• Keine Ergebnisse gefunden

Ecological Chemistry: Allelochemical Effects of Protists

N/A
N/A
Protected

Academic year: 2022

Aktie "Ecological Chemistry: Allelochemical Effects of Protists"

Copied!
33
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Marine Biotoxins:

Determination of Spirolide Profiles in Phytoplankton by LC/MS/MS

1. Introduction

2. Search for unknowns

3. Mass spectral characterization

4. Phenotypic profiling of Alexandrium ostenfeldii strains 5. Pitfalls

(2)

Ecological Chemistry: Allelochemical Effects of Protists

Allelochemistry:

Interaction of biologically active components eliciting specific responses in target organisms.

These highly specific allelochemical compounds are typically secondary

metabolites and should be distinguished from low molecular weight inorganic and organic nutrients and complex but poorly defined dissolved organic

matter (DOM) that may be utilized as growth substrates by protists.

There are both stimulatory and inhibitory functions to be exploited via production of allelochemicals by protists. Among the putative functions of allelochemicals, their use as agents of chemical defence is most often invoked.

1. Introduction

(3)

Lytic effect of Alexandrium, here the example of Oxyrrhis marina (heterotrophic dinoflagellate).

Black arrows: Alexandrium;

Red arrows: remains of Oxyrrhis

Alexandrium ostenfeldii Oxyrrhis marina

Ecological Chemistry: Allelochemical Effects of Protists

1. Introduction

(4)

Alexandrium ostenfeldii

?

Defense against predators and/or competitors Lysis of other

protists

?

Accumulation in marine food

webs,

poisoning of vertebrates and humans

Spirolides

O O

N

O

O O OH

HO 2

3

31

13

Organism Effect chemical interaction ecological function

Ecological Chemistry: Allelochemical Effects of Protists

1. Introduction

(5)

1991-1992

During routine monitoring of shellfish aquaculture sites in Nova Scotia, extracts of the digestive glands of blue mussels (Mytilus edulis) from Ship Harbour and sea scallops (Placopecten magellanicus) (Graves Shoal) elicited a unique toxic response in the DSP mouse bioassay…….

Coincident consumer complaints of mild illness after shellfish consumption

The Discovery of Novel „Fast Acting Toxins“

1. Introduction

(6)

“Fast Acting Toxicity”: Lipophilic extracts (DSP toxins) Symptomology:

not PSP/DSP(!) strong convulsions tail whirling

body arching

rapid death (min)

High I.P. Toxicity

1. Introduction

(7)

Ship Harbour

Nova Scotia, Canada

Transect Station TACCS Station

Mussel farm

Nova Scotia Shelburne

Ship Harbour Mahone

“Fast Acting Toxicity”: Occurrence

1. Introduction

(8)

Limfjorden, Denmark

8o 1 0o 1 2o

5 5o

5 6o

5 7o

8o 1 0o 1 2o

5 5o

5 6o

5 7o

Limfjorden

Denmark

Sweden

Germany

“Fast Acting Toxicity”: Occurrence

Later also found in

:

Norway, Scotland

1. Introduction

(9)

Alexandrium tamarense Alexandrium ostenfeldii

Scanning electron micrographs of vegetative cells

APC APC

1’ VP 1’

VP

1. Introduction

(10)

Confirmation of spirolides in cultured isolates from Nova Scotia

Produces PSP toxins, but no spirolides

Produces spirolides, but no PSP toxins

Alexandrium ostenfeldii Alexandrium tamarense

Culprit species!!

Time (min)

0 2 4 6 8 10

m/z (x1)

m/z (x10)

m/z 706.5 (x10) m/z 708.5 (x50)

C

D desMe-C

desMe-D C3

* D3 (A)

(B)

(D2) (C2)

1. Introduction

(11)

Cause of “Fast Acting Toxicity”

Novel compounds identified as

“spirolides”

• macrocyclic imines

• structural similarity to pinnatoxin

& gymnodimine

• pharmacologically active/inactive forms

O O

R1

N

O H

O

R2

O O

OH

R1 R2 MW

A H CH3 Δ2,3 691.5

desMeC CH3 H Δ2,3 691.5 B H CH3 693.5 desMeD CH3 H 693.5

C CH3 CH3 Δ2,3 705.5 D CH3 CH3 707.5

E H CH3 Δ2,3 709.5 F H CH3 711.5 O O

R1 NH2

O H

O

R2

O O

OH O

2 3

2 3

13 31

13 31

toxic

non-toxic

1. Introduction

(12)

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 6 2 8 T i m e , m i n

0 , 0 2 0 0 0 , 0 4 0 0 0 , 0 6 0 0 0 , 0 8 0 0 0 , 0 1 , 0 e 4 1 , 2 e 4 1 , 4 e 4 1 , 6 e 4 1 , 8 e 4 2 , 0 e 4 2 , 2 e 4 2 , 4 e 4 2 , 6 e 4 2 , 7 e 4

