 135% HPGe detector

3He gas inlet 7Be catcher

Lead Calorimeter

Copper shield Roots pump 2,000 m3 h–1 Figure3 Thesetupforthestudyof3He(4He,γ)7Be.ThedevicetodetectRutherfordscattering,thecalorimeter,andthegermaniumdetector areindicated. Annu.Rev.Nucl.Part.Sci.60,53(2010) 3–42 Energyproduction16

M e a s u ri n g c ro s s s e c ti o n s : L U N A

S (eV b)

ECM (keV)

Solar Gamow peak

0.6 0.5 0.4 0.3 0.2 0.1 001020304050

Schmid et al. (54) LUNA 2002 (28)

Griffiths et al. (53) Figure5 The2H(p,γ)3HeastrophysicalfactorS(E)withthetotalerror. Annu.Rev.Nucl.Part.Sci.60,53(2010) theppIreaction:2

H ( p, γ )

3

H e

measuredatsolarenergies.

3–43 Energyproduction17

M e a s u ri n g c ro s s s e c ti o n s : L U N A

Solar Gamow peak ECM (keV)

Dwarakanath & Winkler (58) Krauss et al. (59) LUNA 1998–1999 (26, 27) Kudomi et al. (60)

Cross section (b)

10–5 10–6 10–7 10–8 10–9 10–10 10–11 10–12 10–13 10–14 10–15 10–16 1030100 Figure6 Crosssectionofthe3He(3He,2p)4Hereaction.DatafromLUNA(26,27)andfromothergroups(58–60). ThedashedgraylineistheextrapolationbasedonthemeasuredS(E)-factor(27). Annu.Rev.Nucl.Part.Sci.60,53(2010) theppIreaction3

H e (

3

H e,

2

p )

4

H e

measuredatsolarenergies. 3–44 Energyproduction18

M e a s u ri n g c ro s s s e c ti o n s : L U N A

Counts (keV h)

–1

1003He(4He,γ)7Be 10–1 10–2 10–3 00.5

Laboratory γ-ray background 1.0 Eγ (MeV)

1.52.0 Figure7 3He(4He,γ)7Bespectrumatabeamenergyof250keV(red)andthelaboratorybackground(blue). Annu.Rev.Nucl.Part.Sci.60,53(2010) theppIIreaction3

H e (

4

H e, γ )

7

B e

measuredatsolarenergies.

(12)

3–45 Energyproduction19

M e a s u ri n g c ro s s s e c ti o n s : L U N A

10340K207Bi 208TI 2H(p,γ)3He 14N(p,γ)15O 15N(p,γ)16O 11B(p,γ)12C

102 101 100 10–1 10–2 051015

10–3 10–4 10–5

Counts (keV h) –1

Eγ (MeV)

Laboratory γ-ray background Figure9 Bismuthgermanatespectrumtakenwitha100-keVprotonbeamonnitrogenofnaturalisotopicabundance. Red,peaksfrom14N(p,γ)15Oand15N(p,γ)16O;darkyellow,beam-inducedbackground;blue,laboratory background.Inspiteofthesmallisotopicabundanceof15N(0.366%only),thepeakarisingfrom 15N(p,γ)16Ocanbeeasilyseenthankstothemuch-reducedbackground. Annu.Rev.Nucl.Part.Sci.60,53(2010) protonreactionsonnitrogenisotopesimportantintheCNOcycle. 3–46 Energyproduction20

M e a s u ri n g c ro s s s e c ti o n s : L U N A

78 6 5 4 3 2 1 0050100150200

S (keV b)

Lamb & Hester (82) Schröder et al. (83) NACRE extrapolation 1999 (81) LUNA data 2004 (29) (solid target) LUNA extrapolation 2004 (30) TUNL data 2005 (93) LUNA data 2006 (31) (gas target) Solar Gamow peak ECM (keV) Figure10 AstrophysicalS(E)-factorofthe14N(p,γ)15Oreaction.Theerrorsarestatisticalonly(thesystematicones aresimilar). Annu.Rev.Nucl.Part.Sci.60,53(2010) the14

N ( p, γ )

15

O

reactionoftheCNcyclehasnotyetbeenmeasuredatsolar energies,butLUNAresultsarelowerbyafactorof2thanearlierones.Important forageofoldeststarclustersandsolarneutrinorates.

3–47 Energyproduction21

H y d ro g e n b u rn in g

41

H

4

H e ∆ M c

2

=

26

.

