• Keine Ergebnisse gefunden

Smart Thermostats: How much Can One Really Save?

N/A
N/A
Protected

Academic year: 2021

Aktie "Smart Thermostats: How much Can One Really Save?"

Copied!
39
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Smart Thermostats: How much Can One Really Save?

Ramapriya  Sridharan

Ubiquitous  Compu6ng  Seminar  2015

(2)

Thermostats-­‐Mo3va3on  

73%  

3%  

5%   12%  

1%   3%   3%  

Switzerland  Residen/al  Energy  use    

Space  Hea3ng   Cooking  

Electrical  Appliances   Water  Hea3ng  

Fridge  &  freezing   Washing  Drying    

•  Space  Hea3ng  consists  of  73%  

of  energy  use  in  residen3al   sector  

 

Switzerland:[7]  

(3)

Thermostats-­‐Mo3va3on  

United  States:[11]  

In  United  States  

(4)

Thermostats-­‐Manual  

•  Need  to  manually  set  the  setpoint              temperature  

 

•  Need  to  set  setback  temperature  while              leaving  

 

•  Not  convenient  

Manual  Thermostat  :[9]  

(5)

Thermostats-­‐Programmable  Thermostats  

•  Pre-­‐defined,  determinis3c   working  schedule.  

•  Complex  to  program.  

•  User-­‐interface  unintui3ve.  

•  40-­‐70%  people  use  improperly.  

•  Price  range  :  30-­‐40  $  

•  Ideal  energy  savings  :  10-­‐30%  

Programmable  :[8]  

(6)

Thermostats-­‐Smart  thermostats  

•  Program  themselves-­‐  adapts  control   to  user  context.  

•  Promise  be^er  &  less  complex   interface.  

•  Remote  Access.  

•  Aim  :  Reduce  energy  spent  &  increase   comfort.  

•  Price  range  :  200-­‐500  $.  

•  Energy  savings  ranges  from  :10  -­‐  25  %.  

 

Smart  Thermostat  :[9]  

(7)

Thermostats-­‐Smart  Thermostats  Examples  

Honeywell  wifi  :[9]   Honeywell  wifi  with  voice:[9]  

Ecobee  :[8]   Tado  :[6]  

(8)

Nest-­‐Introduc3on  

•  First  mass  market  thermostat  to   feature  machine  learning  

•  Costs  :  249  $  

•  Promises  to  generate  a  

hea/ng/cooling  schedule  that  :   1. Provides  comfort  

2.  Energy  savings  

3. Enjoyable  interac/on   4.  Convenience  

•  Energy  savings  :  10-­‐12%  for  hea3ng  

&  15%  for  cooling  

   

Nest:[2]  

(9)

Nest-­‐Study  

•  Study  by  University  of  Michigan  

•  Group  had  19  par3cipants  

•  In  general  highly  skilled    

•  Interested  in  technology  

Yang  et  al  :[10]  

(10)

Nest-­‐Does  it  get  the  programming  right?  

(11)

Nest-­‐Does  it  get  the  programming  right?  

Not  Always…..but  why?  

(12)

Nest-­‐Obstacles  

•  Nest  did  not  understand  what  the  input  meant  

•  Occupants  did  not  understand  what  nest  was  doing  

•  Hence  occupants  didn't  know  how  to  op3mally  interact  with  Nest  to   create  an  op3mal  schedule  

•  Houses  with  mul3ple  occupants  suffered  the  most  :  

 1.  Mul3ple  changes  in  temperature  by  mul3ple  people  caused    erroneous  schedule  

 

•  Auto  away  some3mes  malfunc3oned  

Yang  et  al  :[10]  

(13)

Nest-­‐How  Occupants  made  it  work  ?  

•  Correc3ng  the  schedule  

•  Teaching  &  guiding  the  learning  :   1.  Learning  to  interact  with  Nest  

2.  Occupants  understood  Nest  be^er  with  3me  

 

Yang  et  al  :[10]  

Schedule  :[2]  

(14)

Nest-­‐How  Occupants  made  it  work  ?  

