• Keine Ergebnisse gefunden

sediment depth (cm)

N/A
N/A
Protected

Academic year: 2022

Aktie "sediment depth (cm) "

Copied!
14
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

HELGOLANDER MEERESUNTERSUCHUNGEN

Hetgol~inder Meeresunters. 49, 223-236 (1995)

J

Correlation of viable cell counts, metabolic activity of s u l p h u r - o x i d i z i n g bacteria and chemical parameters of

marine s e d i m e n t s

J. F. Imhoff, A. Schneider & L. Podgorsek

Institut ffir Meereskunde, Abteilung Marine Mikrobiologie;

Dfisternbrooker W e g 20, D-24105 Kiel, Germany

ABSTRACT: Viable counts of aerobic a n d a n a e r o b i c chemotrophic sulphur-oxidizers as well as phototrophic s u l p h u r bacteria were d e t e r m i n e d in s e d i m e n t samples t a k e n from two different areas along the Baltic Sea shore which were k n o w n to regularly develop sulphidic conditions. Depth profiles of bacterial cell counts were correlated with concentration profiles of chloride, sulphate, sulphide, nitrate a n d p h o s p h a t e in the pore water of these sediments a n d with potential activities of nitrate reduction, thiosulphate transformation and s u l p h a t e formation. The data r e v e a l e d a complex multilayered structure within the sediments. Sulphide was released into the water from s e d i m e n t s of b o t h sampling areas, but it was found that light a n d the availability of oxygen significantly r e d u c e d this amount. In the highly reduced s e d i m e n t at Hiddensee, the highest n u m b e r s of phototrophic a n d chemotrophic sulphur-oxidizers were found n e a r the s e d i m e n t surface. Therefore, it was c o n c l u d e d that the c o m b i n e d action of both groups of bacteria most efficiently oxidizes r e d u c e d sulphur compounds in the top layers of the sediments. Nitrate may replace oxygen as final electron acceptor a n d will support oxidation of sulphide, in particular w h e n oxygen and light are limiting.

I N T R O D U C T I O N

T h e i n c r e a s i n g e u t r o p h i c a t i o n of m a r i n e c o a s t a l a r e a s , i n p a r t i c u l a r its c o r r e l a t i o n w i t h i n c r e a s e s of s u l p h i d i c l o c a t i o n s i n m a r i n e b a s i n s a n d c o a s t a l a r e a s , h a s r e n e w e d i n t e r e s t i n r e a c t i o n s of t h e m i c r o b i a l s u l p h u r c y c l e a n d its i m p o r t a n c e for t h e s e e n v i r o n - m e n t s . A c o n s i d e r a b l e p a r t of t h e o r g a n i c m a t t e r i n m a r i n e s e d i m e n t s is m i n e r a l i z e d b y s u l p h a t e - r e d u c i n g b a c t e r i a ( J 6 r g e n s e n , 1982). I n g e n e r a l , t h e s e b a c t e r i a h a v e a s e l e c t i v e a d v a n t a g e o v e r m e t h a n o g e n i c b a c t e r i a i n t h e m a r i n e e n v i r o n m e n t . T h e m e t h a n o g e n s c a n c o m p e t e o n l y w h e n s u l p h a t e is l i m i t i n g , w h e n o r g a n i c s u h s t r a t e s a r e s u p p l i e d i n e x c e s s or w h e n a l t e r n a t i v e n o n - c o m p e t i t i v e s u b s t r a t e s , l i k e m e t h y l a m i n e , a r e a v a i l a b l e ( W i d d e l , 1988). S u l p h a t e r e d u c t i o n l e a d s to t h e p r o d u c t i o n of s u l p h i d e , w h i c h is t o x i c to b a c t e r i a , a n i m a l s a n d p l a n t s . S u l p h i d e is r e l e a s e d f r o m s e d i m e n t s i n t o t h e s u p e r n a t a n t w a t e r a n d a l s o i n t o t h e a t m o s p h e r e f r o m c o a s t a l a r e a s l i k e t h e W a d d e n S e a a n d t h e s h a l l o w a r e a s of t h e B a l t i c S e a s h o r e .

M o s t of t h e s u l p h i d e p r o d u c e d i n m a r i n e s e d i m e n t s is s u p p o s e d to b e o x i d i z e d b y b a c t e r i a l a c t i v i t y r a t h e r t h a n c h e m i c a l l y . I m p o r t a n t i n t e r m e d i a t e s i n t h e o x i d a t i o n of s u l p h i d e a r e e l e m e n t a l s u l p h u r a n d t h i o s u l p h a t e ( J S r g e n s e n & B a k , 1991). T h e l a t t e r a l s o i s o n e of t h e m o s t c o n v e n i e n t s o u r c e s of r e d u c e d s u l p h u r for t h e c u l t i v a t i o n of b a c t e r i a 9 Biologische Anstalt Helgoland, H a m b u r g

(2)

224 J. F. Imhoff, A. S c h n e i d e r & L. P o d g o r s e k

that oxidize r e d u c e d s u l p h u r c o m p o u n d s . A l t h o u g h t h r e e m a j o r p h y s i o l o g i c a l groups of b a c t e r i a with such activities are k n o w n - the a e r o b i c s u l p h u r - o x i d i z e r s , the nitrate- r e d u c i n g sulphur-oxidizers, a n d t h e p h o t o t r o p h i c s u l p h u r b a c t e r i a - only a s m a l l n u m b e r of species of t h e s e b a c t e r i a h a v e b e e n i d e n t i f i e d from the m a r i n e e n v i r o n m e n t . Informa- tion on their distribution a n d f r e q u e n c y in m a r i n e habitats is rare. T h e p r e s e n t study was initiated in o r d e r to correlate v i a b l e n u m b e r s of b a c t e r i a p a r t i c i p a t i n g in the b a c t e r i a l sulphur cycle w i t h c h e m i c a l p a r a m e t e r s from t h e s e d i m e n t s a n d to l o c a t e b a c t e r i a a n d their activities within the s e d i m e n t layers.