2. Search for unknowns

13-desMe C Strd

MRM: m/z 692.5 > 164.1

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 6 2 8

T i m e , mi n 0 , 0 0

5 , 0 0 e 4 1 , 0 0 e 5 1 , 5 0 e 5 2 , 0 0 e 5 2 , 5 0 e 5 3 , 0 0 e 5 3 , 5 0 e 5 4 , 0 0 e 5 4 , 5 0 e 5 5 , 0 0 e 5 5 , 5 0 e 5 6 , 0 0 e 5 6 , 5 0 e 5 7 , 0 0 e 5 7 , 5 0 e 5 8 , 0 0 e 5 8 , 5 0 e 5 9 , 0 0 e 5 9 , 5 0 e 5 1 , 0 0 e 6 1 , 0 5 e 6

1 , 1 0 e 6 1 3 , 0 0

1 2 , 7 2

2 6 , 2 7

AOSH 2

MRM: m/z 692.5 > 164.1

Identical mass transitions – different retention times

(13)

13-desMe C Strd: EPI m/z 692.5

AOSH 2: EPI m/z 692.5

2. Search for unknowns

MS/MS spectra of m/z 692.5

(14)

2. Search for unknowns

M+H = 692.5

0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0 5 5 0 6 0 0 6 5 0 7 0 0

6 7 4 ,3

1 6 4 ,1

4 4 4 ,2

6 5 6 ,3

6 3 8 ,4

4 2 6 ,3 6 9 2 ,3

1 7 7 ,1

2 3 0 ,2

4 6 2 ,3 1 1 9 ,0 1 4 7 ,0

2 2 0 ,2 2 5 8 ,2 4 0 8 ,2

1 5 7 ,1 3 0 2 ,2 3 2 0 ,2 3 5 8 ,2 4 5 4 ,2 5 2 2 ,3 5 5 8 ,4 6 2 0 ,2 6 3 0 ,4

1 3 1 ,0 4 7 2 ,3

Characteristic spirolide

fragment

O O

N

O

O O

OH

HO

2 3

31

13

+ m/z = 444.3

N

O

O O

HO

31

13

+

m/z = 164.1

N

31

+

(15)

O O

R1

N

O H

O

R2

O O

OH

R1 R2 MW

A H CH3 Δ2,3 691.5 desMeC CH3 H Δ2,3 691.5 B H CH3 693.5 desMeD CH3 H 693.5 C CH3 CH3 Δ2,3 705.5 D CH3 CH3 707.5

E H CH3 Δ2,3 709.5 F H CH3 711.5 O O

R1 NH2

O H

O O

O

OH O

2 3

2 3

13 31

13 31

toxic

non-toxic

2. Search for unknowns

Cyclic imino moiety accounts for toxicity and forms a

characteristic spirolide fragment

(16)

2. Search for unknowns

AOSH 2: Precursor m/z 164.1

Using the characteristic fragment for the detection of

unknown spirolides

(17)

2. Search for unknowns

AOSH 2: Precursor m/z 164.1

00 520 540 560 580 600 6 20 6 40 66 0 68 0 700 720 740 760 780 800

65 0,7

6 40,6

64 1,7

65 2,7

632 ,6

622,7

7 24,6

64 3,6 654,7 6 92,9 7 12,2

11.7 min m/z 640.6 m/z 650.7

00 520 540 560 580 600 6 20 6 40 66 0 68 0 700 720 740 760 780 800

7 20,7

7 06,9

692 ,7 708 ,0 722 ,9

688,7

65 1,1

64 1,0

622 ,9 725,2 739 ,0 760,1

12.6 min m/z 706.6 m/z 720.7

692,6

694 ,6

13.0 min m/z 692.6

m/z 694.6

Spirolide masses

706,6

70 8,4

68 8,9

67 2,7

64 0,5 690,9 710 ,7 738,1

12.0 min m/z 706.6

(18)

3. Mass spectral characterization

AOSH 2: m/z = 640.5

(19)

3. Mass spectral characterization

AOSH 2: m/z = 650.5

(20)

3. Mass spectral characterization

AOSH 2: m/z = 692.5

(21)

AOSH 2: m/z = 694.5

3. Mass spectral characterization

(22)

3. Mass spectral characterization

AOSH 2: m/z = 706.5

(23)

3. Mass spectral characterization

AOSH 2: m/z = 720.5

(24)

10,5 11,0 11,5 12,0 12,5 13,0 13,5 14,0 14,5 15,0 Time, min

0,0 2,0e5 4,0e5 6,0e5 8,0e5 1,0e6 1,2e6 1,4e6 1,6e6 1,8e6 2,0e6 2,2e6 2,4e6

11,51

O O

N

O

O O OH

HO 2

3

31

13

13-desMe C

O O

N

O

O O OH

2 3

31

13

HO 19

13,19-didesMe C

678.5 > 164.1 692.5 > 164.1

4. Penotypic profiling of Alexandrium ostrenfeldii strains

CCMP 1773, Denmark

(25)

10,5 11,0 11,5 12,0 12,5 13,0 13,5 14,0 14,5 15,0 0,0

1,0e5 2,0e5 3,0e5 4,0e5 5,0e5 6,0e5 7,0e5 8,0e5 9,0e5 1,0e6 1,1e6 1,2e6 1,3e6 1,4e6 1,5e6 1,6e6 1,7e6 1,8e6 1,9e6 2,0e6 2,1e6

11,95

O O

N

O

O O OH

HO 2

3

31

13

13-desMe C

O O

N

O

O O OH

HO

2 3

31

13

Spirolide C

?

