• Keine Ergebnisse gefunden

lifestyle Fucus genomic shows and physiological spiralis , adaptations for analgae-associated Pseudooceanicola nov., isolated algae sp. from the marine macroalga Systematic and Applied Microbiology

N/A
N/A
Protected

Academic year: 2022

Aktie "lifestyle Fucus genomic shows and physiological spiralis , adaptations for analgae-associated Pseudooceanicola nov., isolated algae sp. from the marine macroalga Systematic and Applied Microbiology"

Copied!
12
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

ContentslistsavailableatScienceDirect

Systematic and Applied Microbiology

j ou rn a l h om ep a ge :h t t p : / / w w w . e l s e v i e r . c o m / l o c a t e / s y a p m

Pseudooceanicola algae sp. nov., isolated from the marine macroalga Fucus spiralis, shows genomic and physiological adaptations for an algae-associated lifestyle

Laura A. Wolter

a,b,∗

, Matthias Wietz

a,c

, Lisa Ziesche

d

, Sven Breider

a

, Janina Leinberger

a

, Anja Poehlein

e

, Rolf Daniel

e

, Stefan Schulz

d

, Thorsten Brinkhoff

a,∗∗

aInstituteforChemistryandBiologyoftheMarineEnvironment,Oldenburg,Germany

bJSTERATONomuraProject,FacultyofLifeandEnvironmentalSciences,Tsukuba,Japan

cAlfredWegenerInstituteHelmholtzCentreforPolarandMarineResearch,Bremerhaven,Germany

dInstituteofOrganicChemistry,TechnischeUniversitätBraunschweig,Germany

eInstituteofMicrobiologyandGenetics,GenomicandAppliedMicrobiology,andGöttingenGenomicsLaboratory,Germany

a rt i c l e i nf o

Articlehistory:

Received2September2020

Receivedinrevisedform9November2020 Accepted12November2020

Keywords:

Roseobactergroup Algae-associatedlifestyle Tidalflat

Comparativegenomics Secondarymetabolites Habitatadaptations

a b s t ra c t

Thegenus PseudooceanicolafromthealphaproteobacterialRoseobactergroup currentlyincludesten validatedspecies.WehereindescribestrainLw-13eT,thefirstPseudooceanicolaspeciesfrommarine macroalgae,isolatedfromthebrownalgaFucusspiralisabundantatEuropeanandNorthAmericancoasts.

PhysiologicalandpangenomeanalysesofLw-13eT showedcorrespondingadaptivefeatures.Adapta- tionstothetidalenvironmentincludeabroadsalinitytolerance,degradationofmacroalgae-derived substrates(mannitol,mannose,proline),andresistancetoseveralantibioticsandheavymetals.Notably, Lw-13eTcandegradeoligomericalginateviaPL15alginatelyaseencodedinapolysaccharideutilization locus(PUL),rarelydescribedforroseobacterstodate.PlasmidlocalizationofthePULstrengthensthe importanceofmobilegeneticelementsforevolutionaryadaptationswithintheRoseobactergroup.PL15 homologswereprimarilydetectedinmarineplant-associatedmetagenomesfromcoastalenvironments butnotintheopenocean,corroboratingitsadaptiveroleinalgae-richhabitats.Exceptionalisthetoler- anceofLw-13eTagainstthebroad-spectrumantibiotictropodithieticacid,producedbyPhaeobacterspp.

co-occurringincoastalhabitats.Furthermore,Lw-13eTexhibitsfeaturesresemblingterrestrialplant- bacteriaassociations,i.e.biosynthesisofsiderophores,terpenesandvolatiles,whichmaycontribute tomutualbacteria-algaeinteractions.ClosestdescribedrelativeofLw-13eTisPseudopuniceibacterium sediminisCY03Twith98.4%16SrRNAgenesequencesimilarity.However,proteinsequence-basedcore genomephylogenyandaveragenucleotideidentityindicateaffiliationofLw-13eTwiththegenusPseu- dooceanicola.Basedonphylogenetic,physiologicaland(chemo)taxonomicdistinctions,weproposestrain Lw-13eT(=DSM29013T=LMG30557T)asanovelspecieswiththenamePseudooceanicolaalgae.

©2020TheAuthor(s).PublishedbyElsevierGmbH.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

The genus Pseudooceanicola of the alphaproteobacterial Roseobacter group (Rhodobacteraceae) currently comprises ten validated species of aerobic or facultatively anaerobic Gram- negativerods.Allso-fardescribedPseudooceanicolaspp.originate

Correspondingauthorat:NationalInstituteofAdvancedIndustrialScienceand Technology,Central6,Higashi1-1-1,Tsukuba,305-8566,Japan.

∗∗ Correspondingauthorat:InstituteforChemistryandBiologyoftheMarine Environment,Carl-von-Ossietzky-Str.9-11,26129Oldenburg,Germany.

E-mailaddresses:laura.wolter@uni-oldenburg.de(L.A.Wolter), t.brinkhoff@icbm.de(T.Brinkhoff).

fromseawater, deep-sea sediment or invertebrates. We herein describe the first Pseudooceanicola representative, designated Lw-13eT,fromthesurfaceofamarinemacroalga.StrainLw-13eT hasbeen isolated from Fucus spiralis, a brown macroalga with broaddistribution intidal areasalong the Europeanand North American Atlantic coast. Rhodobacteraceae constitute almost a quarteroftheepibacterialcommunityonFucusspp.[58,76]and physiologicalpropertiesofRhodobacteraceaeobtainedfromFucus surfacesindicateadaptationstoanepiphyticlifestyle[26].

Organismsinhabitingtidalflatsencounterregulardesiccation andrewettingeventsthatrequiredistinctadaptationstoswiftly changing environmental conditions suchas salt, oxidative and heatstress.Bacteriaassociatedwithcoastalmacroalgaearepoten-

https://doi.org/10.1016/j.syapm.2020.126166

0723-2020/©2020TheAuthor(s).PublishedbyElsevierGmbH.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc- nd/4.0/).

(2)

tiallyenrichedinadaptivefeatureslikeproductionofcompatible solutestodealwithosmoticstress[91]aswellashightolerance toantibioticsandheavymetals[83]thatcanaccumulateinalgal biomassfromterrestrialinput[33].Furthermore,thelifestyleof host-associatedbacteriaislikelyshapedbybiologicalinteractions, includingmechanismsofcommensalism,mutualismorparasitism betweenbacteriaandalgae[28].

Onerelevantaspectofbacteria-algaeinteractionsistheutiliza- tionofalgalconstituentsbybacterialepibionts,withspecialization for high- or low-molecular-weight compounds [35]. Moreover, bacteria-algae interactions can rely on chemical communica- tionandsecondarymetabolites,e.g.viathebacterialproduction of siderophores to access insoluble Fe3+ [72] and vitamins for auxotrophic algae [20], known for Rhodobacteraceae and their microalgalhosts[1].Stimulatorymechanismsincludethepromo- tionof algalgrowthbybacterialphytohormones[69],however, bothbacteriaandalgaecanalsoexertinhibitorymechanisms,e.g.

throughantifoulingcompoundsshapingtheepibioticcommunity [64].Productionofiron-scavengingmoleculesandtoxinsaswell asantibioticresistanceswereidentifiedasrelevantforbothmutu- alisticandantagonisticrelationshipsbetweenbacteriaandalgae [13].