M A T E R I A L A N D M E T H O D S

T h e s a m p l i n g s i t e s : T w o s a m p l i n g sites that w e r e k n o w n to d e v e l o p r e g u - larly sulphidic conditions w e r e s e l e c t e d for our analyses. T h e first site, close to the Island of H i d d e n s e e , r e p r e s e n t s an o p e n r e e d b e l t w i t h highly r e d u c e d s e d i m e n t , w h i c h has a l r e a d y b e e n d e s c r i b e d by S u c k o w (1966). T h e s a m p l i n g o c c u r r e d during a t i m e of highly fluctuating w a t e r levels (from 0 - 2 0 cm) a b o v e the s e d i m e n t . T h e other site is l o c a t e d n e a r F6hrdorf, close to Poel, a n d m a y b e d e s c r i b e d as a small, n e a r l y closed r e e d bight. During the s a m p l i n g period, it a p p e a r e d o x i d i z e d at the surface, b u t w a s r e d u c e d at d e e p e r levels. At that t i m e the w e a t h e r w a s c a l m a n d t h e r e w a s a constant w a t e r l e v e l a b o v e the s e d i m e n t of 1-5 cm. T h e structure of the s e d i m e n t n e a r F6hrdorf w a s m o r e h o m o g e n e o u s a n d c o n s i s t e d of a s m a l l e r g r a i n size t h a n that of H i d d e n s e e .

S a m p l i n g o f s e d i m e n t s : T h e s a m p l i n g o c c u r r e d during J u n e 1992. Sedi- m e n t cores w e r e directly cut into discs of 1 to 5 cm thickness, as n o t e d in T a b l e s 1 a n d 2.

C o r r e l a t i o n of the different p a r a m e t e r s r e q u i r e d an i m m e d i a t e t r e a t m e n t of the discs a c c o r d i n g to the m e t h o d s listed below. T h e r e f o r e , a n d b e c a u s e of the g r e a t n u m b e r of s i m u l t a n e o u s a n a l y s e s a n d e x p e r i m e n t s , statistical t r e a t m e n t of the s e d i m e n t cores was not possible. H o w e v e r , c o r r e s p o n d i n g disks from 3 - 5 s e d i m e n t cores t a k e n f r o m the s a m e location w e r e c o m b i n e d , carefully m i x e d a n d u s e d for further t r e a t m e n t s .

C h e m i c a 1 a n a 1 y s e s : Pore w a t e r from the s e d i m e n t discs was r e c o v e r e d after c e n t r i f u g a t i o n a n d sterilized by filtration (0.45 ~m pore size cellulose a c e t a t e m e m b r a n e filters). This w a t e r was u s e d to d e t e r m i n e c o n c e n t r a t i o n s of chloride, s u l p h a t e , nitrate a n d p h o s p h a t e . S e p a r a t i o n a n d q u a n t i f i c a t i o n of t h e s e anions was a c h i e v e d by ion c h r o m a t o g r a p h y u s i n g a D i o n e x DX 300, e q u i p p e d w i t h conductivity- a n d U V - d e t e c t o r s a n d an a n i o n e x c h a n g e column (Dionex*AS4A). C h e m i c a l a n a l y s e s w e r e m a d e at t h r e e different sensitivity r a n g e s of the c o n d u c t i v i t y detector. T h e salinity w a s c a l c u l a t e d from the c o n c e n t r a t i o n of chloride (salinity = 1.80655 chlorinity) a c c o r d i n g to W o o s t e r et al.

(1969).

S a m p l e s for d e t e r m i n a t i o n of s u l p h i d e w e r e t a k e n i m m e d i a t e l y after t h e p o r e w a t e r w a s r e c o v e r e d by c e n t r i f u g a t i o n and t a k e n from the c l e a r s u p e r n a t a n t close to the s e d i m e n t . S u l p h i d e w a s d e t e r m i n e d as m e t h y l e n e blue. a c c o r d i n g to the m e t h o d d e s c r i b e d b y Lorant (1929) a n d m o d i f i e d by P a c h m a y r (1960). S u l p h i d e w a s stabilized as ZnS in a 2 0 - m l v o l u m e t r i c flask c o n t a i n i n g 10 ml of 2 % Z n - a c e t a t e (acidified with 1 ml 2 M acetic acid p e r litre) a n d t h a n stored at 4 ~ C. R e a g e n t s w e r e 0.2 % d i m e t h y l - p - p h e n y l e n d i a m m o n i u m d i c h l o r i d (DMPD) in 20 % sulphuric acid. w h i c h h a d t o b e stored in t h e d a r k a n d 1 0 % NH4Fe(SO4)2 x 12 H 2 0 (FAS) in 0.02 % c o n c e n t r a t e d s u l p h u r i c acid.

After a d d i t i o n of 2 ml D M P D a n d 0.1 ml FAS, the flasks w e r e closed i m m e d i a t e l y a n d

(3)

V i a b l e cells, s u l p h u r - o x i d i z i n g bacteria, c h e m i c a l p a r a m e t e r s 225 a l l o w e d to s t a n d for at least 30 min. After colour d e v e l o p m e n t w a s c o m p l e t e d , the s a m p l e v o l u m e w a s a d j u s t e d to a total of 20 ml a n d the optical density m e a s u r e d at 668 nm a g a i n s t a r e a g e n t blank.

B a c t e r i a 1 a n a 1 y s e s : In order to o v e r c o m e s m a l l - s c a l e h e t e r o g e n e i t y of the sediments, c o r r e s p o n d i n g s e d i m e n t discs of 3 - 5 cores from e a c h s a m p l i n g sites w e r e h o m o g e n o u s l y mixed, and v o l u m e s of 0.5 cm 3 s e d i m e n t w e r e u s e d for dilution series. T h e dilution w a s p e r f o r m e d in 70 % filter-sterilized, n a t u r a l s e a w a t e r (taken from the North S e a n e a r List/Sylt). From t h e s e dilution series, various m e d i a w e r e i n o c u l a t e d . T h e m a t e r i a l was e i t h e r s p r e a d on plates (for a e r o b i c bacteria) or i n o c u l a t e d in d e e p - a g a r (for a n a e r o b i c bacteria).

P h o t o t r o p h i c b a c t e r i a w e r e c u l t i v a t e d in P f e n n i g ' s m e d i u m , s u p p l e m e n t e d with a c e t a t e solution (1 ml/100 ml) a n d salt solution (5 ml/100 ml) a c c o r d i n g to P f e n n i g &

Tr~iper (1992). Cell counts w e r e o b t a i n e d from dilution series in agar.

