• Keine Ergebnisse gefunden

F o rm a ti o n o f s ta rs

N/A
N/A
Protected

Academic year: 2021

Aktie "F o rm a ti o n o f s ta rs"

Copied!
13
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

4–1

4 . T h e m a in s e q u e n c e

4–2 Themainsequence1

F o rm a ti o n o f s ta rs

Collapseofaninterstellarcloud Considerthecollapseofaninterstellarcloud •gravitationalenergyisdissipatedintothermal energy •butthecloudisopticallythintothermalradia- tionintheearlyphaseofthecollapse •⇒temperatureandpressureincreasenotvery much⇒approximatelyfreefall •inlaterphasesthecentralregionbecomesop- ticallythick •⇒temperatureinthecentreincreasestovery highvalues

4–3 Themainsequence2

F o rm a ti o n o f s ta rs

•Eventually,thetemperatureinthe coreishighenoughtostarthydrogen- burning •thegravitationalcollapseisstopped •thestarsettlesonthemainsequence Nuclearfusionproducesenergy.Thusit increasesthetemperatureinthecentre ofthestar? 4–4 Themainsequence3

D e u te ri u m b u rn in g

•asmallfraction(3·105 )ofthestellar matterconsistsofdeuterium2D(ord) •Deuteriumnucleicanreactwithnor- malprotons

p

+

d

3 He •thisreactionoperatesatlowertem- peraturesthannormalhydrogen burning.(

p

+

p

d

requireshigher energiesandthustemperatures) •thereisashortdeuterium-burning phaseduringpre-mainsequenceevo- lutionbeforetheregularhydrogen- burningstarts

(2)

4–5 Themainsequence4

D e u te ri u m b u rn in g

•fusion(inthiscasedeuteriumburn- ing)replenishestheenergylosses duetosurfaceradiation •delaysthefurthergravitationalcol- lapse •delaysfurtherheatingofthecore 4–6 Themainsequence5

C o m p u ta ti o n o f s te lla r m o d e ls F o u r e q u a ti o n s o f s te lla r s tr u c tu re

dm dr=4

π r

2

ρ

(

r

)(1)massconservation dP dr=−Gm(r)ρ(r) r2(2)hydrostaticequilibrium dL dr=4

π r

2

ǫ

(

r

)(3)energygeneration dT dr=−3 4acκ(r)ρ(r) T3(r)L(r) 4πr2(a)radiative (4)energytransport dT dr=γad1 γadT PdP dr(b)convective Schwarzschildcriterionforconvectiveinstability: dT dr > γad1 γad

T P

dP dr

4–7 Themainsequence6

C o m p u ta ti o n o f s te lla r m o d e ls

Numericalmodels Samplegridformainsequencemodel

•themodelstarisdividedintoanumber oflayers •constant

T ,ρ ,. .. .

,chemicalabun- dancesassumedineachlayer •thedifferentialequationsbecomedif- ferenceequations dT dRT R,etc. •Lagrangecoordinatesystem,i.e.the gridisdefinedinmasscoordinatesnot ingeometricalcoordinates Advantage1:noartificialmixingwhenlayersexpand/contract 50to100layerssufficientformainsequencemodels,1000andmorenecessary foradvancedstages 4–8 Themainsequence7

C o m p u ta ti o n o f s te lla r m o d e ls

Numericalmodels mainsequenceredgiant Advantage2:appropriatedistributionoflayers–manygridpoints“wherethe actionis”andnotuselessresolutioninuninterestingpartsofthestar

(3)

4–9 Themainsequence8

C o m p u ta ti o n o f s te lla r m o d e ls

(I)massconservation∂r ∂Mr=1 4πr2ρ (II)hydrostaticequation∂P ∂Mr=−GMr 4πr41 4πr22r ∂t2 (III)energyconservation∂Lr ∂Mr=ǫ−ǫν−cP∂T ∂t+δ ρ∂P ∂t (IV)energytransport∂T ∂Mr=−GMrT 4πr4P∇ (V)chem.composition ∂Xi ∂t=mi ρ 

X jrji

X krik

 i=1,...,I Systemof

I

+4Equationsfor

I

+4variables:

r, P ,T ,L

r

,X

1

,. .. ,X

I. 4–10 Themainsequence9

T h e z e ro -a g e m a in s e q u e n c e

•homogeneousstar(model)withabundanceofinterstellargas ≈solarforrecentlyformedstars •ZAMS:Zero-AgeMainSequence •compositionoftheSun(bymass):

X

H=0

.

