• Keine Ergebnisse gefunden

1 Introdution This paper is onerned with termination of equationalterm rewrite systems

N/A
N/A
Protected

Academic year: 2021

Aktie "1 Introdution This paper is onerned with termination of equationalterm rewrite systems"

Copied!
16
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Equational Termination by Semanti Labelling

HitoshiOhsaki 1

,AartMiddeldorp 2

, andJurgenGiesl 3

1

ComputerSieneDivision,EletrotehnialLaboratory

Tsukuba305-8568, Japan

ohsakietl.go.jp

2

InstituteofInformationSienesandEletronis

UniversityofTsukuba,Tsukuba305-8573,Japan

amiis.tsukuba.a.jp

3

ComputerSieneDepartment

UniversityofNewMexio,Albuquerque,NM87131,USA

giesls.unm.edu

Abstrat. Semantilabellingisapowerfultoolforprovingtermination

oftermrewrite systems.The usefulnessof the extensionto equational

termrewriting desribed inZantema [24℄ is howeverratherlimited. In

this paperwe introdueastronger version ofequational semantial la-

belling,parameterized bythreehoies:(1)theorderontheunderlying

algebra(partial ordervs.quasi-order),(2)the relationbetweenthe al-

gebraand the rewrite system (modelvs.quasi-model),and (3)the la-

bellingofthefuntionsymbolsappearingintheequations(forbiddenvs.

allowed).Wepresentsoundnessandompletenessresultsforthevarious

instantiationsandanalyzetherelationshipsbetweenthem.Appliations

ofourequationalsemantilabellingtehniqueinludeashortproofofthe

mainresultofFerreiraetal.[7℄|theorretnessofaversionofdummy

eliminationforAC-rewritingwhihompletelyremovestheAC-axioms|

andanextensionofZantema'sdistributioneliminationtehnique[23℄to

theequationalsetting.

1 Introdution

This paper is onerned with termination of equationalterm rewrite systems.

Terminationofordinarytermrewritesystemshasbeenextensivelystudied and

several powerful methods for establishing termination are available (e.g. [1,4,

21℄).Forequationaltermrewritingmuhlessisknown,althoughinreentyears

signiantprogresshasbeenmadewith respetto AC-termination,i.e., termi-

nationof equationalrewritesystemswhere the set ofequations onsists ofthe

assoiativityandommutativityaxiomsAC(f)=ff(f(x;y);z)f(x;f(y;z));

f(x;y) f(y;x)g for (some of) the binary funtion symbols ourring in the

rewrite rules. An early paper ontermination ofequational rewriting is Jouan-

naud andMu~noz[11℄.Inthat papersuÆientonditionsaregivenforreduing

?

Proeedings of the Annual Conferene of the European Assoiation for Computer

SieneLogi(CSL'00),Fishbahau,Germany,LNCS1862,pp.457-471,2000.

(2)

ingtermrewritesystem.Inanotherearlypaper(BenCherifaandLesanne[2℄)

aharaterizationofthepolynomialsisgiventhat anbeused inapolynomial

interpretation proof of AC-termination. In morereentpapers[12,19{21℄syn-

tatimethodslikethewell-knownreursivepathorderforprovingtermination

of rewriting are extended to AC-rewriting. Marhe and Urbain [14℄ extended

thepowerfuldependeny pairtehniqueof Artsand Giesl[1℄to AC-rewriting.

In [6,7℄twoextensions of dummy elimination([8℄) to equationalrewriting are

presented.In[15℄ the typeintrodutiontehniqueof Zantema [23℄ isextended

to equationaltermrewriting.

Inthis paper weextend another tehnique of Zantema to equational term

rewriting.Bylabellingfuntionsymbolsaordingtothesemantisoftherewrite

system,semantilabelling([24℄)transformsarewritesystemintoanotherrewrite

systemwiththesameterminationbehaviour.Theaimistoobtainatransformed

rewritesystemwhereterminationiseasiertoestablish.Thestrengthofsemanti

labelling is amply illustrated in [16,24℄. Here we present powerful extensions

of semanti labelling to equationalrewriting and analyze their soundness and

ompleteness.Ourequationalsemantilabellingyieldsashortorretnessproof

of aversionof dummy elimination forAC-rewriting. This result of Ferreiraet

al. was obtained in [7℄ by onsiderably more ompliated arguments. Another

appliationofourtehniqueistheextensionofsomeoftheresultsofZantema[23℄

onerningdistributioneliminationto theACase.

2 Preliminaries

Familiarity with the basis of term rewriting ([3℄) is assumed. An equational

system(ESforshort)onsistsofasignatureF andasetE ofequationsbetween

terms in T(F;V). We write s !

E

t if there exist an equation l r in E,

a substitution , and a ontext C suh that s = C[l℄ and t = C[r℄. The

symmetri losureof !