A n e w m e d i u m ("Lith" m e d i u m ) w a s d e s i g n e d for m a r i n e a n a e r o b i c sulphur- oxidizing bacteria, using different e l e c t r o n acceptors. T h e composition of the basic m i x t u r e of the m e d i u m c o n t a i n e d in final a m o u n t s p e r litre: 700 ml of a modified, s u l p h a t e - f r e e s e a w a t e r (MSM), 1.68 g N a H C O 3 , 0.68 g KH2PO4, 0.25 g NH4C1, 1 ml trace e l e m e n t solution SLB (modified SLA with only 1 m g N a 2 S e O 3 - 5 H 2 0 p e r litre) a n d 1 ml v i t a m i n solution VA (Imhoff, 1988). T h e modified, s u l f a t e - f r e e sea w a t e r (MSM) was a u t o c l a v e d s e p a r a t e l y and c o n t a i n e d the f o l l o w i n g a m o u n t s p e r litre: 27.3 g NaC1, 2.7 g MgC12 - 6 H20, 0.75 g KC1, 0.4 g CaC12 . 2 H 2 0 , a n d 0.14 g KBr. T h e p H w a s a d j u s t e d to 7.2. A m i x t u r e of Na2S203 " 5 H20, Na2S . 9 H 2 0 a n d p o l y s u l p h i d e ( p r e p a r e d a c c o r d i n g to F e h e r & Laue, 1956) was a p p l i e d as a source of r e d u c e d s u l p h u r in final c o n c e n t r a t i o n s of 5 mM, 0.5 m M a n d 13 raM, respectively. N a H C O 3 a n d s o d i u m a c e t a t e (5 mM) w e r e a d d e d as the only carbon sources. Either KNO3 (10 mM) or Na2SO4 (10 mM) s e r v e d as e l e c t r o n acceptors.

A e r o b i c b a c t e r i a w e r e c o u n t e d on a g a r p l a t e s u s i n g a m i n e r a l salts m e d i u m ("Thio"

medium). T h e basic m e d i u m c o n t a i n e d 700 ml n a t u r a l sea water, 0.4 g NH4C1 a n d 0.5 g KH2PO4. N a H C O 3 (1.0 g/l) and sodium a c e t a t e (5 mM) w e r e a d d e d as c a r b o n sources, a n d s o d i u m t h i o s u l p h a t e (3.2 raM) and Na2 S - 9 H 2 0 (0.5 mM) as sulphur sources and electron donors. T h e p H was a d j u s t e d to 7.2

M e a s u r e m e n t s o f b a c t e r i a l a c t i v i t i e s : T r a n s f o r m a t i o n of thiosulfate was m e a s u r e d u n d e r aerobic conditions in s h a k e n E r l e n m e y e r flasks a n d u n d e r a n a e r o b i c conditions with KNO3 (7 mM) as a d d e d e l e c t r o n acceptor. A n a e r o b i c condi- tions w e r e a c h i e v e d in H u n g a t e t u b e s by r e p e a t e d e v a c u a t i o n a n d flushing w i t h n i t r o g e n gas. Assays w e r e p e r f o r m e d u n d e r n i t r o g e n a n d in the dark. For all activity m e a s u r e - ments, the b a s a l m e d i u m for a n a e r o b i c b a c t e r i a w a s s u p p l e m e n t e d with s o d i u m a c e t a t e (5 raM) a n d Na2S203 9 5 H 2 0 t5 mM). T h e assays w e r e started by the a d d i t i o n of the s e d i m e n t s a m p l e (1 c m 3) to 15 ml of m e d i u m . S u l p h a t e r e d u c t i o n w a s i n h i b i t e d by addition of Na2MoO4 ' 2 H 2 0 (20 mM). S a m p l e s w e r e w i t h d r a w n after 4.5 h of i n c u b a t i o n in the dark at r o o m t e m p e r a t u r e a n d sterilized b y filtration.

M e a s u r e m e n t s o f s u l p h i d e f o r m a t i o n : S e d i m e n t cores from the s a m p l i n g site of H i d d e n s e e w e r e i n c u b a t e d e i t h e r u n d e r a n a e r o b i c ( p l u g g e d a n d k e p t dark) or a e r o b i c (unplugged) conditions, a n d e i t h e r i l l u m i n a t e d or k e p t dark. O v e r a p e r i o d of 12 hours the sulphide c o n c e n t r a t i o n w a s m e a s u r e d periodically at t h r e e depths in the s u p e r n a t a n t w a t e r column. S u l p h i d e p r o d u c t i o n w a s a p p r o x i m a t e d b y integration.

(4)

226 J. F. I m h o f f , A. S c h n e i d e r & L. P o d g o r s e k R E S U L T S

In o r d e r to e v a l u a t e t h e r o l e of b a c t e r i a i n v o l v e d i n t h e o x i d a t i o n of r e d u c e d s u l p h u r c o m p o u n d s i n m a r i n e s e d i m e n t s , w e a n a l y s e d t h e t o p 20 c m of s e d i m e n t f r o m t w o d i f f e r e n t s a m p l i n g s i t e s a l o n g t h e c o a s t of t h e B a l t i c S e a . A l t h o u g h t h e s e d i m e n t s f r o m b o t h a r e a s s h o w e d a c t i v e s u l p h a t e r e d u c t i o n a n d r e l e a s e of s u l p h i d e i n t o t h e s u p e r n a t a n t w a t e r , r e m a r k a b l e d i f f e r e n c e s w e r e f o u n d i n t h e d e p t h p r o f i l e s of t h e i r c h e m i c a l c o m p o - s i t i o n a n d i n t h e d i s t r i b u t i o n of b a c t e r i a l a c t i v i t i e s . T h e s a m p l i n g s i t e a t H i d d e n s e e o b v i o u s l y w a s c h a r a c t e r i z e d b y t r e m e n d o u s a c t i v i t y of s u l p h a t e - r e d u c i n g b a c t e r i a a n d r e l e a s e of s u l p h i d e i n t o t h e w a t e r ; w h e r e a s s u l p h a t e r e d u c t i o n at t h e s a m p l i n g s i t e n e a r F ~ h r d o r f a p p e a r e d to b e q u i t e low. N e v e r t h e l e s s , s u l p h i d e w a s m e a s u r a b l e i n t h e t h i n w a t e r l a y e r c o v e r i n g t h i s s e d i m e n t .