Here, we identified traits in the Fucus-derived strain Pseu- dooceanicolaLw-13eTthatadaptforlifeonacoastalmacroalgae.

We expanded preliminaryinsightsonphysiologicaladaptations ofFucusepibionts[26]bydetailedinvestigationofgenomicand physiological featuresof strainLw-13eT.Its specificadaptations tolifeonmacroalgaein tidalareas,partiallyresemblingterres- trialplant-bacteriainteractions,distinguishstrainLw-13eT from seawater-, sediment-and invertebrate-derived Pseudooceanicola spp. Together with detection of a closely related phylotype in Fucus epibiota [26] and alginate lyase homologs in algae-rich coastalhabitats,ourstudyrevealsarangeofspecificadaptationsof strainLw-13eT.Supportedby(chemo)taxonomicdistinctionsand genomicanalyses,weproposestrainLw-13eTasanovelspecies withinthegenusPseudooceanicola.

Materialsandmethods

Samplecollectionandbacterialisolation

SpecimensofthebrownmacroalgaFucusspiraliswerecollected attheGermanNorthSeacoastinNeuharlingersiel(534217.0N 74216.1E)onJune27th2013duringlowtide.Algalspecimens weretransportedtothelabinacontainerat4Cwithintwohours andwashedthreetimeswithsterileseawatertoremoveloosely attachedbacteria.Subsequently,surfacesofalgalreceptacleswere swept overagarplates withMarineBroth Difco2216prepared withslightmodifications (hereafterreferred toasMB)toavoid precipitationofmediumcomponents[7]:12.6gMgCl2*6H2Oand 2.38gCaCl2*2H2OL-1andforthetraceelementsolution7mgNa- silicate*5H2Oand21.2mgboricacidL-1.Plateswereincubatedat 20Cinthedarkforthreedaysandsinglecoloniesre-streakedfour timesonfreshplatesforpurification,resultingintheisolationof strainLw-13eT[26].

Morphologicalandphysiologicalcharacterization

Cell morphology and motility were examined by light microscopy(AxioLabA1;Zeiss,Germany)inexponentialandsta- tionaryphase,bothinMBandartificialseawater(ASW)medium [90]supplementedwith3%MB.Thesupplementationwasfound tobeobligatoryforgrowthofstrainLw-13eTinASW(hereafter referred toasASW+MB).Cell motility and potentialtriggering byexogenous substanceswasinvestigatedinASW+MB supple-

mented with10mM sodium acetate, glucose, proline, maltose, N-acetylglucosamine, mannose,arabinose,fructose ordimethyl- sulfoniopropionate(DMSP),aswellaswith0.1%(w/v)polymeric and oligomeric alginate, oligomeric ␤-d-mannuronate or Fucus powder[driedandshreddedalgalmaterial],respectively.Fortrans- mission electron microscopy, 50␮L of a culture grown in MB wereplacedonacoppergrid(200mesh;Plano,Germany),nega- tivelystainedusinguranylacetate,andanalyzedwithanEM902A electronmicroscope(Zeiss,Germany).Gram-staining,cytochrome oxidase and catalase activity as well as production of bacteri- ochlorophyllawereassayedasdescribedelsewhere[43].Analyses ofrespiratoryquinonesandcellularfattyacidswerecarriedoutby theGermanCollectionofCellCulturesandMicroorganisms(DSMZ, Braunschweig,Germany)(seeSupplementaryMethodsfordetails).

Growthexperiments

Testswithliquidcultureswereperformedintriplicatesintest tubeseachcontaining5mLmedium,shakenat150rpm.Eachtube wasinoculatedtoastartingOD600of0.001withcellsfromapre- culturegrownfor48hinMB.Unlessstatedotherwise,allgrowth experimentswerecarriedout at20Cin thedark.Growthwas followeddailybyOD600measurements,includingmediaandsub- stratecontrols.RangeforgrowthatdifferentpHvalueswastested betweenpH4and10.5,inincrementsof0.5anddeterminedin ASW+MBwith5mMproline.ThepHwasadjustedto4–8with 1MNaOHandwithglycineNaOHto8.5–10.5,followedbysterile- filtration.SalinitytolerancewastestedinNaCl-freeASW+MBwith 5mMproline,adjustedto0,0.5,1–10(in1%increments),12.5,15, 17.5and20%NaClusingsterile30%NaClsolution.Beforeinocu- lation,cellsfromthepre-culturewerewashedtwiceinNaCl-free ASW.TemperaturerangewasanalyzedinMBat4,7,9,15,20,24, 26,28,30,34,36and40C.Maximumgrowthrate(␮max)anddou- blingtime(td=ln2/␮max)weredeterminedunderoptimalgrowth conditions:inoculationtoastartingOD600of0.001in100mLMB, incubatedin500mLbaffledErlenmeyerflasksat28C,pH7.6and 150rpminthedark.Growthrateanddoublingtimeweredeter- minedbasedonOD600measurementseverytwohours,usinglinear regressionofasemi-logarithmicplotofmeanopticaldensity(from threereplicates)versustime.

Utilizationofdifferentcarbonsources(dissolvedinwaterand sterile-filtered)wasdeterminedwithfinalconcentrationsof0.1%

(w/v)foralginatesubstrates(polymericandoligomericalginate, oligomeric ␤-d-mannuronate and Fucus powder) or 10mM for sugars(glucose,d-mannitol,d-mannose,N-acetylglucosamine,d- maltose,sucrose,fructose,l-arabinose)andaminoacids(alanine, proline,serine,valine,lysine,methionine,arginine,aspartate)after fivedays of incubation. The pre-culture wasgrown for 48h in MBandwashedtwiceinASWpriortoinoculation.Cellsgrownin ASW+MBwithoutfurtheradditionofcarbonsourceservedasneg- ativecontrol.Growthwasscoredasnegativewhenequaltoorless thanthenegativecontrol,andaspositiveaftertwotransfersand repeatedgrowthinthesamemedium.Reductionofnitrateand nitritewastestedinanoxicASW+MBcontaining0.5g/Lresazurin [23](seeSupplementaryMethods).