731

M eV

Twoprotonsareconvertedintoneutrons(β+ -decay).Twoneutrinosare produced,whichcarryaway2...30%oftheenergy. Tworeactionchainsforhydrogenburning: proton-protonchain, CNOcycle 3–48 Energyproduction22

H y d ro g e n b u rn in g : p p c h a in s

Threevariantsoftheppchain pp1pp2pp3

energyproductionrate: ǫpp∼ρX2 T5 (approximationvalidfor T≈107 K).

(13)

3–49 Energyproduction23

H y d ro g e n b u rn in g : p p c h a in s

timescalesforppreactions: (I)1

H +

1

H

2

D + e

+

+ ν

1010 years (II)2

D +

1

H

3

H e

10s (III)3

H e +

3

H e

4

H e +

21

H

106 years Changeofabundancesof2

D

and3

H e

inrelationto1

H

(I)und(II)havetooccurtwice,before(III)canstart (I)creates2

D

,(II)destroys2

D

, (II)creates3

H e

,(III)destroys3

H e

. 3–50 Energyproduction24

H y d ro g e n b u rn in g : p p c h a in s

inanequilibriumstateabundanceof2

D

und3

H e

willbedeterminedby: rI=N1H τ1H=rII=N2D τ2D rII=N2D τ2D=2rIII=2N3He τ3He ⇒N2D N1H2D τ1H=3·1017 N3He N1H3He τ1H=5·105 energyproductioncoefficient: ǫpp∼ρX2T5 (validforT≈107 K).FusionprocesswiththesmallestT-sensitivity.

3–51 Energyproduction25

H y d ro g e n b u rn in g : C N O c y c le

CNOcycle(s) •catalyticprocess •catalyst(e.g.C)mustbe available •sequenceofprotoncap- turesfollowedbyβdecay •energyproductionrate: ǫCNO∼ρXXCNOT16 (approximationvalidfor T≈107.5 K). 3–52 Energyproduction26

C N O -c y c le (B e th e -W e iz s ä c k e r- p ro c e s s )

timescalesforthereactionsintheCN-cycle: (I)12

C ( p, γ )

13

N

107 years (II)13

C ( p, γ )

14

N

106 years (III)14

N ( p, γ )

15

O

108 years (IV)15

N ( p, α )

12

C

105 years

β

+ -Zerfälle13

N ( e

+

ν )

13

C

,15

O ( e

+

ν )

15

N

: 1...10min

(14)

3–53 Energyproduction27

H y d ro g e n b u rn in g : C N O c y c le

TheCNO-cyclemodifiestherelativeabundancesoftheC,N,andOisotopes •thetotalnumberof CNOnucleiremains constant, •however,mostCand Onucleiconverted into14 Nbecause 14

N ( p, γ )

15

O

isthe slowestreactionof theCNOcycle(s)

EvolutionofCNO-isotopeswithtime: Equilibriumreachedafter≈108 years. 3–54 Energyproduction28

H y d ro g e n b u rn in g : C N O c y c le

TheCNO-cyclemodifiesrelativeabundancesoftheC,N,andOisotopes •totalnumberofCNO nucleiremainsconstant, •mostCandOnucleicon- vertedinto14 Nbecause 14

N ( p, γ )

15

O

istheslow- estreaction •theabundanceratio ofthecarbonisotopes 12

C /

13

C

decreasesto≈ 4. ”Smokinggun”forfor CNOcycle(solarvalue: 89).(lhs:absolutevalues—rhs:isotoperatios)

3–55 Energyproduction29

H y d ro g e n b u rn in g

Additionalcycles:NeNa-,MgAl-cycles 3–56 Energyproduction30

H e liu m b u rn in g

Combiningof4 He-nucleitoform12 C(and16 O). 4He+4He→8Be−92keV endothermreaction⇒8 Bedecaysto4 Hewithin

τ (

8

B e) =

2

.

6·1016

s

. τ(8 Be)stilllargecomparedtocollisionaltimescale:≈105 collisionsof4 He during

τ (

8

B e)

whichallowstoform12 C 8 Be+4 He→12 C+γ Highreactionratebecauseofaresonance. energyproductionrate:ǫ3α∼ρ2 Y3 T30

(15)

3–57 Energyproduction31

H e liu m b u rn in g

12

C

maycaptureanotherα-particle:12

C +

4

H e

16

O + γ

resonantreaction(“subthreshhold”):

q =

7

.