T h e s e d i m e n t a t H i d d e n s e e

T h e c h e m i c a l c o m p o s i t i o n of t h i s s e d i m e n t is s h o w n i n T a b l e 1. M i n o r s a l i n i t y c h a n g e s , b e t w e e n c a 9 a n d 12 %o, o c c u r r e d t h r o u g h o u t t h e s e d i m e n t . M o s t o b v i o u s l y , t h e s u l p h a t e c o n t e n t of t h e s e d i m e n t w a s s i g n i f i c a n t l y r e d u c e d c o m p a r e d to t h e s u p e r n a t a n t w a t e r . P a r t i c u l a r l y i n d e p t h s b e t w e e n 3 - 8 cm, t h e m i n i m u m v a l u e s of t h e s u l p h a t e / c h l o r i d e r a t i o of 25.1 to 29.3 ( c a l c u l a t e d a s i n d i c a t e d i n T a b l e 1) p o i n t t o a z o n e of c o n t i n u o u s s u l p h a t e d e p l e t i o n b y s u l p h a t e r e d u c t i o n . T h i s z o n e w a s a c c o m p a n i e d b y a m a x i m u m of t h e p h o s p h a t e c o n c e n t r a t i o n . T h e n i t r a t e p o o l w a s a b o u t 2 - 3 o r d e r s of m a g n i t u d e l o w e r t h a n t h e s u l p h a t e p o o l , b u t s h o w e d s i g n i f i c a n t c h a n g e s t h r o u g h o u t t h e s e d i m e n t c o l u m n , w h i c h i n d i c a t e s a c t i v e t u r n o v e r . A c c o r d i n g to t h e c o n c e n t r a t i o n g r a - Table 1. Chemical p a r a m e t e r s of a s e d i m e n t from Hiddensee. Values in brackets w e r e t a k e n from a dialysis pore w a t e r sampler. Parallel m e a s u r e m e n t s by V61kel & Schmidt (pets. comm.) r e v e a l e d c o m p a r a b l e concentrations of sulphide in the sediment. OW = surface water: SN = w a t e r close to

the s e d i m e n t surface

Salinity" Chloride S u l p h a t e S u l p h a t e / Sulphide Nitrate P h o s p h a t e

% mM m M Chloride * * !tM [tM ttM

OW w a t e r 9.88 154.3 7.75 50.2 8 3.4 3.1

SN w a t e r 9.77 152.5 7.64 50.1 70 1.3 13.9

S e d i m e n t

0-1 cm 9.79 152.8 5.75 37.6 [25) 1.4 98.8

1-2 cm 11.07 172.8 5.45 31.5 [25~ 3.4 124.7

2-3 cm 11.46 179.0 5 60 31.3 (47) 20.1 87.7

3-4 cm 11.55 180.3 5.28 29.3 (68) 1.4 188.9

4 - 6 cm 10.85 169.4 4.52 26.7 (104b 10.0 155.0

6-8 cm 10.32 161.2 4.04 25.1 (142) 21.1 72.6

8-10 crn 10.41 162.6 4.93 30.3 (157) 1.6 58.8

10-15 cm 9.91 154.8 5.05 32.6 [4741 10.8 6.7

15-20 cm 10.32 161.1 6.35 39.4 (1150) 4.3 33.6

9 calculated from the chloride c o n c e n t r a t i o n in %o according to Wooster et al. (1969).

9 ' calculated from the concentrations (mM) a n d multiplied b y 1000: [value of s t a n d a r d s e a w a t e r is 51.7}.

(5)

V i a b l e c e l l s , s u l p h u r - o x i d i z i n g b a c t e r i a , c h e m i c a l p a r a m e t e r s 2 2 7

sediment depth (cm)

- 7

2

4

6

8 ~

I

12

14

16

1 8 -

20 ----r--r 1 0 4

i i

h

i

~ , aerobic SOB --[]-- anaerobic SOB

PSB

105

~ - - [ ' I

106 107 108

i

I I l l l i

viable counts * cm "3 sediment

Fig. 1. V i a b l e c o u n t s of s u l p h u r - o x i d i z i n g b a c t e r i a at H i d d e n s e e . SOB = S u l p h u r - o x i d i z i n g b a c t e r i a , PSB = P u r p l e s u l p h u r b a c t e r i a : V i a b l e c o u n t s of a n a e r o b i c SOB w e r e d e t e r m i n e d u n d e r a n o x i c

c o n d i t i o n s w i t h n i t r a t e as e l e c t r o n a c c e p t o r

(6)

228

sediment depth (cm)

0

J. F. I m h o f f , A. S c h n e i d e r & L. P o d g o r s e k

2

4

6

8

10

12

14

16

18

20

_ ... : ... 9

[] S o 4

2~

formation S 2 0 32- consumption

I I I I

0 2 4 6 8 10

transformation rates

Fig. 2a. Transformation rates of thiosulphate a n d sulphate u n d e r aerobic conditions in the s e d i m e n t from H i d d e n s e e (~tmol cm -3 s e d i m e n t h - l l

(7)

V i a b l e cells, s u l p h u r - o x i d i z i n g b a c t e r i a , c h e m i c a l p a r a m e t e r s 229

sediment depth (cm)

0

I 2 -

4~

8 ~ ~

lo I

I

J

12

! J 14

I

)

P P

2o F

@ ~ i i : : "

9

[] S 0 4 2 - formation ---~--S2032-consumption -/~- NO 3- reduction

I I [ I I

0 2 4 6 8 10

transformation rates

Fig. 2b. Transformation rates of thiosulphate, s u l p h a t e a n d nitrate u n d e r a n a e r o b i c conditions in the s e d i m e n t f r o m H i d d e n s e e (~mol cm -3 s e d i m e n t h -1)

(8)

230 J. F. Imhoff, A. S c h n e i d e r & L. Podgorsek

dients d u r i n g the s a m p l i n g time, it c a n be c o n c l u d e d that the s e d i m e n t is a p p a r e n t l y a source of p h o s p h a t e a n d p r o b a b l y a sink for nitrate. Sulphide was r e l e a s e d from this s e d i m e n t i n significant amounts. Low c o n c e n t r a t i o n s of sulphide could b e d e t e c t e d e v e n in the oxic surface water of this site (Table 1, OW). Laboratory s t u d i e s with n a t u r a l s e d i m e n t cores r e v e a l e d that u n d e r conditions of b l o c k e d o x y g e n transfer a n d in the dark, the c o n c e n t r a t i o n of s u l p h i d e in t h e s u p e r n a t a n t water i n c r e a s e d c o n s i d e r a b l y w i t h i n 12 h. T h e su!phide c o n c e n t r a t i o n a m o u n t e d to 325 uM directly at the s e d i m e n t surface, 220 ~M at 3 cm a b o v e the s e d i m e n t a n d 200 ,ttM at 6 cm. Using t h e s e data, a n e x c h a n g e rate of sulphide b e t w e e n s e d i m e n t a n d w a t e r of 14.4 mmol m -2 s e d i m e n t d -1 was calculated. Thus o x y g e n availability is e x p e c t e d to b e a limiting factor for s u l p h i d e oxidation in the top layers of this s e d i m e n t , at least d u r i n g dark periods.