685,

Y

=0

.

294,

Z

=0

.

021 •Vogt-Russelltheorem:Foragivenmassandchemicalcompositionexists onlyonesolutionofthestellarstructureequations Relevance:Thestructureofamainsequencestardoesnotdependonthe initialconditionsofstarformation provenforsimplifiedmodels notproveninthestrictmathematicalsenseformoregeneralmodels

4–11 Themainsequence10

T h e z e ro -a g e m a in s e q u e n c e

mainsequencemodel

•startfromanextendedgascloudand followthecontraction(inacrudeway) untilH-burningignites,or •startwithasimple(e.g.polytropic model),relaxitinthecomputersimu- lationsuntilastaticmodelisreached, or •scalingofexistingmodeltonewstellar mass(homologyrelations) •moresophisticatedtreatmentofstar formationprocessesispossible(part4: pre-mainsequenceevolution) •however,theVogt-Russelltheoremtellsusthatthisisunnecessary •theformationhistoryisforgotten,whenthestarreachesthemainsequence 4–12 Themainsequence11

T h e z e ro -a g e m a in s e q u e n c e

ZeroAgeMainSequence Themainsequence(ZAMS)inthetheoretical Hertzsprung-Russelldiagram

(4)

4–13 Themainsequence12

T h e H R d ia g ra m

ObservedHertzsprung-Russell diagramofthesolarneighbour- hood ResultsfromtheastrometricsatelliteHip- parcos 4–14 Themainsequence13

M a s s -r a d iu s re la ti o n

symbols:datafrombinaries

R

M

a lowermainsequence

a

=0

.

8 uppermainsequence

a

=0

.

57 “break”causedbytransitionfromconvectivetoradiativeenvelopes

4–15 Themainsequence14

M a s s -l u m in o s it y re la ti o n L

M

b lowermain

b

=3

.

2 sequence

M

=1

.. .

10:

b

=3

.

88 Changecausedbyswitch ofthedominantH-burning modefrompptoCNOpro- cess ⇒

R

L

a b

L

R

2

T

4 eff

L

2

a b

T

4 eff

L

12a b

T

4 eff

L

T

c eff with

c

=4 12a b 4–16 Themainsequence15

M a in S e q u e n c e L if e ti m e L

M

3.2...3.88 .Howeverthe amountof“fuel”increases only∼

M

..⇒lifetimeof starsstronglydecreasingfor highermasses.

(5)

4–17 Themainsequence16

M a in S e q u e n c e L if e ti m e

Uppermainsequence:

T

MS=

M M

3.88=

M

2.88 Lowermainsequence:

T

MS=

M M

3.2=

M

2.2 4–18 Themainsequence17

In te rn a l s tr u c tu re o f th e s u n

4–19 Themainsequence18

In te ri o r s tr u c tu re o f m a in s e q u e n c e s ta rs M <

0

.

25

M

:fully convective 0

.

25

M

< M <

1

.

2

M

: envelopeconvective, coreradiative (Hionisationzone) 1

.

2

M

< M <

90

M

: enveloperadiative, coreconvective (strong

T

depen- denceofCNOpro- cess) Energygenerationconcentratedinsidetheinnermost15%(bymass) 4–20 Themainsequence19

In te ri o r s tr u c tu re o f m a in s e q u e n c e s ta rs

Centraltemperatures anddensities(

ρ

c

,T

c)of mainsequencestars Uppermainsequence •lowcentraldensities •highcentraltemperatures •energygenerationbyCNOcycle •significantradiationpressure Lowermainsequence •highcentraldensities •“low”centraltemperatures •energygenerationbyppprocess •forlowestmassessignificant electrondegeneracy

(6)

4–21 Themainsequence20

M a in -s e q u e n c e e v o lu ti o n

He(the“ash”ofH-burning)accumulatesinthestellarcore⇒nolonger homogeneouschemicalstructure H-abundanceinthesolarinteriorasafunctionoftime 4–22 Themainsequence21

M a in -s e q u e n c e e v o lu ti o n

Evolutionofa7M star

A:ZAMS B:lowesttemperatureduringitsmainse- quenceevolution

X

≈0

.