Antibioticandheavymetalsusceptibility

Antibioticsusceptibilitywastestedintriplicatesusinganantibi- oticdiscassayonMBagarplates[11]withpenicillinG,tetracyclin, streptomycinsulfate,chloramphenicol,kanamycinsulfate,specti- nomycin,gentamicinandampicillin(finalconcentrations1mM) andthemarinebroad-spectrumantibiotictropodithieticacid(0.1, 0.3,0.5,0.6and1mM).Plateswereinspecteddailyforinhibition zones.Controlsincludedsolventsoftheantibiotics(wateror50%

ethanol)aswellasMB.Heavymetaltolerancewastestedinmod-

(3)

ifiedliquidandonsolidMBwith0.04,0.075and0.1mMCuCl2or 1mMofarsenate/arsenite(SupplementaryMethods).Testswere performedintriplicates,withplatesortubeswithoutheavymetals servingascontrols.

Productionofsecondarymetabolites

Production and excretion of hemolysins was tested using a plate-basedbloodhemolysistest.Acellculturewasgrownfor48h inMBat20Cand100rpm.Subsequently,50␮Lcellsuspension wasinoculatedintoapiercedwellinColumbiabloodagarplates (MerckMillipore,Germany,No.146559)andoccurrenceofayel- low,clearringaroundthewellwithintwoweekswasscoredas

␤-hemolysis.Productionofvolatileorganiccompoundsandacyl- homoserine lactones wasanalyzedby GC/MSof CLSA andXAD cultureextracts(seeSupplementaryMethods).

Chemotactictriggeringofmotility

Chemotaxiswastestedonsoft(0.25%)agarplateswith10%MB ascarbonsource.Ten␮Lofabacterialculturegrownfor48hinMB wereinoculatedononesideoftheplateandten␮Lofthetested substancesopposite.Swimmingofbacteriatowardsorawayfrom the substance was scoredas chemotactic response. Substances analyzed for chemotactic response were: Fucuspowder, 1M of sodium-acetate,glucose,proline,500␮MofN-acetylglucosamine, maltose,mannose,arabinose,fructose,DMSP,aB-vitaminsolution [4],1%ofpolymericalginateandpolymeric␤-d-mannuronate.Soft agarplatesinoculated withbacteriabut nosubstanceservedas controlofmotilitywithouttriggering.

Genomesequencingandfunctionalanalysis

GenomicDNAofLw-13eTwasisolatedfromaculturegrown in MBfor48husingtheinnuPREPDNAMinikit(AnalytikJena, Germany).Unlessstatedotherwise,allsubsequentstepswereper- formed according to the manufacturer’s instructions. Extracted DNAwasusedtogenerateIlluminapaired-endsequencinglibraries (2×300bp) with the Nextera XT sample preparation kit (Illu- mina,SanDiego,CA).Generatedlibrariesweresequencedwitha MiSeqinstrumentandsequencingkitv3with600cycles(Illumina, SanDiego,CA,USA).Forgenomeclosure,high-molecular-weight DNA was isolated with the MasterPure Complete DNA & RNA Purification Kit (Biozym, HessischOldendorf,Germany).Quality ofisolatedDNAwascheckedbyagarosegelelectrophoresisand validatedonanAgilentBioanalyzer2100usingtheHighSensitiv- ityDNA12000Kit(AgilentTechnologies,Waldbronn,Germany).

DNA concentration and purity were checked with a Nanodrop ND-1000(PeqLabErlangen,Germany),followedbyexactquantifi- cation usingthe Qubit® dsDNA HSAssayKit(Life Technologies GmbH, Darmstadt, Germany). For Nanopore sequencing 1.5␮g high-molecular-weightDNAwasusedtopreparethreeindepen- dentlibrariesusingtheLigationSequencingKit1D(SQK-LSK109) and the NativeBarcode Expansion Kit (EXP-NBD103).Sequenc- ingwasperformedfor72husinga MinIONdeviceMk1Banda SpotON FlowCell R9.4.1(Oxford Nanopore Technologies) using MinKNOW software v19.05.0for sequencing and Guppy v3.0.3 [81]fordemultiplexing,resultingin19,955reads.Unicyclerv0.4.7 [88] wasusedwithdefaultsettingstoperformahybridassem- bly,resultingina closedchromosome(3,732,046bp)andthree closedplasmidswithsizesof202,410bp,111,009bpand49,258 bprespectively.RepliconswerevalidatedusingBandagev2.1[87]

andthegenomewasannotatedwithProkkav1.13.3[68].Putative biosyntheticgeneclusterswerepredictedusingAntiSMASHv4.1.0 [9],genomicislandsusingIslandviewerv4[6],andcarbohydrate- active enzymes using dbCAN2 [92]. Genome visualization and

comparisonwithotherPseudooceanicolaspp.wasdoneusingBRIG [2]. Homologs of the unique PL15 alginate lyase (Psal36760) weresearchedin77metagenomesfromdifferentmacroalgaeand seagrassesfromdiversecoastal habitatsin IMG [16]as wellas 243prokaryoticmetagenomesfromtheTARAexpedition(http://

bioinfo.szn.it/tara-blast-server-help-page/),only consideringhits withminimum65%querycoverageand60%aminoacididentity.

Phylogeneticanalysisanduniquegenes

Phylogeneticanalysisbasedonthefull-length16SrRNAgene (retrievedfromthecompletegenome)aswellas873core-genes wasperformedincontextwithcloselyrelatedstrainsidentified byBLASTn(https://blast.ncbi.nlm.nih.gov/Blast.cgi).Thegenomeof Pseudooceanicolalipolyticus(PGTB00000000)wasexcludedfrom further analyses due to high fragmentation (442 contigs with a medium size of 11kb, including many truncated genes and assembly contigs with kmer < 5). Whole-genome phylogeny wasperformedon873single-copyorthologous genesequences retrievedusingOrthoFinderv2.3.3[29].16SrRNAgenesequences andsingle-copyorthologswerealignedusingMAFFTv7.427[55]

andconcatenated.Theconcatenatedalignmentwasautomatically curatedforblocksrepresentedby>50%sequenceinformationusing GBlocksv0.19[79]andtheresulting188,268aminoacidpositions wereback-translatedtonucleotidedataforbetteralignmentreso- lutionusingtheembosspackage[66].Theconcatenated,curated andback-translatedalignment isshown inSupplementarydata file1.Maximum-likelihoodphylogeniesof16SrRNAandortholog genealignmentswerecalculatedusingRAxMLv8.2.12[73]withthe GTRCATmodeland1000or100bootstrapreplicates,respectively, followedbytreevisualizationusingMEGA-Xv10.0.5[45].Ruege- riameonggeiservedasoutgroup.DigitalDNA-DNAhybridization (dDDH)wascalculatedbythegenome-to-genomedistancecalcu- latorGGDC2.1[53]andaveragenucleotideidentities(ANI)using FastANI[40].

Toidentifycore,accessoryanduniquegenes,thegenomesof Lw-13eT,relatedPseudooceanicolaspp.andPseudopuniceibacterium sediminisastheclosestrelative ofLw-13eT (Table1)wereana- lyzedusingOrthoFinder,witha30%aminoacididentitythreshold.