Aerobic a n d anaerobic, n i t r a t e - r e d u c i n g sulphur-oxidizers as well as phototrophic s u l p h u r bacteria h a d m a x i m a of v i a b l e cell n u m b e r s in the top layer of this s e d i m e n t (Fig. 1). N u m b e r s of phototrophic p u r p l e s u l p h u r b a c t e r i a e x c e e d e d those of all others, e v e n those of aerobic sulphur-oxidizers. B e c a u s e of their l i g h t - d e p e n d e n c e , they formed a p i n k to r e d - c o l o u r e d layer in the top millimetres of the sediment, just u n d e r n e a t h a very thin surface layer. Viable counts d e c r e a s e d b y o n e order of m a g n i t u d e i n the s e c o n d (1-2 cm) a n d by two more orders in the third s e d i m e n t disc (2-4 cm). V i a b l e cells of phototrophic g r e e n s u l p h u r bacteria were several orders of m a g n i t u d e lower, ca 2 - 4 . 10 4 cells cm -3 in the top layers of the s e d i m e n t .

Also cell n u m b e r s of c h e m o t r o p h i c sulphur-oxidizers u s i n g o x y g e n or nitrate as electron acceptors were h i g h e s t in the top disc of the sediment. They d r o p p e d b y a b o u t o n e order of m a g n i t u d e b e l o w 2 cm, b u t r e m a i n e d relatively high over the rest of the s e d i m e n t clown to 10-15 cm d e p t h (Fig. 1).

T h e capability to oxidize t h i o s u l p h a t e u n d e r aerobic conditions w a s high in this s e d i m e n t (Fig. 2a). A l t h o u g h s u l p h a t e was the major oxidation product, t r a n s f o r m a t i o n rates of t h i o s u l p h a t e I1.4-6.5 ~tmol h -1 c m -3) w e r e not q u a n t i t a t i v e l y c o r r e l a t e d with the formation of s u l p h a t e (1.1-5.2 amol h - l cm-3}. Obviously, thiosulphate is n o t exclusively oxidized [o sulphate b u t to some e x t e n t t r a n s f o r m e d to other still u n k n o w n products.

U n d e r a n a e r o b i c conditions in the p r e s e n c e of nitrate, t h i o s u l p h a t e t u r n o v e r rates (0.3-5.2 LtmO1 h -1 cm -3) w e r e in the s a m e order as u n d e r aerobic c o n d i t i o n s (Fig. 2b).

However, lower a m o u n t s of s u l p h a t e (0.1-0.5 ~mol h -1 cm -3) w e r e formed. Thus.

anaerobically, s u l p h a t e was a m m o r oxidation product. Sulphite was n o t a n i n t e r m e d i a t e in t h i o s u l p h a t e transformations that a c c u m u l a t e d d u r i n g the i n c u b a t i o n period. Other possible transformations of t h i o s u l p h a t e i n c l u d e oxidation to products other t h a n sul- phate, r e d u c t i o n or disproportionation. H i g h n i t r a t e - r e d u c i n g activity (up to 10.8 ~tmol h - cm -3} was p r e s e n t in this s e d i m e n t a n d the m a x i m a of nitrate r e d u c t i o n c o r r e l a t e d with m a x i m a of t h i o s u l p h a t e t r a n s f o r m a t i o n (Fig. 2b). T h e highest v a l u e s of b o t h reactions were f o u n d in the first 1-2 cm of the s e d i m e n t , a s e c o n d m a x i m u m was at 3 - 4 cm depth.

Both of these m a x i m a correlated well w i t h m i m m u m values of n i t r a t e in the s e d i m e n t (Table 1).

T h e s e d i m e n t n e a r F~ihrdorf

C h e m i c a l composition a n d bacterial a n a l y s e s r e v e a l e d significant d i f f e r e n c e s w h e n c o m p a r e d with those of the s e d i m e n t from H i d d e n s e e . T h o u g h the s a l i n i t y was only slightly h i g h e r (11-15 %o), sulphate c o n c e n t r a t i o n s a n d in particular the s u l p h a t e / c h l o r i d e

(9)

V i a b l e cells, s u l p h u r - o x i d i z i n g b a c t e r i a , c h e m i c a l p a r a m e t e r s 231

sediment depth (cm)

0

_

4

6

8

10

12

16

1 8 -

20 1 0 4

N ~

L

\

D

/ I l i i z

i l

i

I 111111 L I 111111

105 106

--~-- aerobic SOB ---E~-- anaerobic SOB

, 0 PSB

I I i Ilkll I I t I illtl [ ['"['1 IFli

10 7 10 8 viable counts * c m - 8 sediment

Fig. 3. Viable counts of sulphur-oxidizing bacteria at F~ihrdorf. S O B = S u l p h u r - o x i d i z i n g bacteria;

PSB = Purple s u l p h u r bacteria. Viable counts of a n a e r o b i c SOB were d e t e r m i n e d u n d e r anoxic conditions with nitrate as electron acceptor

(10)

232

sediment depth (cm)

0

2,

6 -

_

1~ 1

12

J. F. I m h o f f , A. S c h n e i d e r & L. P o d g o r s e k

\ .-

@

.~,J

I

\

-(.~

\ \

%

1~ 1

[3- 2-

t 9 SO 4 formation

18 2-

---0- $ 2 0 3 consumption

2 0

0 2 4 6 8 10

transformation rates

Fig, 4a. Transformation rates of thiosulphate a n d sulphate u n d e r aerobic conditions in the s e d i m e n t from Fahrdorf (~tmol cm -3 s e d i m e n t h -I)

(11)

V i a b l e ceils, s u l p h u r - o x i d i z i n g b a c t e r i a , c h e m i c a l p a r a m e t e r s

sediment depth (cm)

0

2

~9

233

4

6

8

1~

14

'~

18

\

10

L i i h i

' - , ,

9

J J / J J

J J . / . f l -

j / [] SO4 2-

/ formation

J . i / " /

---~:~--S2032-consumption z~ N 0 3 r e d u c t i o n 20

0 2 4 6 8 10

transformation rates

Fig. 4b. Transformation reates of thiosulphate, sulpt~ate and mtrate under anaerobic conditions m the sediment from F~ihrdorf (~mol cm -3 sediment h -11

(12)

234 J. F. I m h o f f , A. S c h n e i d e r & L. P o d g o r s e k

Table 2. Chemical parameters of a s e d i m e n t from F~ihrdorf. SN = water close to the s e d i m e n t surface; n.d. not d e t e c t e d

Salinity* Chloride Sulphate Sulphate/ Sulphide Nitrate Phosphate

% mM m M Chloride" " ~M aM HM

SN water I2.85 200.7 11.01 54.9 8 9.1 8.7

Sediment

0 - I cm I3.00 202.8 10.42 51.4 14 5.7 17.8

1-2 cm 13.30 207.7 11.10 53.4 12 45.6 0.I

2-3 cm 14.53 227.0 13.34 58.8 14 6.0 n.d.