05age:2

.

38· 107 years C:centralhydrogenexhausted,endofcentral hydrogenburning,endofmainsequence phase(TAMS:terminalagemainsequence) age:2

.

49·107 years The“hook”(B→C)isproducedduringtheevo- lutionofstarsoftheuppermainsequencewith aconvectivecore.

4–23 Themainsequence22

M a in -s e q u e n c e e v o lu ti o n

The“hook”isproducedduringtheevolutionofstarsoftheuppermainsequence withaconvectivecore. Uppermainsequence: (

M >

1

.

2

M

)Convectivecore →HookattheendofMSlife- time Lowermainsequence: (

M <

1

.

2

M

):Nocon- vectivecore→Nohook,more gradualevolution 4–24 Themainsequence23

O b s e rv e d H R d ia g ra m s o f o p e n c lu s te rs

Comparisonoftheobservedturn-offwiththeoreticalmainsequencelifetimes allowsdeterminationofclusterages

(7)

4–25 TheSun1

T h e s u n

Basedonobservationsof •SolarMass:1

M

=1

.

997×1030 kg=1

.

997×1033 g •SolarLuminosity:1

L

=3

.

846×1026 W=3

.

846×1033 ergs1 •age:

t

=4

.

5×109yrs •Solarchemicalcomposition(=elementalabundances)atthesurface:73.81% H,24.85%He,1.34%metals(bymass) itispossibletousetheequationsofstellarstructuretodetermineamodelforthe structureoftheSun,i.e.,Mr,Lr,ρ(r),T(r),abundances(r)startingwitha homogeneousmodelandallowfor4.5Gyrsofevolution. 4–26 TheSun2

T h e s u n

centralconditionsinthesun: •

T

c=1

.

57×107 K •

P

c=2

.

34×1016 Nm2

ρ

c=1

.

53×105 kgm3 •Hydrogenfraction:

X

=0

.

34(bymass) •Heliumfraction:

Y

=0

.

64(bymass)

Coreradiative zone 14 Mio Kcoronal loops energetic particles

Thermonucl. Reactions

photosphere, neutrinos prominence

1 Mio Kcoronal hole magnetic flux tubes

chromospheric flares bright spots and short lived magnetic regions

6000 K spot X−rays/gamma−rays

radio outbursts

radio emission

convective zone

turbulent convection

visible, UV, and IR outbursts (c) Scientific American 4–28 TheSun4

S ta n d a rd S o la r M o d e l

Standardsolarmodel: Temperature&pressureprofileDensity&interiormassprofile (Carroll&Ostlie)

(8)

4–29 TheSun5

S ta n d a rd S o la r M o d e l

0.00.20.40.60.81.0 r/rO

0.0

0.2

0.4

0.6

0.8

1.0 Mass Fraction

H 4He StandardsolarmodelofBahcall&Serenelli(2005,ApJ626,530) 4–30 TheSun6

S ta n d a rd S o la r M o d e l

0.00.20.40.60.81.0 r/rO

10−5

10−4

10−3

10−2

10−1

100

Mass Fraction

H 4He 3He12C 14N

16O StandardsolarmodelofBahcall&Serenelli(2005,ApJ626,530)

4–31 TheSun7

S o la r E v o lu ti o n : L u m in o s it y

Bahcall,Pinsonneault&Basu(2001,ApJ555,990) 4–32 TheSun8

S o la r E v o lu ti o n : R a d iu s

Bahcall,Pinsonneault&Basu(2001,ApJ555,990)

(9)

4–33 TheSun9

S o la r E v o lu ti o n : E n e rg y G e n e ra ti o n

Bahcall,Pinsonneault&Basu(2001,ApJ555,990) 4–34 TheSun10

S o la r E v o lu ti o n : C e n te r

Bahcall,Pinsonneault&Basu(2001,ApJ555,990;XcisthecentralHfraction)