•  Monitoring  :  

1.  The  Schedule   2.  Energy  history  

 

Energy  Hist  :[2]  

(15)

Nest-­‐How  Occupants  made  it  work  ?  

•  In  mul3ple  occupant  homes,  it  helped  that  :   1.  Only  1  person  operated  the  thermostat  

2.  The  temperature  range  was  locked  by  the  main  occupant    

(16)

Nest-­‐Energy  Savings  

•  Natural  gas  savings  averaged  56  therms  per  year  equal  to   9.6%  of  pre-­‐Nest  hea3ng  use  

•   Electricity  savings  averaged  585  kWh  per  year  equal  to   17.5%  of  pre-­‐Nest  HVAC  usage  

 Source  Nest  Labs  savings  analysis:  [12]    

(17)

Nest-­‐  %  Energy  Savings  compared  to  previous   usage  

Source  Nest  Labs  savings  analysis:  [12]    

(18)

Nest-­‐How  can  it  save  us  energy?  

•  Help  users  understand  how  the  system  interprets  and  acts  upon  data.  

 

•  Help  Nest  understand  the  intent  of  the  occupant  

•  Explicitly  men3on  what  ought  to  be  forgo^en  

•  Occupant  should  be  mo3vated  to  save  energy  

 

 

(19)

Neurothermostat(NT)-­‐Introduc3on  

•  Uses  Neural  networks  (NN)  (used  for  learning  and  pa^ern  recogni3on)  

•  Takes  150  days  to  train  

•  It  acts  as  an  op3mal  controller  :   –  Tries  to  minimize  energy  use   –  Maximize  comfort  of  occupant    

 

                                       University  of  Colorado,  Boulder:  [4]  

(20)

Neurothermostat-­‐Predic3ve  Op3mal  Controller  

•  Considers  all  possible  decision  steps  over  the  horizon  (  K  steps,  δ  minutes   each)  called  ‘u’  

 Min  Cost  (u)  =  Hea3ng  Cost  +  Misery  Cost    

•  Only  takes  the  sequence  of  decision  steps  that  minimize  the  total  cost  

•  It  executes  the  first  decision  of  this  sequence  

•  Repeats  procedure  again  aqer  δ  minutes  

(21)

Neurothermostat-­‐House  occupancy  predictor  

 

Inputs  to  NN  :   1.  Time  

2.  Day  

3.  Current  occupancy  

4.  Occupancy  in  previous  10,  20,  30  minutes  from  present  3me  on  previous   3  days  &  same  day  for  the  past  4  weeks  

5.  Propor3on  of  3me  occupied  in  the  past  60,  180,  360  minutes    

 

 

(22)

Neurothermostat-­‐House  thermal  model  

•  Finds  the  future  indoor  temperature  &  energy  cost  

•  Uses  RC(resistance-­‐capacitance)  model  

•  Current  indoor  temperature  

•  Current  outdoor  temperature  

•  Furnace  opera3on(on/off)  

(23)

Neurothermostat-­‐Occupant  comfort  cost  model  

•  Misery  cost  -­‐    

   1.    0  if  house  unoccupied  

 2.    Is  a  func3on  of  the  devia3on  of  the  temperature  from  the                      setpoint  temperature  scaled  in  dollars  

 

(24)

Neurothermostat-­‐Occupant  comfort  cost  model  

•  Inputs  :  

•  Current  temperature  

•  House  occupancy  

•  Hourly  wage  

•  Loss  in  produc3vity  (ρ)  (how  much  loss  if  5  degrees  lesser  for  24   hour  period  )  

•  Op3mal  setpoint  

•  δ  3me  interval  

(25)

Neurothermostat-­‐Result  Details  

•  Study  was  done  using  generated  150  days  of  training  and  tes3ng  data,  8   3mes  

•  There  are  75  sensors  present  in  house,  addi3onal  one  at  the  main  door  

•  The  occupants  schedule  was  going  to  work  on  weekdays,  might  come   home  for  lunch,  might  go  out  on  weekends  and  some3mes  on  trips.  