Accessoryand unique geneswere functionallyannotated using eggNOG-mapperv2[37]andmanuallycurated.Ofthe3421unique genesinthetenstrains,32%werefunctionallyannotatedtodefined KEGGcategories(TableS1).EnrichmentofspecificKEGGcategories inthegenomesofLw-13eTandotherPseudooceanicolaspp.was analyzedastheratioofthespecificKEGGcategorycomparedto alluniquefunctionallyannotatedgenesintherespectivestrain.

Geneannotationswerecheckedbysequencecomparisonagainst theUniProtKBdatabase[82].Analysisofhomologiesofsinglegenes orgeneclusterswasdoneusingGeneiousv11.0.2(BiomattersLtd., Auckland,NewZealand).WeusetheabbreviationsPo.forPseu- dooceanicola,Pp.forPseudopuniceibacteriumandPh.forPhaeobacter throughoutthetext.

Resultsanddiscussion

Generalphysiological,phylogeneticandgenomicfeaturesofstrain Lw-13eT

Isolationandmorphologicalcharacterization

StrainLw-13eTwasisolatedfromthereceptaclesurfaceofthe commonbrownmacroalgaFucusspiralis,collectedattheGerman NorthSeacoastinsummerwhenbrownalgaehavetheirhighest physiologicalactivityandmostintenseinteractionwithepibiotic microbes[26,27].Lw-13eTwasamongthefirstorganismsform- ingcoloniesonMBagarplates. Aftertwo days,coloniesonMB

(4)

Table1

GenomestatisticsofLw-13eTandrelatedPseudooceanicolausedforcomparativeanalysis,includingsourceofisolation,GenBankaccessionnumbers,G+Ccontentand genomesize(inMbp)aswellasthefractionofcore,accessoryanduniquegenes.*excludedfromthecomparativeanalysisduetoahighfragmentationoftheassembly;**

excludedfromthecomparativeanalysisbecauseitisonlydistantlyrelatedtoPseudooceanicolaonwhole-genomelevel(Fig.3B).

Organism Locustag Isolationsource Genomeassembly G+C Mbp Genes Core(%) Accessory

(%)

Unique(%)

Pseudooceanicolaalgae Lw-13eT

PSAL BrownmacroalgaFucus spiralis,

NorthSea,Germany

CP060436CP060439 64.1 4.09 3776 31.3 57.3 11.4

Pseudooceanicola antarcticusAr-45T

CVM39 Seawater(50m), SouthernOcean

GCF002786285.1 66.1 4.30 3992 29.6 61.1 9.3

Pseudooceanicolaatlanticus 22II-S11gT

ATO9 Seawater,

AtlanticOcean

GCF000768315.1 64.1 4.94 4633 25.5 66.0 8.5

Pseudooceanicolabatsensis HTCC2597T

OB2597 Seawater,

WesternSargassoSea

GCF000152725.1 66.1 4.44 4138 28.5 63.1 8.4

Pseudooceanicolaflagellatus DY470T**

B8991 Seawater, PacificOcean

GCF900176485.1 60.1 4.41 4143

Pseudooceanicolalipolyticus 157T*

Seawater, PhilippineSea

GCF002786325.1 64.6 5.24 4826

Pseudooceanicolamarinus CECT7751T

PSM7751 Coastalseawater(4–5m), Taiwan

GCF900172385.1 66.8 4.53 4244 27.8 62.5 9.7

Pseudooceanicola nanhaiensisSS011B1-20T

Q344 Sediments(1100m),South ChinaSea

GCF000688295.1 67.9 4.66 4442 26.6 64.8 8.7

Pseudooceanicola nitratireducensJLT1210T

BMX99 BeibuGulf, SouthChinaSea

GCF900109195.1 64.2 4.06 3840 30.7 62.9 6.4

Pseudooceanicolaonchidii XY-99T

E4S58 Onchidiumsp.(seaslug), SouthChinaSea

GCF 004959925.1 65 3.67 3528 33.5 61.8 4.7

Pseudopunicei-bacterium sediminisCY03T

DL237 Sediment(25mwater depth),YellowSea,China

GCF003575965.1 63.7 4.45 4036 29.2 62.8 8.0

Pseudooceanicolapacificus 216PA321T

GLS40 Deep-seasediment (5788m), PacificOcean

GCF009789075.1 66.3 3.89 3526 33.5 56.7 9.9

Fig.1. TransmissionelectronandlightmicroscopyofLw-13eT.DensecellaggregatesofLw-13eTarecharacterizedbyorangecoloration,potentiallythroughpigment production(A).Heterogeniccellmorphology,dividingviabinaryfission(B)andpotentialbudding(arrowsinC)andoftenconnectedbypilus-likestructures(arrowsinD).

Somecellsdisplayflagellum-likestructures(arrowinE)andseemedrepeatedlyconnected,butthesestructuresweredestroyedduringsamplepreparation(alsonotecell debrisinthesamples).Barsrepresent20␮m(A),1␮m(B,C,D)and0.2␮m(E).

appear cream-colored,circularandconvex,withashinysurface andadiameterofupto0.5mm.Afteroneweek,coloniesturnyel- lowishwithfuzzyedgesanddiametersupto3mm.Inliquidmedia (MBandASW+MB),Lw-13eTgrowscreamy-yellowish,withcells clumping in stickyhard-to-disruptaggregates, partlyappearing orangewhenconcentratedbycentrifugation(Fig.1A).Singlecells are irregular elongatedrods, 1.5–3␮mlong and approximately 1␮mwide,displayingheterogeneousmorphologiesinliquidcul- tures. Cells propagatethroughboth binaryfission (Fig.1B)and budding (arrowsin Fig. 1C), which might relate to CtrA-based phosphorelay(seebelow).Mostcellswereconnectedbypilus-like structuresasobservedbylightmicroscopy,whichwereprobably disruptedduringpreparationfortransmissionelectronmicroscopy (arrowsinFig.1D).Detectionofseveralflagellum-likeappendages (Fig.1E)correspondstothepresenceofflagella-encodinggenesin thechromosome(Fig.2,TableS2)withhomologytothefla1gene

clusterofDinoroseobactershibae(Fig.S1).However,cellswerenon- motile,independentofculturemediaorgrowthphase,andmotility wastriggeredneitherbyadditionofalgalmaterialoralgal-derived substancestothemedium.ThegenusPseudooceanicolawasprevi- ouslydescribedasnonmotile,althoughpolarorsubpolarflagella weresporadicallyreported[38,94]andPseudooceanicolagenomes harbor flagella-encodinggenes, withmotility indicated for two strains[5].TheprevalenceofflagellagenesingenomesofPseu- dooceanicolaspp.mightthusbeacommonfeature,butitremains tobedeterminedifthoseareexpressedonlyunderyetunknown conditionsorusedfor purposesotherthanmotility,e.g.surface attachment[71]. Discriminativegrowthcharacteristicsof strain Lw-13eTtorelatedstrainsaresummarizedinTable2.Acomplete overviewofgeneralgrowthparametersis showninthespecies description(Table3).