16

M eV

Figure22.ThepresentstatusoftheSfactordatafor12C(α)16O. ThetotalSfactormeasurementofERNA(filled-incircles)[12]is comparedwithrecentE1(opentriangles)andE2(opensquares) γ-raymeasurements[98]andtheEx=6.05MeVcascadedata (opencircles)[100].Thesolidlinerepresentsthesumofthesingle amplitudesofanR-matrixfit[99](thedottedanddashedlinesare theE1andE2amplitudes,respectively).Inaddition,theR-matrix fitof[100]totheircascadedata(dotted–dashedline)isshown.The lattercomponentisnotincludedinthesumandmightexplainthe highyieldintheERNAdatabetweentheresonances.

Furthercapturesarealsoendotherm 16

O ( α ,γ )

20

N e

,20

N e( α ,γ )

24

M g

,... But16

O ( α ,γ )

20

N e

isnon-resonant→ veryhightemperaturesneeded. noα-capturesbeyond16 Oduringhe- liumburningphasesofstellarevolu- tion. reactioncrosssectionisstill uncertainbyafactorof3. 3–58 Energyproduction32

H y d ro g e n a n d h e liu m b u rn in g

fractionsofenergyproductionfrompp-,CNO- and3α-processes: uppermainsequence(sp. typeAandearlier):CNO- cycle lowermainsequence(sp. typeGandlater)pp-chain 3α-process:T≥108K⇒ notduringmainsequence phase Moreonnuclearburningtoironlater!

3–59 Energyproduction33

N e u tr in o s

Theroleofneutrinos verysmallcross-section: σν≈ Eν mec22 ·1044 cm2 solarneutrinos:

E

ν≈1

M eV

σ

ν≈1044

cm

2 ,1018 timessmallerthan photonabsorptioncross-sections! meanfreepath: lν=1ν=µmH ρσν=2·1020 ρcm Sun

ρ =

1

g cm

3

l

ν

=

100

p c

whitedwarf

ρ =

106

g cm

3

l

ν

=

3000

R

⇒neutrinosescapewithoutinteraction,theirenergyislostfromthestellar interior. 3–60 Energyproduction34

N e u tr in o s

neutrinoproductionduringhydrogenburning.5possiblereactions: 3He(3He,2p)4He 7Be(e)7Li 8Be*(4He)4He

8B(e+ν)8Be* * Be produced into an excited level

7Li(p,4He)4He 7Be(p)8B

3He(4He,γ)7Be3He(p,e+ν)4He 14%0.02%

86%14%0.00003%

2H(p)3He

1H(p,e+ν)2H 99.75%0.25%

1H(pe)2H Q/MeV 1

H +

1

H

2

D + e

+

+ ν

(pp1)0.263 7

B e + e

7

L i+ ν

(pp2)0.80 8

B

8

B e + e

+

+ ν

(pp3)7.2 13

N

13

C + e

+

+ ν

(CNO)0.71 15

O

15

N + e

+

+ ν

(CNO)1.0 Moreonstellarneutrinoslater: -non-nuclearneutrinoproduction -neutronisation -pairproduction:neutrino–anti-neutrino

Referenzen

ÄHNLICHE DOKUMENTE

Problem, Algorithm and Program Problem –given: the encoding of an input over an alphabet Σ –output: the encoding of the answer to a given question Example: –given: two natural

SSAT Beweis: Wir nehmen eine QSAT-Instanz, interpretieren deren Allquantifizierte Variablen als Random-Variablen, die mit Wahrscheoinlichkeit ½auf true oder false gesetzt werden

Der DP-Algorithmus (Dynamic Programming Algorithmus) Für jeden Startzustand x 0sind die optimalen Kosten J*(x0) gleich J0(x0), welches durch den letzten Schritt des

[r]

Kellel meist poleks vahel hingemuresid, suhtlemisprobleeme, enese maksmapaneku raskusi, keda ei kimbutaks aeg-ajalt meeleolu langus või ebakindlus, kes ei tahaks saada soovi

Der 1985 erstmals gekelterte Wein ist das Ergebnis einer sorgfältigen Selektion aus Merlot, Cabernet Sauvignon, Cabernet Franc und Petit Verdot, Reben, die allesamt in den

: F.. Cum cujuslibet medicinae candidati majorem dignitatem petentis officiuna sit, de aliqua re e disciplina medica quidquam scribendi, meum quoque esse arbitror, legi

Am Beispiel von Metaboliten sowie Pharmakokinetik von Diazepam , Qxazepam und Flurazepam zeigen sich Möglichkeiten, aber auch Grenzen der rechtsmedizinischen Wertigkeit