•  Real  data  also  used  (  5  months  training  and  1  month  tes3ng)  

(26)

Neurothermostat-­‐Occupancy  predic3on  Results  

0.1  0   0.2   0.3   0.4   0.5   0.6   0.7   0.8   0.9  1  

lookup  

table   NN   lookup   table  +  

NN  

Mean  Squared  Error    

0   0.25   0.5   0.75   1  

Variability  of   occupancy  

(27)

Neurothermostat-­‐Cost  savings  results  

0   2   4   6   8   10   12  

ρ=1   ρ=3  

Mean  Cost  $/day  

Neurothermostat   Constant  

Temperature   Occuupancy   triggered   Setback   Thermostat  

Real  data,5  months   training,  1  month   tes3ng      

(28)

PreHeat(PH)-­‐Introduc3on  

•  Occupancy  sensing  for  learning  :  RFID  tags  to  keys  

•  Set-­‐points  -­‐>  Wake-­‐point  &  Sleep-­‐point  

•  Set  the  Setback  temperature  

•  Needs  minimum  14  days  data  to  work  

Microso>  research  &  University  of  Lancaster  :[5]  

(29)

PreHeat-­‐Occupancy  Predic3on  

•  15  min  window  occupancy  binary  vector  

           

                           [5]  

(30)

•  Consider  k=5  recent  days  in  most  similar  vectors  (least  hamming  distance)  

•  Alg1  :  Consider  weekends  and  weekdays  separately  

•  Alg2  :  Pad  day  occupancy  vector  with  4  hours  from  previous  day  

•  Can  choose  a  probability  threshold      1.  If  high  -­‐>  energy  savings  

 2.  If  low  -­‐>  increase  the  comfort    

PreHeat-­‐Occupancy  Predic3on  

(31)

PreHeat-­‐Result  Details  

•  Study  done  for  61  days  in  each  home  

•  3  Homes  in  the  US  and  2  homes  in  UK  

•  UK  homes  had  per  room  hea3ng,  hence  had  per  room  sensors  

•  US  homes  had  whole  house  hea3ng  

•  Probability  threshold  =  0.5  

(32)

PreHeat-­‐Occupancy  predic3on  Results  

(33)

PreHeat-­‐Energy  savings  results  

(34)

Comparison  

Comparison   PH   NT   Nest  

Mo3on  sensors   RFID  receiver  near   entrance,  

some3mes  forget   RFID  keys  

Has  enough  sensors   to  detect  

occupancy    

Needs  to  be  

strategically  placed,   else  cannot  detect   occupants  

Interface   Does  not  mo3vate   user  to  reduce   consump3on  

Does  not  mo3vate   user  to  reduce   consump3on  

Mo3vates  occupant   to  reduce  

consump3on  using   small  green  leaf   Comfort  Model   Reducing  MissTime  

is  the  only  comfort   cost,  could  be  

changed  to  how   deviant  from   setpoint  the   temperature  is  

Depends  on  

comfort  and  energy   equivalently  

Learns  temperature   seungs  from  

occupants,  their   ac3vi3es  and  tries   to  predict  next   occupancy  

(35)

Comparison  

Comparison   PH   NT   Nest  

Training  Period   14  days   150  days   Aqer  1  week  starts   automa3c  

scheduling   Mul3ple  Occupants   Yes  (  each  should  

have  RFID  keys)   Misery  could  be   scaled  to  a  mul3ple   person  model  Eg:  

Root  mean  square   of  all  misery  costs  

yes  

Per  Room  Hea3ng   Yes,but  less   occupied  room   never  heated  

It  only  does  full   house  

hea3ng(  what   about  per  room?)  

It  only  does  full  

house  hea3ng  (it  be   scaled  if  sensors  in   all  rooms?)  