(5)

Fig.2. GraphicalrepresentationofthecompletegenomeofP.algaeLw-13eT.ColoredcirclesshowblastncomparisontootherPseudooceanicolastrainsasdescribedinthe legend,with%identityillustratedbycolorgradients.Functionalannotationsofthegenesonsmallerplasmids(49kb,111kb)aredepictedintheinnercirclebycolorationas giveninthelegend.Genomicislands(GIs)predictedusingIslandViewerv4(TableS3)areindicated.

Table2

DifferentialcharacteristicsofstrainLw-13eTcomparedtorelatedtypestrains.1:Lw-13eT;2:Pp.sediminisCY03T;3:Po.antarcticusAr-45T;4:Po.marinusAZO-CT;5:

Po.atlanticus22II-S11gT(typespecies).+,positive;−,negative;w,weak;n.d.,notdetermined;r,resistant;s,sensitive.Concentrationsoftestedsubstancesaregivenin thematerialsandmethodssection;*resultsarebasedonvalidlypublishedBiologdata.Althoughthisonlyallowsanindirectcomparisonofsubstrateutilization,our complementaryresultsprovideconclusiveevidenceofecologicaldifferentiationinlinewithspeciesseparation;**CompletefattyacidcompositionsareshowninTableS8.

Resultsfortheothertypestrainswereobtainedfromthespeciesdescriptions[38,48,49,93].GeneralcharacteristicsofstrainLw-13eTsharedwithotherPseudooceanicola spp.areshowninTable3.

Characteristic 1 2 3 4 5

Isolationsource surfaceofFucus spiralis

Marinesediment (25m)

Seawater(50m) Seawater(4–5m) surfaceseawater

Cellsize(␮m) 1×1.53 0.81.3×1.42.2 0.6×1 0.5×1 1×2.5

DNAG+Ccontent(mol%) 64.1 62.8 62 70.9 64.1

Colonycolor yellowcream opaque cream creamwhite faintyellow

Temperaturerange(C) 4–34 5–40 4–40 4–42 10–41

Temperatureoptimum(C) 20–28 30 35–37 28–35 25–28

Salinityrange(%NaCl) 0.5–17.5 0.5–9 0.5–10 2–8 0.5–9

Salinityoptimum(%NaCl) 0.5–7.5 1.5–2 0.5–3 3–5 1–7

Substratesused:

Alanine + n.d. −* + n.d.

d-mannose + + +* −*

N-acetyl-glucosamine + n.d. +* −*

Hydrolysisof:

Tween80 +*

Antibioticsusceptibility:

Ampicillin s s s r s

Gentamicin w n.d. s s s

Kanamycin r n.d. s s s

PenicillinG s s s r s

Streptomycin r n.d. s s s

Majorfattyacids(>10%)(in orderofabundance)**

C18:1␻6c/␻7c(84%) C19:0cyclo␻8c(35%), C16:0(28%), C18:1␻6c/␻7c(17%)

C16:0(34%), C19:0cyclo␻8c(33%), C18:1␻6c/␻7c(21%)

C18:1␻6c/␻7c(49%), C19:0cyclo␻8c(25%), C16:0(15%)

C18:1␻6c/␻7c(55%), C16:0(16%), 11-methylC18:1␻7c

(11%)

(6)

Table3

SpeciesdescriptionofstrainLw-13eTfollowingthedigitalprotologuestandard.

Speciesname Pseudooceanicolaalgae

Specificepithet algae

Speciesstatus sp.nov.

Speciesetymology al’gae,L.gen.n.algae,ofanalga,seaweed;referringtotheisolationsourcefromalgae Descriptionofthenewtaxonanddiagnostictraits Cellsarepleomorphicandnon-motile,despitegenomicandmicroscopicevidenceof

flagella.Singlecellsareirregularlyelongatedrods,1.5–3␮mlongandapproximately 1␮mwide,displayingheterogeneousmorphologiesinliquidcultures.Cellspropagate throughbinaryfissionandbudding.Coloniesareshinycream-colored,circularand convex,withadiameterofupto0.5mm.Afteroneweek,coloniesturnyellowishwith fuzzyedgesanddiametersupto3mm.Inliquidmedium,Lw-13eTgrows

creamy-yellowish,withcellsclumpinginstickyaggregatesthatarehardtodisrupt andappearorangewhenconcentratedbycentrifugation.Growthoccursat4–34C (optimum20–28C),atpH5.5–9.0(optimum6.5–8.0)andwith0.5–17.5%(optimum 0.5–7.5)NaCl.Underoptimalconditions,themaximalspecificgrowthrate(␮max)is 0.062h1,withadoublingtimeof11.2h(Fig.S2D).Testsforcatalaseandoxidaseare positive,reductionofnitrateandnitritearenegative.Thesolerespiratoryquinoneis ubiquinone-10,widelydistributedinAlphaproteobacteria.StrainLw-13eTdoesnot hydrolyzegelatin,starchorTween80.Itissusceptibletoampicillin,chloramphenicol, penicillinGandweaklytogentamicin,butisresistanttostreptomycinandkanamycin aswellastothebroadrangeantibiotictropodithieticacid(TDA).StrainLw-13eT growsonglucose,d-mannitol,alanine,d-mannose,N-acetyl-glucosamine,proline, d-maltose,d-fructose,sucroseandweakonserineandL-arabinose.Productionof iron-chelatingsiderophores,vitaminB12,terpenes,andvolatileswasdetected.A peculiarfeatureisthepredominanceofC18:1␻7candC18:1␻6cfattyacids(84%), contrastingtoagreaterdiversityoffattyacidsinotherPseudooceanicolaspp.

Countryoforigin Germany

Regionoforigin Neuharlingersiel,NorthSeacoast

Dateofisolation 27/06/2013

Sourceofisolation SurfaceofthemarinemacroalgaFucusspiralis

Samplingdate 27/06/2013

Latitude 534217.0N

Longitude 74216.1E

16SrRNAgeneaccessionnumber KM268063

Genomeaccessionnumbers CP060436–CP060439

Genomestatus complete

Genomesize 4,094,723

GCmol% 64.1

Numberofstrainsinstudy 1

DesignationoftheTypeStrain Lw-13e

StrainCollectionnumbers DSM29013=LMG30557

Miscellaneous,extraordinaryfeaturesrelevantforthedescription productionoforangepigment;heterogenicshapeofcells,propagatingthroughbinary fissionandbudding;non-motile,despitegenomicandmicroscopicevidenceofflagella

Genomicandphylogeneticanalysis

The closed genome of Lw-13eT consists of a chromosome (3732kb)andthreeplasmids (202,111and49kb)(Fig.2),with an overall G+C content of 64.1 %. The genome contains three rRNAgeneclusters,52tRNAgenes,onetmRNAgene,2951genes encodingproteinswithpredictedfunctions,and826genesencod- inghypotheticalproteins.Furthermore,18genomicislandswere predicted(TableS3),demonstratingmultiplepriorgenetictransfer events.