3-4 cm 14.51 226.6 13.47 59.5 276 1.7 654.3

4-6 cm 15.17 236.8 13.36 56.4 139 34.6 169.8

6-8 cm 13.26 207.1 11.20 54.1 232 3.4 184.9

8-10 cm 13.92 217.3 10.65 49.0 29 3.4 394.1

10-15 cm 12.52 195.5 8.80 45.0 154 5.2 11.4

15-20 cm 10.49 170.8 8.21 48,1 - 27.0 6.1

9 calculated from the concentration of chloride m % according to Wooster et al. (I969L

* * calculated from the concentrations (mM) a n d multiplied by 1000: (value of s t a n d a r d sea water is 51.7).

r a t i o w e r e u n u s u a l l y h i g h ( T a b l e 2), i n p a r t i c u l a r a t t h e 2 - 6 c m d e p t h . D i s t i n c t l a y e r s w i t h c h a n g i n g c o n c e n t r a t i o n s of s u l p h i d e I m a x i m u m a t 3 - 8 cm), n i t r a t e ( m i n i m a at 2 4 c m a n d 6 - 1 2 c m m a x i m a at 1 - 2 c m a n d 4 - 6 c m l , a n d p h o s p h a t e ( s t r o n g m i n i m u m a t 1 - 3 c m , s t r o n g m a x i m u m at 3 - 1 0 cmJ w e r e f o u n d . In p a r t i c u l a r , t h e e n o r m o u s c o n c e n t r a t i o n g r a d i e n t of p h o s p h a t e , b e t w e e n v e r y h i g h v a l u e s of m o r e t h a n 650 u M a t a 3 - 4 c m d e p t h a n d u n d e t e c t a b l e t r a c e s at a 2 - 3 c m d e p t h , p o i n t s to h i g h l y a c t i v e t r a n s f o r m a t i o n s . S i m i l a r to t h e s e d i m e n t of H i d d e n s e e , t h i s s e d i m e n t a p p e a r e d to b e a s o u r c e o f p h o s p h a t e for t h e s u p e r n a t a n t w a t e r .

A l t h o u g h l o w e r n u m b e r s of a e r o b i c a n d n i t r a t e - r e d u c i n g s u l p h u r - o x i d i z e r s w e r e p r e s e n t in t h e t o p l a y e r of t h i s s e d i m e n t c o m p a r e d to t h o s e f r o m H i d d e n s e e (Fig. 3), v i a b l e c e l l n u m b e r s i n t h e d e e p e r s e d i m e n t w e r e i n a s i m i l a r o r d e r of m a g n i t u d e i n b o t h s e d i m e n t s . A e r o b i c s u l p h u r - o x i d i z e r s h a d q u i t e c o n s t a n t c e l l n u m b e r s o v e r t h e w h o l e s e d i m e n t c o r e , w i t h a s l i g h t m a x i m u m a t a d e p t h of 8 - 1 0 c m . N i t r a t e r e d u c e r s h a d a s l i g h t m a x i m u m a t 1 - 2 c m a n d c o n s t a n t l y h i g h v i a b l e c e l l n u m b e r s f r o m 4 - 6 c m . A n a p p a r e n t m a s s d e v e l o p m e n t of p h o t o t r o p h i c p u r p l e s u l p h u r b a c t e r i a w a s n o t v i s i b l e . N e v e r t h e l e s s . v i a b l e n u m b e r s of t h e s e b a c t e r i a w e r e h i g h i n t h e t o p l a y e r of t h e s e d i m e n t (2 - 106 c e l l s c m -3 s e e Fig. 3). C o m p a r e d t o a n e a r l i e r s a m p l i n g i n A p r i l 1992, t h e y h a d i n c r e a s e d b y t h r e e o r d e r s of m a g n i t u d e , b u t still w e r e t w o o r d e r s of m a g n i t u d e l o w e r t h a n t h o s e f r o m H i d d e n s e e . G r e e n s u l p h u r b a c t e r i a w e r e p r e s e n t i n i n s i g n i f i c a n t n u m b e r s a n d c o u l d n o t b e q u a n t i f i e d .

A c t i v i t y m e a s u r e m e n t s r e v e a l e a m a x i m a of a e r o b i c t h i o s u l p h a t e t r a n s f o r m a t i o n a t 1 - 3 c m ( 4 . 4 - 5 . 2 ~ m o l h -1 c m -3) a n d a t a b o u t 10 c m d e p t h (4.1 ~ m o l h -~ c m -3) (Fig. 4a), s u l p h a t e b e i n g a m a j o r b u t n o t a s t o i c h i o m e t r i c o x i d a t i o n p r o d u c t . S i m i l a r m a x i m a a p p e a r e d u n d e r a n a e r o b i c c o n d i t i o n s w i t h a t h i o s u l p h a t e t u r n o v e r of 1.3 ~ m o l h - t c m - 3 a t 1 - 2 c m a n d 3.9 ,umol h -1 c m -3 a t 1 0 - 1 5 c m d e p t h (Fig. 4b) b u t w i t h m i n o r p r o p o r t i o n s

(13)

Viable cells, s u l p h u r - o x i d i z i n g bacteria, c h e m i c a l p a r a m e t e r s 235 o x i d i z e d to sulphate. T h e s e rates c o i n c i d e d with m a x i m u m v a l u e s of nitrate r e d u c t i o n in the s a m e layers (3.8 ~mol h -1 cm -3 a n d 8.2 ~mol h - l cm -3, respectively) a n d h i g h viable cell counts of nitrate r e d u c i n g bacteria.