(36)

Comparison  

Comparison   PH   NT   Nest  

Wifi  access   No,  but  can  be  used   to  get  data  from   internet  

No,can  be  used  to   get  data  from   internet  

Yes  

Learning,  weighted  

days   No,  but  can  be  

implemented   NN  is  a  weighted  

model   No  info  

GPS  tracker   No,  could  improve  

comfort   No,  could  improve  

comfort   No,  could  improve  

comfort   Energy  History   No,  but  can  be  

incorporated   No,  but  can  be   incorporated    

Can  be  improved  by   giving  average  

consump3on  in   area  

Remote  Control   Can  be   Can  be   Already  is  

Gupta  et  al  :[13]  

(37)

Conclusion  

•  Programmable  thermostats  promise  10-­‐30%  energy  savings  

•  But  they  are  not  used  the  way  they  are  intended  to  

•  Smart  thermostats  can  help  this  by  observing  your  ac3vi3es,  without  the   need  for  programming  

•  They  also  promise  comfort  

•  Occupants  can  save  10-­‐25  %  in  theory  

•  Actual  saving  depend  on  how  mo3vated  occupants  are  

•  If  you  are  already  energy  conscious,  smart  thermostat  might  not  help   much  

 

(38)

References  

1.  h^p://www.barenergy.eu/uploads/media/D13_Switzerland.pdf   2.  h^ps://nest.com/works-­‐with-­‐nest/          

3.  h^p://www.energyvanguard.com/blog-­‐building-­‐science-­‐HERS-­‐BPI/bid/

50152/If-­‐You-­‐Think-­‐Thermostat-­‐Setbacks-­‐Don-­‐t-­‐Save-­‐Energy-­‐You-­‐re-­‐

Wrong  

4.  Mozer,  M.C.,  Vidmar,  L.,  Dodier,  R.H.,  The  Neurothermostat:Predic3ve   Op3mal  Control  of  Residen3al  Hea3ngSystems  In  Adv.  in  Neural  Info.  

Proc.  Systems  9  (pp.953-­‐959)  (MIT  Press,  1997,  Cambridge,  MA)  

5.   Sco^,  J.,  Bernheim  Brush,  A.J.,  Krumm,  J.,  Meyers,  B.,Hazas,  M.,  Hodges,   S.,  Villar,  N.,  PreHeat:  Controlling  Home  Hea3ng  Using  Occupancy  

Predic3on  In  UbiComp’11(September  17-­‐21,  2011,  Bejing,  China)   6.  Images  from  tado  www.tado.com  

(39)

References  

7.  Smart  Energy  lecture  2-­‐  by  Friedemann  Ma^ern  and  Verena  Tiefenbeck   8.  Images  from  wikipedia.com  

9.  Honeywell  thermostats  image  honeywell.com    

10.   Yang,  Rayoung,  and  Mark  W.  Newman.  "Learning  from  a  learning  

thermostat:  lessons  for  intelligent  systems  for  the  home."  Proceedings  of   the  2013  ACM  interna3onal  joint  conference  on  Pervasive  and  ubiquitous   11.  h^p://www.eia.gov/consump3on/residen3al/  

12.  h^ps://nest.com/downloads/press/documents/energy-­‐savings-­‐white-­‐

paper.pdf  

13.  Gupta,  M.,  S.S.  In3lle,  and  K.  Larson.  “Adding  GPSControlto  Tradi3onal   Thermostats:  An  Explora3on  ofPoten3al  Energy  Savings  and  Design   Challenges.”  Proc.of  Pervasive,  2009.  

Referenzen

ÄHNLICHE DOKUMENTE

Figure 1: The two problem classes General Application Ar- eas of IT (white) and Analytical Problems (light gray) can be solved using Automatic Analysis (black), Visualization

Officials trying to make the case for TTIP by highlighting enormous economic gains run the risk of being accused of insincerity; economic gains are modest by most

Thereby, we conducted a user study in the context of the university elections at Technische Universität Darmstadt, where three different voting systems were considered: One that

officials should inform Iraqi leaders that if the prime minister does not step aside, the United States will begin providing the peshmerga with armored vehicles, helicopters,

law, an e-cigarette company cannot make claims regarding the health benefits of its product, such as how much it helps you stop smoking, without that product being regulated under

The Geneva Quad agreement of 17 April – signed by Ukraine, the EU, Russia and the US and decreeing that public buildings be liberated – is ignored.. The viability of the

Recent events in North West Africa do however suggest the need for a radical shift in thinking and in policies, not just in Morocco and Algeria, but in the EU, if the region

To assess the promotion of life saving behaviors and determine the sustainability of nudge message effects, this paper examines nudges that promote evacuation during heavy