692.5 > 150.1 692.5 > 164.1 694.5 > 164.1 706.5 > 164.1

4. Penotypic profiling of Alexandrium ostrenfeldii strains

AOSH 1, Canada

12,38

(26)

10,5 11,0 11,5 12,0 12,5 13,0 13,5 14,0 14,5 15,0 Time, min

0,0 2,0e5 4,0e5 6,0e5 8,0e5 1,0e6 1,2e6 1,4e6 1,6e6 1,8e6 2,0e6 2,2e6 2,4e6 2,6e6 2,8e6 3,0e6 3,2e6 3,4e6 3,6e6 3,8e6 4,0e6 4,2e6 4,4e6

12,38

12,00

12,85

?

?

? ?

? ?

O O

N

O

O O

HO 2

3

32

13 HO

17

20

20-Me Spirolide G

O O

N

O

O O OH

HO

2 3

31

13

Spirolide C

?

604.5 > 356.3 640.5 > 164.1 650.5 > 164.1 692.5 > 150.1 692.5 > 164.1 694.5 > 164.1 706.5 > 164.1 708.5 > 164.1 720.5 > 164.1

4. Penotypic profiling of Alexandrium ostrenfeldii strains

AOSH 2, Canada

(27)

5. Pitfalls

Identical retention time and mass transition,

AOSH 2: MRM 706.5 > 164.1 AOSH 1: MRM 706.5 > 164.1

(28)

5. Pitfalls

AOSH 2: EPI m/z 706.5; 12.37 min AOSH 1: EPI m/z 706.5; 12.37 min

but different mass spectra

(29)

O O

R1

N

O H

O

R2

O O

OH

R1 R2 MW

A H CH3 Δ2,3 691.5 desMeC CH3 H Δ2,3 691.5 B H CH3 693.5 desMeD CH3 H 693.5 C CH3 CH3 Δ2,3 705.5 D CH3 CH3 707.5

E H CH3 Δ2,3 709.5 F H CH3 711.5 O O

R1 NH2

O H

O O

O

OH O

2 3

2 3

13 31

13 31

5. Pitfalls

Compound or isotopic peak?

(30)

5. Pitfalls

AOSH 1: MRM 694.5 > 164.1

AOSH 2: MRM 694.5 > 164.1

Compound or isotopic peak?

(31)

5. Pitfalls

AOSH 1: EPI m/z 694.5; 12.0 min

AOSH 2: EPI m/z 694.5; 12.9 min

Product ion spectra reveal isotopic pattern

Isotopic fragments of m/z 13C2-692.5

Monosotopic fragments of m/z 12C-694.5

(32)

Conclusions:

Triple quadrupole tandem mass spectrometry is a powerful tool for the determination and quantitation of spirolides

Unknown toxic spirolides can be detected in the precursor ion mode of the characteristic cyclo imino fragments at m/z 150 and 164,

respectively

Structural information can be obtained by product ion spectra of parent ions Co-eluting compounds with identical mass transitions can be

differentiated by their product ion spectra

Product ion spectra can be used to differentiate between isotope statellites and monoisotopic peaks

(33)

Acknowledgements:

Allan Cembella, AWI Urban Tillmann, AWI

Shawna MacKinnon, IMB - NRC Corinne Garnett, IMB - NRC

Thank You!

Referenzen

ÄHNLICHE DOKUMENTE

The respect and prestige of scientist who manage to actually en- gage the general public in the USA (and other parts of the anglophone world) is seen evident in the likes of

In contrast, the tests suggested here are based on the determination of the effects of pollutants on in vivo stimulated immune functions in a defined immune response to

The sublethal doses of crotocaudin (40% and 80% of LC 50 ) administered over 24 h caused signifi cant changes in the carbohydrate and nitrogenous metabolisms in nervous,

Upward counterfactual thoughts have been found to result in more negative affect, whereas downward counterfactual thoughts have a tendency to result in more positive mood

In the following sentences, it is clear that the subject of the sentence is responsible for the action.. • He's cutting

5 My favourite TV programme has been cancelled. I want to see him! _____You will have to be there really early if you want to get close to him. ____You can use my computer..

Ceasefire/peace negotiations should therefore include representatives of the Assad regime, Syrian political opponents and armed rebels from the Free Syrian Army, and

28 Among the documents presented at Nuremberg trial, together with Balachowsky’s testimony were detailed data on 14 typhus infected prisoners (all died), including temperature