D I S C U S S I O N

Q u a n t i t a t i v e e n u m e r a t i o n of s u l p h u r - o x i d i z i n g b a c t e r i a with s e l e c t i v e m e d i a and m e a s u r e m e n t s of potential transformation rates of t h i o s u l p h a t e and nitrate, c o m b i n e d with the c h e m i c a l analyses of p o r e w a t e r i n d i c a t e d the i m p o r t a n c e of b a c t e r i a in the c h e m i c a l p r o c e s s e s occurring w i t h i n the sediments. F u r t h e r m o r e , distinct m a x i m a of s e v e r a l c h e m i c a l p a r a m e t e r s a n d of m e a s u r e d activities r e v e a l e d a c o m p l e x m u l t i l a y e r e d structure of the i n v e s t i g a t e d s e d i m e n t s .

A l t h o u g h nitrate c o n c e n t r a t i o n s in the i n v e s t i g a t e d s e d i m e n t s w e r e q u i t e low (below 10 ttM, at m a x i m a up to 50 ~M), nitrate a p p e a r e d to b e an i m p o r t a n t e l e c t r o n donor for the oxidation of r e d u c e d s u l p h u r c o m p o u n d s in sulphidic sediments. H i g h n u m b e r s of n i t r a t e - r e d u c i n g b a c t e r i a a n d h i g h potential activities of nitrate r e d u c t i o n a n d thiosul- p h a t e oxidation in the s a m e s e d i m e n t layers, i.e. 3-4 cm d e p t h in the H i d d e n s e e s e d i m e n t a n d 1-2 cm d e p t h in the F~hrdorf sediment, point to an active role of t h e s e b a c t e r i a in the r e s p e c t i v e s e d i m e n t layers. A l t h o u g h t h i o s u l p h a t e oxidation is s t i m u l a t e d in the p r e s e n c e of nitrate, s u l p h a t e is not f o r m e d in e q u i v a l e n t quantities. It appears, therefore, that s u l p h a t e is only a m i n o r oxidation p r o d u c t of t h i o s u l p h a t e w h e n nitrate is the e l e c t r o n acceptor. It is c o n c l u d e d that n i t r a t e - r e d u c i n g b a c t e r i a play an i m p o r t a n t role in the t u r n o v e r of r e d u c e d sulphur c o m p o u n d s in anoxic parts of m a r i n e sediments, as l o n g as nitrate is available.

T h e i m p o r t a n c e of aerobic s u l p h u r - o x i d i z i n g b a c t e r i a in the top layer of the H i d d e n - see s e d i m e n t is d e m o n s t r a t e d by significant oxidation rates of t h i o s u l p h a t e to s u l p h a t e a n d by m a x i m a of v i a b l e cell counts in this layer. In the d a r k and u n d e r conditions of b l o c k e d o x y g e n transfer b e t w e e n a t m o s p h e r e a n d w a t e r column, the release of s u l p h i d e from the s e d i m e n t surface into the w a t e r strongly i n c r e a s e d as s h o w n by e x p e r i m e n t s with intact s e d i m e n t cores. T h e r e f o r e . o x y g e n is r e g a r d e d as the most i m p o r t a n t e l e c t r o n a c c e p t o r for o x i d a t i o n of r e d u c e d sulphur c o m p o u n d s in the surface l a y e r of t h e sedi- ments, a n d a e r o b i c s u l p h u r b a c t e r i a play a p r e d o m i n a n t role in t h e s e reactions.

H i g h n u m b e r s a n d e v e n m a x i m a of (facultative) a e r o b i c b a c t e r i a in the a n o x i c parts of the s e d i m e n t s point to their m e t a b o l i c flexibility a n d t h e i r potential of a n a e r o b i c transformations. It is well e s t a b l i s h e d that d e n i t r i f y i n g b a c t e r i a are f a c u l t a t i v e aerobes.

A l t h o u g h a g e n e r a l conclusion on the p a r t i c i p a t i o n of facultative a e r o b e s in nitrate r e d u c t i o n in anoxic s e d i m e n t layers is not possible, the o c c u r r e n c e of h i g h n u m b e r s of a e r o b i c s u l p h u r b a c t e r i a in distinct s e d i m e n t layers w i t h m a x i m a of d e n i t r i f y i n g bacteria, active denitrification and m i n i m u m nitrate c o n c e n t r a t i o n s m a y be i n d i c a t i v e of the m e t a b o l i c activity of t h e s e b a c t e r i a u n d e r a n a e r o b i c conditions.

Phototrophic s u l p h u r bacteria d e v e l o p u n d e r anoxic conditions w h e n light is avail- a b l e as an e n e r g y source a n d r e d u c e d s u l p h u r c o m p o u n d s are p r e s e n t as e l e c t r o n donors.

B e c a u s e light p e n e t r a t e s only a f e w m i l l i m e t r e s into t h e s e d i m e n t , active g r o w t h of t h e s e bacteria is r e s t r i c t e d to t h e s m a l l z o n e w h e r e light a n d r e d u c e d sulphur c o m p o u n d s coexist. T h e y often form d e n s e p o p u l a t i o n s and a p p e a r as a c o l o u r e d thin skin n e a r the s e d i m e n t surface, as found in the p r e s e n t study. T h e s e b a c t e r i a are of m a j o r i m p o r t a n c e

(14)

2 3 6 J. F. I m h o f f , A. S c h n e i d e r & L. P o d g o r s e k

for t h e o x i d a t i o n of s u l p h i d e a n d o t h e r r e d u c e d s u l p h u r c o m p o u n d s i n t h e i n v e s t i g a t e d s e d i m e n t s , a s is d e m o n s t r a t e d b y t h e i r h i g h n u m b e r s i n t h e t o p s e d i m e n t l a y e r s of b o t h s a m p l i n g sites. T h e a c t i v e r o l e of t h e p u r p l e s u l p h u r b a c t e r i a i n t h e o x i d a t i o n of r e d u c e d s u l p h u r c o m p o u n d s w i t h i n t h e s e d i m e n t is e v i d e n t f r o m t h e f a c t t h a t m o s t of t h e i r c e l l s w e r e f i l l e d u p w i t h s t o r e d e l e m e n t a l s u l p h u r - a n i n t e r m e d i a t e i n t h e o x i d a t i o n of s u l p h i d e to s u l p h a t e . A d d i t i o n a l l y , i n s e d i m e n t c o r e s w h i c h s t r o n g l y r e l e a s e d s u l p h i d e i n t o t h e s u p e r n a t a n t w a t e r w h e n o x y g e n s u p p l y w a s i n h i b i t e d for 12 h o u r s i n t h e d a r k (13.5 ,~M s u l p h i d e ) , t h e m a j o r p a r t of t h i s s u l p h i d e w a s o x i d i z e d w h e n o x y g e n w a s a l l o w e d to d i f f u s e i n t o w a t e r a n d w h e n t h e s e d i m e n t w a s i l l u m i n a t e d . O n l y 1 to 1.5 ~ M s u l p h i d e w e r e r e l e a s e d u n d e r t h e s e c o n d i t i o n s d u r i n g a 12 h p e r i o d . B l a c k b u r n e t al.