Phylogenybasedon16SrRNAgenesdemonstratedthatLw-13eT fallsbetweenitsclosestdescribedrelativePseudopuniceibacterium sediminisCY03T (98.4%16SrRNAgenesequence similarity)and aclustercontainingPseudooceanicola,OceanicolaandPhaeobacter species(Fig.3A).However,protein-basedcoregenomephylogeny shows clearaffiliation of Lw-13eT withthegenusPseudoocean- icola,forming asubcluster withPo.antarcticus,Po. marinusand Pp. sediminis (Fig. 3B, orange coloration) whereas other Pseu- dooceanicola spp. form two separate clusters (green and blue coloration).Po.flagellatuswasexcludedfromcomparativeanaly- ses,asitclusterswithSalipigerspp.andPuniceibacteriumspp.in whole-genomephylogeny.Deepbranchingfrombothgenerasug- gestsfuture reclassificationofPo.flagellatus.Averagenucleotide identities (ANI) of 79.6–79.9% with Pp. sediminis, Po. marinus and Po. antarcticus (Table S4) and <25% similarities using digi- talDNA-DNAhybridization(TableS5)illustratethatLw-13eTisa distinctspeciesinaccordancewithacceptedthresholdsof≤83%

ANI [40],and suggeststaxonomic reclassificationof Pp. sedimi-

nisasanotherPseudooceanicolaspecies.ThereclassificationofPo.

flagellatusandPp.sediminisis,however,beyondthescopeofthis study.

GenomeanalysisofLw-13eTandrelatedspecies

WeperformedacomprehensivegenomicanalysisforstrainLw- 13eTandrelatedPseudooceanicolaspp.(Table1)toidentifyfeatures thatmayreflectadaptationstothetidalhabitatandalgalassocia- tionofLw-13eT.The1180coregenesofallPseudooceanicolaspp.

constitute26–34%ofprotein-codinggeneswithinallgenomes, whereas 57–66%of identified orthologousgenesare accessory (Table1).ThethreePseudooceanicolasubclustersformingbycore- genomephylogeny(Fig.3B;orange,greenandbluecoloration)had fewcluster-specificgenes,i.e.phylogeneticrelatednessdoesnot correspondtofunctionalsimilarity(Fig.3C).Thisobservationsug- gestsaversatilelifestyleanddynamicadaptabilityofeachstrain, drivenbyspecificevolutionarypressurerelatedtotheirparticu- larenvironmentalorigin(Table1).Acrossallstrains,themajority ofuniquegeneswasaffiliatedwithKEGGcategories‘Transport’

and‘Metabolism’(Fig.3D),providingfurtherevidencethatmem- bersoftheRoseobactergroupencodea considerablediversityof transportersmediatingstrain-specificsubstrateadaptations[12].

UniquegenesofstrainLw-13eT(i.e.genesnotdetectedinany otherstrainwith>30%aminoacididentity)constituted11.4%ofall genes,beingthehighestfractionofallPseudooceanicolaspp.ana- lyzed(Table1).ComparedtorelatedPseudooceanicolaspp.,unique genes of Lw-13eT are enriched in functions related to defense

(7)

Fig.3. PhylogeneticplacementofstrainLw-13eTandrelatedstrainswithRuegeriameonggeiMA-E2-3Tasoutgroup,andKEGGcategorizationofuniquegenesofLw-13eT comparedtorelatedbacteria.(A)Maximum-Likelihoodphylogenycalculatedon16SrRNAgenesequenceswith1312nucleotidepositions.Bootstrapvalues>50%areshown basedon1000replications.Bar:0.05substitutionspernucleotideposition.(B)Maximum-Likelihoodphylogenybasedonproteinsequencesof873coregenes(overall188,268 aminoacidpositions).Nodeswithdotsaresupportedby100bootstrapreplicates.ColoredgroupsreflectthethreesubclustersofPseudooceanicolaforwhichfractionsofcore andaccessorygenesareshownin(C).Bar:0.05substitutionsperaminoacidposition.(C)Venndiagramshowingthedistributionofaccessory(bold)andcoregenesofthe threePseudooceanicolasubclusters(seeFig.3B).Numberofgenomeswithineachsubclusteraregiveninparentheses.(D)Fractionofuniquegenesassociatedwithdifferent KEGGcategoriesforstrainLw-13eTandrelatedstrains.KEGGcategoriesareshownasfractionsofuniquegeneswithdefinedfunctionalKEGGannotation(32%ofallunique genesretrievedbyOrthoFinder).Thecategory‘Metabolism’includes‘Aminoacid,Carbohydrate,Energy,LipidandNucleotidemetabolism’,‘Metabolism’and‘Metabolism ofotheraminoacids’.Thecategory‘Transport’includes‘Membranetransport’and‘TransportandCatabolism’.(Forinterpretationofthereferencestocolourinthetext,the readerisreferredtothewebversionofthisarticle.)

strategies(salt,heatandoxidativestressaswellasrestrictionmod- ificationsystemsforphagedefense;Fig.3D,greencoloration)anda uniqueabilityfortheproductionofterpenoids(redcoloration).In contrast,uniquegenesofotherPseudooceanicolaspp.areenriched in theproduction of specificdrugresistancemechanisms(dark blue)andcofactorsandvitamins(yellow).Nevertheless,strainLw- 13eTdoesencodeanaccessoryclusterforvitaminB12biosynthesis.

ThepreviouslyshownproductionofthisvitaminfortheB12aux- otrophF.spiralisunderlinestheassociationofLw-13eTtothisalga [26].

Habitat-relatedadaptations

Tolerancetochallengingenvironmentalconditions

Nearlyone thirdof theunique genesinLw-13eT encodefor membranetransportproteins(Fig.3D).AsetofuniqueABC-type

transporterspredictedfortransportofcompatiblesolutesinclud- ingglycine/betaineandtaurine(TableS2)potentiallyenablesstrain Lw-13eTtowithstandtheosmoticstressintidalhabitats,supported bygrowthinasalinityrangeof0.5–17.5%(Table2).Thisbroadsalin- ityrangeofepibioticcommunitymembersmightlikewiseenable acclimationofbrownalgaewhenencounteringfreshwaterinflow [25].Otheruniquetransportergenesfromthegroupofmultidrug exportersenableLw-13eTtotolerateawiderrangeofantibiotics thanrelatedPseudooceanicolaspp.(Table2).Furthermore,strain Lw-13eTshowsconsiderabletoleranceagainstthebroad-spectrum marineantibiotictropodithieticacid(TDA),withoutgrowthlimi- tationuntil0.6mMofTDA(Fig.S2A).Thistoleranceisinthesame rangeasinTDA-producingPhaeobacterspp.[11],whereassensitive strainsarenormallyinhibitedby0.1mM[61].TolerancetoTDAby non-TDAproducingstrainsisrarelydescribedtodate[61]andpos- siblyalsorelatestotheabundanceofmultidrugexporters,asthe

(8)

proposedresistancegenestdaR1-R3fromPhaeobacterspp.[89]are absentinLw-13eT.TDA-producingPhaeobacterspp.arealsopreva- lentonsurfacesandintidalhabitats[11]andmighthenceco-occur withLw-13eT,stimulatingtheevolutionofresistance.Growthwith 1mMarsenate(Fig.S2B)andupto0.1mMcopper(Fig.S2C)cor- respondstothepresenceofrelatedresistancegenes(Fig.2,Table S2).Thecompletesetofcopperandarsenateresistancegenesare sharedwithPo.batsensis,isolatedfromtheSargassoSea(Table1) thatharborsvastamountsofseaweed[85].Thesetraitsmightthus bespecificforbacteriafromenvironmentswithhighabundanceof macroalgae,knowntobeenrichedinheavymetals[33].