4–35 TheSun11

S o la r N e u tr in o s

afterBahcall

Thesolarmodelpredicts asolarneutrinospectrum thatcanbecompared withEarthbased measurements.Thisis themostdirecttestof theoryofstellarstructure known. Problem:Neutrinosare difficulttodetectsincetheir interactioncrosssectionis verysmall =⇒largedetectorsare needed. 4–36 TheSun12

S o la r N e u tr in o s

Thefirstneutrinoexperimentinthe Homestakemine(J.Davisetal.,1968ff.). Basedonreaction

ν

e+37 Cl−→37 Ar+e UseChlorineinlarge tetrachloroethylenetank(615T),detect Arwithradiochemicalmethods.37Ar decayswithahalflifeof37days. Sensitiveforelectronneutrinosat energiesabove814keV Expectedrate:8.5±1.9SNU Detectedrate:2.6±0.2SNU 1SNU:1037capturestargetatom1s1. BrookhavenNationalLaboratory

(10)

4–37 TheSun13

S o la r N e u tr in o s

Clevelandetal.(1998,ApJ596,505; atotalof76637Aratomscreatedby solarneutrinosweredetected. Nobelprize2002toRaymondDavis SolarNeutrinoProblem:Solarneutrinofluxis1/3ofpredictedneutrinoflux. Caveat:Theexperimentdoesnotallowtomeasurep-pneutrions(cut-offat420keV,butonly neutrinosfromBeandBreactions. Ratesofthestandardsolarmodelmaybewrong? 4–38 TheSun14

S o la r N e u tr in o s

GALLEX(basedinGranSassoUndergroundLaboratory) uses30TofGallium(galliumtrichloride-hydrochloricacid) todetectneutrinosvia νe+71Ga−→71Ge+e 71Gedecays(halflife:11.7days),radiochemicaldetection methods(conversionto71GeH4similartotheCldetector Thresholdenergy233keVallowstodetectp-p neutrinos p-pNeutrinosdetectedforthefirsttime.

4–39 TheSun15

S o la r N e u tr in o s

GALLEXcountrateconsistentifallneutrinosarefromp-preaction,thusno neutrinosfromBeandB.ButChlorineexperimenthasseensome. Solarneutrinoproblempersists! 4–40 TheSun16

S o la r N e u tr in o s

(Super-)Kamiokandeexperiment:DetectionofneutrinosviaCherenkov radiationbyphotomultiplier Detector:LargetankofhighlypurifiedwaterinKamiokamine(Japan)

ν

interactswith

e

→superluminalmotion. Thresholdenergy:≈5MeV→detectsonly8

B

neutrinos.

(11)

4–41 TheSun17

S o la r N e u tr in o s

Wikipedia CherenkovradiationElectronmovesfasterthanthespeedoflightinwater.

n

is therefractionindexofwater,

c

isthevacuumspeedoflight. 4–42 TheSun18

S o la r N e u tr in o s

Superkomiokandecollaboration Detectionofasolarneutrino Arrivaltimeanddirectioncanbereconstructed!

4–43 TheSun19

S o la r N e u tr in o s

http://www-sk.icrr.u-tokyo.ac.jp/sk/lowe/soltimevar.html Neutrinoscomefromthesun 4–44 TheSun20

S o la r N e u tr in o s

http://www-sk.icrr.u-tokyo.ac.jp/sk/physics/image/image_solarnu/solpic_1500d_2_1.ps Thesunontheneutrinosky

(12)

4–45 TheSun21

T h e s o la r n e u tr in o p ro b le m s (p re -2 0 0 1 )

•Deficitofneutrinosinallthreeex- periments •Super-KamiokandevsChlorine: Super-Kamiokandemeasures 8

B

ν

Chlorinemeasuresboth8

B

ν

&7

B e

ν

But:Detectionrate:Super- Kamiokande>Chlorine 4–46 TheSun22

N e u tr in o o s c ill a ti o n s

Standardsolarmodel(SSM)vsstandardmodelofelementaryparticlephysics •changestoSSM:decreasecentraltemperature lowmetallicityincentre:

Z

=1 10

Z

fastrotationofthecore verystrongmagneticfield(109 Gauss) weaklyinteractingmassiceparticles(darkmatter) ... •Threeflavoursofneutrinos:

ν

e,

ν

µ,

ν

τ •beyondtheStandardmodelofelementaryparticlephysics: Neutrinomassmaybenon-zero→neutrinooscillations:

ν

e

ν

µ

ν

τ Mikheyev-Smirnov-Wolfenstein(MSW)-Effekt(1986):Oscillationsamplified whentravellingthroughmatter oscillationlength?

4–47 TheSun23

S o la r N e u tr in o s

SudburyNeutrinoObservatory:uses1000Tofheavy water,i.e.,D2O,2000mbelowground. Possibleneutrinoreactions: chargedcurrent:νe+D→p+p+e1.442MeV neutralcurrent:ν+D→p+n+ν−2.224MeV elasticscattering:ν+e →ν+e2.224MeV Theneutralcurrentreactionissensitivetoanyflavor ofneutrino. SNOdetects5000neutrinoeventsperyear. courtesySNO 4–48 TheSun24

S o la r N e u tr in o s

courtesySNO

(13)

4–49 TheSun25

S o la r N e u tr in o s

Acrylicvesselsurroundedby photomultipliertubes. Viewthroughfisheyelens. courtesySNO 4–50 TheSun26

S o la r N e u tr in o s

Bahcall SNO(2001):Whentakingallneutrinoflavoursintoaccount,the measuredandpredictedneutrinofluxesagree=⇒Neutrinoschange theirflavor.

4–51 TheSun27

S o la r N e u tr in o s

)−1 s−2 cm6 10× (eφ00.511.522.533.5

) −1 s −2 6 cm 6 5 10 × ( τ µ4φ 3 2 1 0

68% C.L.CCSNOφ 68% C.L.NCSNOφ 68% C.L.ESSNOφ 68% C.L.ESSKφ

68% C.L.SSMBS05φ 68%, 95%, 99% C.L.τµNCφ Aharminetal.,2005(dashedline:predictionofstandardsolarmodel) SNO(2001):2/3ofallνeproducedinSunchangeintoντorνµontheirwayfromSunto Earth:neutrinooscillations=⇒physicsbeyondthestandardmodelofparticlephysics!

Referenzen

ÄHNLICHE DOKUMENTE

Aktuelle Studie aus OÖ belegt: Psychisches Wohlbefinden ist wichtiger denn je!.. Jede/r dritte EuropäerIn leidet laut WHO mindestens einmal im Leben an einer psychischen

Wenn sich wie hier und heute Kompetenzträger wie die Firma Solaris und Fronius vernetzen, um dieses evolutionäre Pilotprojekt voranzutreiben und zu evaluieren, ist das

Littering bedeutet auch eine große finanzielle Belastung: für die Reinigung von Straßen und öffentlichen Plätzen werden rund 3 Millionen Euro pro Jahr in Oberösterreich

„Das zeigt klar auf, dass die Politik ihre Hausaufgaben gemacht hat und wir bereits in der Gesetzgebung durch maximale Deregulierung den Grundstein dafür gelegt

Deshalb setzt sich Teach For Austria seit 2011 in Österreich und seit 2018 in Oberösterreich dafür ein, dass auch Kinder mit schlechteren Startbedingungen die Chance auf

Wir setzen umfassende Maßnahmen am Arbeitsmarkt, etwa im Rahmen des kürzlich unterzeichneten ‚Pakt für Arbeit und Qualifizierung‘, die Investitionsprämie des Bundes wird

Natur- und Artenschutz sind die gelebte Verantwortung für unsere Heimat und müssen daher langfristig mit Weitsicht und Hausverstand gedacht werden.. Die Erhaltung

Ärztinnen und Ärzte aus etwa 600 Ordinationen haben sich bereit erklärt, Impfungen durchzuführen und werden dafür gezielt auf ihre Patientinnen und Patienten, auf welche