(1975) d e m o n s t r a t e d t h e p r e d o m i n a n t r o l e of p h o t o t r o p h i c b a c t e r i a b y s i m i l i a r e x p e r i - m e n t s i n s e d i m e n t c o r e s , too. P h o t o t r o p h i c s u l p h u r b a c t e r i a a n d a e r o b i c c h e m o t r o p h i c s u l p h u r b a c t e r i a c e r t a i n l y a r e c o m p e t i n g s u l p h u r - o x i d i z e r s i n t h e t o p l a y e r s of t h e i n v e s t i g a t e d s e d i m e n t s , i n p a r t i c u l a r b e c a u s e s o m e of t h e p h o t o t r o p h i c p u r p l e b a c t e r i a c a n u s e o x y g e n a s a n e l e c t r o n a c c e p t o r d u r i n g c h e m o t r o p h i c g r o w t h ( K ~ m p f & P f e n n i g , 1980). W e c o n c l u d e t h a t t h e c o m b i n e d a c t i o n of b o t h g r o u p s of b a c t e r i a m o s t e f f i c i e n t l y o x i d i z e s r e d u c e d s u l p h u r c o m p o u n d s i n t h e t o p l a y e r s of t h e s e d i m e n t s . N i t r a t e m a y r e p l a c e o x y g e n as f i n a l e l e c t r o n a c c e p t o r a n d will s u p p o r t o x i d a t i o n of s u l p h i d e ~ i n p a r t i c u l a r w h e n o x y g e n a n d l i g h t a r e l i m i t i n g .

Acknowledgements. This work was s u p p o r t e d by the grant DYSMON A2 of the B u n d e s m i n i s t e r ffir Forschung u n d Technologie of Germany.

L I T E R A T U R E C I T E D

Blackburn. T. H.. Kleiber. P & Fenchel T., 1975. Photosynthetic sulphide oxidation in m a r i n e sediments. - Oikos 26. 103-108.

F e h e n F. & Laue. W. 1956. Beitr~ge zur C h e m i e des Schwefels. 29. Ober die D a r s t e l l u n g von R o h s u l f a n e n . - Z. anorg, allg. Chem. 288. 103-112.

Imhoff. J. F.. 1988. A n o x y g e n i c phototrophic bacteria. In: M e t h o d s in aquatm bacteriology. Ed. by B.

Austin. Wiley, Chichester. 207-240.

J 6 r g e n s e n . B. B., 1982. Mineralization of organic m a t t e r in t h e sea b e d - the role of sulfate reduction.

- Nature. Lond. 296. 643-645.

J 6 r g e n s e n . B. B. & Bak. F.. 1991. P a t h w a y s and microbiology of thiosulfate t r a n s f o r m a t i o n s and sulfate reduction in a m a n n e s e d i m e n t - Appl. e n v i r o n Microbiol. 57. 847-856.

K~impf, C. & Pfennig, N., 1980. Capacity of C h r o m a t i a c e a e for chemotrophic g r o w t h - Arch.

Microbiol. 127, 125-135.

Lorant, I. S., 1929. Uber eine n e u e colorimetrische M e t h o d e zur B e s t i m m u n g d e s Schwefels in Sulfiden. Sulfaten usw, - Hoppe-Seyler's Z. physiol. Chem. 185. 245-266.

Pachmayr, F.. 1960. V o r k o m m e n u n d B e s t i m m u n g yon S c h w e f e l v e r b i n d u n q e n in Mineralwasser.

Diss.. Univ. Mtinchen, 48 pp.

Pfennig, N. & TKiper, H. G. 1992. T h e family Chromatiaceae. In: The Prokaryotes. Ed. by A. Balows.

H. G. Trtiper, M. Dworkin, W. H a r d e r & K. H. Sehleifer. Springer. N e w York, Vol. 4. 3200-3221.

Suckow. R,. 1966. S c h w e f e l m i k r o b e n g e s e l l s c h a f t e n der See- u n d Boddengew~isser y o n H i d d e n s e e . - Z. allg. Mikrobiol. 6, 309-315.

Widdel. F., 1988. Microbiology a n d ecology of sulfate- a n d sulfur-reducing bacteria. In: Biology of a n a e r o b i c microorganisms. Ed. b y A. J, B. Z e h n d e r . Wiley, New York. 469-585.

Wooster, W. S., Lee, A, J. & Dietrich, G., 1969. Redefinition of salinity, - Deep Sea Res. I6, 321-322.

Referenzen

ÄHNLICHE DOKUMENTE

To better understand the fate and transport of cohesive sediments and sediment-sorbed HCB, a hydrodynamic and sediment transport model for the reach of the Elbe River basin

The peak intensities of quartz and LMC were extracted out of the diffractograms and standardized to establish a LMC/quartz ratio curve (fig. The percentage of calcite,

Auch Blatt- und Stengelinnenhaare von See- oder Teichrosen sind extrem selten: 4 wurden in Ablagerungen des Pleniglazial, 1 in denen der Älteren Tundrenzeit s.str.,

and 4 ml chloroform (seperation into two phases) 2.) block up the tubes and give it a good shake (homogenized mixture) 3.) leave it for the next day... to a final volume of

Test tubes (some more than necessary for the measurements) are filled with 2 ml Coomassie blue (keep cool as for a long time as possible to); prepare plastic cuvettes

Skeletal grains are mainly fragments of infaunal lamellibranchs (commonly the species Timoclea layardi), smaller Foraminifera, and echinoid fragments; the last

We have three main objectives in this paper: (1) We develop the concept and apply the sediment cascade model to the Illgraben and investigate the conditions that lead to

Kontaminierte Sedimente enthalten Schadstoffe in höheren Konzentrationen, als nach Maßgabe definierter Qualitätskriterien zulässig ist.. Sedimentbewirtschaftung aus