Oligo-alginatedegradation

AspecificadaptationofstrainLw-13eT tomacroalgalassoci- ation is the presence of a unique alginate lyase gene encoded inapolysaccharideutilizationlocus(PUL)onthe202kbplasmid (Figs.2 &4A).Alginateisa linearpolysaccharidecomposedof

␣-l-guluronate(G)and␤-d-mannuronate(M)andamajorcom- ponentofthecellwallmatrixinbrownalgae,constituting∼50%

ofthedryweightofF.spiralis[51].ThealginatelyaseofLw-13eT is predicted asan exolytic oligo-alginate lyase fromthefamily PL15[50].Accordingly, strainLw-13eT grows onoligomericbut notonpolymericalginate(Fig.4B).Interestingly,theoligo-alginate lyaseof strainLw-13eTshows apreference formixedoligo-GM ratherthanmannuronate-richoligomers(oligo-M),comparedto thedegradationofalloligomericalginatetypesbyarelatedPL15 from the terrestrial plant-associated Agrobacterium fabrum C58 (Fig. 4C) [56]. The PUL also encodes kdgF and kdgK genes for downstream processingofalginatemonomersaswellasa pre- dictedfabGdehydrogenase/reductasegene,whichmightreplace dehR analogous toother alginolytic bacteria[39,44,78]. Besides homologytothePL15ofA.fabrumC58,wedetectedhomologous gene clustersin roseobacters isolatedfrom phytoplankton sur- facesorfromenvironmentswithhighconcentrations ofmacro- ormicroalgae(Fig.4C)[8,17,46,47].InMarinovumalgicolaDG898, thePULislocatedonachromiddevotedtocarbohydratetrans- portandbiosynthesis,enablingthestraintothriveincarbon-rich phycosphereenvironments[30].PresenceofthePULonthelinear chromosomeofA.fabrumC58suggeststhatthePULwasexchanged between theterrestrial and themarineenvironment, reflecting transfereventsofmarineplasmidsacrossbiogeographicandphy- logeneticbarriers[59].

Asthealginatelyaselacksasignalpeptide,apossiblescenario isthatoligomersaretakenupbythePUL-encodedputativesugar ABCtransporter(typeI)intotheperiplasmforexolyticcleavage.

Thedegradationofoligo-alginatesuggeststhatLw-13eTisasec- ondary consumeronalgalsurfaces,utilizing oligomersreleased byotherassociatesencodinglyasesspecificforcomplexalginate polymers.Suchcross-feedingonalgalcellwallconstituentsillus- tratesapartitioningofdifferenttaxaintopioneersandharvesters [3].ThepresenceofaPULinLw-13eTisnoteworthyasmembers of theRoseobactergrouparerarelydescribedasoligosaccharide degraders.AlgaeadaptationofLw-13eTisunderlinedbytheuseof variousotheralgalsubstrates,includingFucuspowderandproline (Fig.4B),mannose(Table2)andmannitol[26],allbeingenriched inbrownalgalbiomass[42].

Productionofvolatileorganiccompounds,terpenesand siderophores

Bacteriallyproducedvolatilecompoundsmediateinterspecies and interkingdom communication [67] as well as plant devel- opment anddefense in terrestrialhabitats [41]. StrainLw-13eT produces numerous volatiles,includingdimethyldi- andtrisul- fides,acetoinderivatives,aromaticcompoundsincludingnitroge- nouscompoundssuchaspyrazines,aswellasaliphaticketones (Table S6&Fig. S3).Someof theseare alsoproducedby other

surface-associatedroseobacters[34,80],indicatingaconsiderable potentialfor chemical communication.Dimethyl di- and trisul- fidesareknowngrowthpromotersordefensemoleculesagainst reactiveoxygenspecies(ROS)fromterrestrialplants[14,54],sug- gesting thatproduction byLw-13eT mightmediate comparable defenses against ROS produced by macroalgae [86]. Of further interestarethearomaticcompounds2-aminoacetophenoneand phenol,not commonlydescribed forbacteriaoftheRoseobacter group.InPseudomonasaeruginosa,2-aminoacetophenoneregulates antibiotictoleranceviaquorumsensing[62],whereasphenolpro- ductionisknownfromentericandlacticacidbacteria[19].Thered algae-associatedPseudovibriosp.D323waspostulatedasprovider ofphenolic-baseddefensecompoundscommoninbrownalgae[95]

withe.g.fishdeterrenteffects[74].Thus,provisionofphenolbyLw- 13eTcouldbeanotheradaptivefactorformacroalgalassociation bystrengtheningalgaldefense.Detectionofsaturatedandunsatu- rateddo-andtridecanonesasmajorvolatilesmatchesthefrequent detectionofaliphaticketonesandalcoholsoriginatingfromfatty acidbiosynthesisinmarineandotherbacteria[24].

Detectionofthevolatileterpeneslimonene,nerolidolandfar- nesol (Table S6) is consistent with enrichment of genes from KEGG category ‘Terpenoid and Polyketide Synthesis’ (Fig. 3D) andunprecedentedforroseobacterstodate.Terpeneproduction of Lw-13eT mayhave ecological implications as feeding deter- rent,membranestabilizer,anti-oxidant,signalingorantagonistic molecule[32,60].Productionoflimonenecouldprovideantimi- crobial defense for the algal host [77], while farnesol inhibits quorumsensingofPseudomonasaeruginosa[22]andmighthence influence bacterial communication within macroalgal epibiota.

PolyketideproductioninRoseobactergroupbacteriawasindicated before[52]butrequiresfurtherinvestigation.Terpenemetabolism in Lw-13eT includes a unique biosynthetic gene cluster with 40% amino acid identity to a squalene-producing gene cluster inRhodopseudomonaspalustrisATCCBAA-98(Rhizobiales)(Fig.2

&TableS2).Thishomologyindicatespotentialtransferbetween habitats,comparabletothealginatelyasedescribedabove.Pro- duction of squalene/lycopene as precursors for hopanoids and carotenoids[57],knowntoinfluencecellwallrigidity[10],might explaintheorangepigmentationoftheLw-13eTcellpellet(Fig.1A).

Terpene production among Rhodobacteraceae was so far only indicated for a Tateyamariaisolate frombobtail squid [18] and anuncultured metagenome-assembledgenome associatedwith microalgae[63].Accordingly,in75analyzedgenomes,homologs oftheterpene-relatedgeneclusterwereonlydetectedinLimimari- colahongkongensisDSM17492fromacoastalseven-dayoldbiofilm (∼50%sequenceidentity;e-value<105).

Non-ribosomalpeptidesynthesisinLw-13eTcorrespondstoa siderophore-relatedcluster(TableS2)with>42%aminoacididen- titytoenterobactinsynthesisgenesinE.coliK12[21].Enterobactin isoneofthestrongestbacterialsiderophores[65],explainingthe previouslyshown highiron-chelating activityofstrainLw-13eT [26].Siderophoreproductionmaybebeneficialforthebacterium anditsalgalhostinthetypicallyiron-limitedmarineenvironment [72].

Importanceofadaptivetraitsfordistributionandecologyinsitu Wedetectedatleastonehomolog(≥65%coverageand≥60%

aminoacididentity)ofthePL15inapproximately75%ofepibac- terialmetagenomesderivedfromdiversecoastalmacroalgaeand seagrasses(TableS7).TheprimarydetectionofPL15homologson seagrasses,macroalgaeandthesurroundingseawatersupportsthe notionthatoligo-alginatedegradationisacommoncharacteristic ofalgaeassociationincoastalenvironments.Incontrast,homologs wereonlyretrievedinthreeof243open-oceanTARAmetagenomes (TableS7).Thelongestalignmentwiththehighestidentity(99%

coverageand65%identity)wasretrievedfromtheepibioticcom-

(9)

Fig.4.Uniquepolysaccharideutilizationlocus(PUL)instrainLw-13eTandgrowthonoligomericalginate.(A)Plasmid-encodedPULharboringPL15oligo-alginatelyase (green),atype-IsugarABCtransporter(blue)andgenesforalginatemonomerprocessing(orangeandgrey).FramedgenesareuniquetoLw-13eTcomparedtoother Pseudooceanicolaspp.(B)GrowthexperimentsdemonstratedthatLw-13eTdegradesmixedguluronate-mannuronateoligomers(Oligo-GM)butnotmannuronate-rich oligomers(Oligo-M)andpolymericalginate(Poly-A),supportingfunctionalityofthePUL.Inaddition,Lw-13eTwasabletogrowonFucuspowder.Prolinewasusedasa positivecontrolformacroalgal-derivedsubstrates.(C)Homologousclustersweredetectedinfewrelatedroseobactersisolatedfromphytoplanktonsurfacesorhabitatsrich inalgalbiomass,aswellastheterrestrialplant-associatedAgrobacteriumfabrum.ID,%identity;QC,%querycoverageofthegenealignment.AsthegenomeofOceanicola granulosusHTCC2516isadraftgenome,thelocationofthePULhomologeitheronthechromosomeoramobilegeneticelementcannotbespecified.(Forinterpretationof thereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

Fig.5. SummaryofadaptationsofLw-13eTtomacroalgaeassociationandtidalhabitats.Fromlowerleftcounterclockwise:Broadsalinitytolerancebasedontransporters forcompatiblesolutes(yellow);productionofiron-chelatingsiderophores(bluecircle);degradationofoligo-alginatebyPL15alginatelyase;productionandreleaseof vitaminB12;heavymetalresistance;interspeciesandinterkingdomcommunicationthroughproductionofterpenesandvolatiles;hemolysinproductionaspotentialmean ofpathogenicity.(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

munityofthebrownalgaEckloniaradiata(BotanyBay,Australia), whichcontainsupto30%ofalginateandmannitol[75]andhence substratesaccessibleforLw-13eT.DetectionofPL15homologsin Australiaindicatesthatadaptivefeaturesenablegrowthofrelated Pseudooceanicolaspp.onalgalsurfacesworldwide.Furthermore, a16SrRNAgenephylotypewith99%sequencesimilaritytoLw- 13eTwasdetectedat0.02%relativeabundanceintheepibacterial community ofF.spiralisin theNorthSea[26],fromwhere Lw- 13eTwasisolated.Overall,theseenvironmentaldataillustratethat adaptive traits indeedenableniche occupation insitu,allowing thecolonizationofcoastalalgae-richhabitatsonwidegeographic scales.

Otherdistincttraits Potentialpathogenicity

Strain Lw-13eT has pathogenic potential by secreting membrane-destructinghemolysins,corroboratedby␤-hemolysis onblood agarplates (datanot shown). Thisobservationcorre- spondsto two unique genes coding for hemolysin production, onecontainedinatype-1secretionsystem(TableS2).Hemolysin production can drive virulence in macroalgal pathogens under elevatedtemperatures [31] and a comparable mechanism was demonstratedforPh.inhibens,changingfrommutualtopathogenic behaviorupon sensingof infochemicals[70].Thissuggeststhat

Abbildung

Fig. 1. Transmission electron and light microscopy of Lw-13e T . Dense cell aggregates of Lw-13e T are characterized by orange coloration, potentially through pigment production (A)
Fig. 2. Graphical representation of the complete genome of P. algae Lw-13e T . Colored circles show blastn comparison to other Pseudooceanicola strains as described in the legend, with % identity illustrated by color gradients
Fig. 3. Phylogenetic placement of strain Lw-13e T and related strains with Ruegeria meonggei MA-E2-3 T as outgroup, and KEGG categorization of unique genes of Lw-13e T compared to related bacteria
Fig. 5. Summary of adaptations of Lw-13e T to macroalgae association and tidal habitats

Referenzen

ÄHNLICHE DOKUMENTE

Phylogenetic tree showing the relationships on the basis of 165 rDNA sequence similarity of strains belonging to the genera Thiocapsa and Amoebobacter together with other

Amplification success was 100% for 16S in a subset of fresh and well-preserved samples of Madagascan frogs, while various combination of COI primers had lower success rates.COI

wynadensis and the two new species identified by our molecular and morphometric analyses (C. nov.) were recovered as sister to the rest of the Indian Cnemaspis (excluding

A con- sensus phylogeny of the eukaryotic crown based on cur- rently available molecular data is discussed, as well as specific problems encountered in analyzing sequences when

Impact of the substrate loading regime and phosphoric acid supplementation on performance of biogas reactors and microbial community dynamics during anaerobic digestion of

The phylogenetic reconstruction was performed with RAxML using the GTR model with an optimization of substitution rates and the GAMMA model of rate heterogeneity.. 1000

nov., an alphaproteobacterium from the marine macroalga Laminaria saccharina.. Supplementary

(1) a branch of vestimentiferan symbionts (e.g. of La- mellibrachia sp. of Lucina floridana and Codakia orbicularis), and (3) the symbiont of Thyasira flexuosa (thyasirid clams).