E

is denoted by `a

E

andthe transitivereexivelosure

of `a

E by

E

. A rewriterule is anequation lr suh that l isnot avariable

andvariableswhihourinralsoourinl.Rewriteruleslrarewrittenas

l!r.A term rewrite system (TRSforshort) isan ESwith theproperty that

allitsequationsarerewriterules.Anequationaltermrewritesystem (ETRSfor

short)R=E onsistsofaTRSRandanESE overthesamesignature.Wewrite

s!

R=E

tifthere existtermss 0

andt 0

suhthat s

E s

0

!

R t

0

E

t.Similarto

ordinarytermrewritesystems,anETRSisalled terminating ifthere doesnot

exist aninnite!

R=E

redution.

LetF beasignatureand A=(A;ff

A g

f2F

) anF-algebraequippedwitha

quasi-order (i.e., areexive and transitiverelation) %on its (non-empty) ar-

rier A. For any variable assignment : V ! A we dene the term evaluation

[℄

A

: T(F;V) ! A indutively by [℄

A

(x) = (x) and [℄

A (f(t

1

;:::;t

n )) =

f

A ([℄

A (t

1

);:::;[℄

A (t

n

))for x 2 V, f 2F, andt

1

;:::;t

n

2 T(F;V). If A is

lear from the ontext, then we often write [℄ instead of [℄

A

. We say that

A ismonotone ifthe algebraoperationsof Aare monotone withrespetto %

(3)

A 1 i n

f

A (a

1

;:::;b;:::;a

n

) for all a

1

;:::;a

n

;b 2 A and i 2 f1;:::;ng with a

i

% b.

An ETRS R=E over a signature F is ompatible with a monotone F-algebra

(A;%) ifl%

A

rforeveryrewriterulel!r2Randl

A

rforeveryequation

l r 2 E. Here the relation %

A

is dened by s %

A t if [℄

A

(s)% [℄

A (t) for

everyassignmentand

A

is theequivalenerelationindued by %

A

.If R=E

and(A;%)areompatible,wealsosaythat(A;%)isaquasi-model ofR=E.We

all(A;%)amodel ofR=E ifl

A

rforalll!r2Randlr2E.

ATRSRispreedeneterminatingifthereexistsawell-foundedorder=on

itssignatureFsuhthatroot(l)=f foreveryrulel!r2Randeveryfuntion

symbolf ourring in r. Preedene terminating TRSs are terminating ([16℄).

Thenextlemma statesthat thisremainstrueinthepreseneofAC-axioms.

Lemma1. LetR=EbeanETRSoverasignatureFsuhthatE= S

f2G AC(f)

forsomesubsetG ofF.IfRispreedeneterminatingthenR=E isterminating.

Proof. Bydenitionthereisawell-foundedorder=onF suhthat root(l)=f

for every rule l ! r 2 R and every funtion symbol f ourring in r. Any

AC-ompatiblereursivepathorderinduedby=thatisdenedontermswith

variables(e.g.[13,19℄)orientstherulesofRfromlefttoright.(Theompliated

aseinwhihtwotermswithequalrootsymbolsinGhavetobeomparednever

arisesduetotheassumptionon=.)WeonludethatR=E is terminating. ut

3 Semanti Labelling for Equational Rewriting

Inthissetionwepresentourequationalsemantilabellingframeworkbyappro-

priatelyextendingthedenitionsofZantema[24℄forordinarysemantilabelling.

Denition1. Let F be a signature and A an F-algebra. A labelling L for F

onsists of sets of labels L

f

A for every f 2 F.The labelledsignature F

lab

onsists of n-ary funtion symbols f

a

for every n-ary funtion symbol f 2 F

and label a2 L

f

together with all funtion symbols f 2 F suh that L

f

= ?.

A labelling ` for A onsists of a labelling L for the signature F together with

mappings `

f : A

n

!L

f

for every n-ary funtion symbol f 2F with L

f

6=?.If

A isequipped with aquasi-order %then the labellingis said tobe monotone if

itslabellingfuntions`

f

aremonotone(with respetto%)in allarguments.

Denition2. LetR=E be an ETRS overasignature F,(A;%) anF-algebra,

and`alabellingfor A.Foreveryassignmentweindutivelydene alabelling

funtion lab

from T(F;V) to T(F

lab

;V): lab

(t) =t if t 2 V and lab

(t)=

f

`f([℄(t1);:::;[℄(tn)) (lab

(t

1

);:::;lab

(t

n

)) if t = f(t

1

;:::;t

n

). We dene TRSs

R

lab

,De(F;) andESsE

lab

,Eq(F;) overthesignatureF

lab

asfollows:

R

lab

=flab

(l)!lab

(r)jl!r2Rand:V!Ag;

E

lab

=flab

(l)lab

(r)jlr2E and:V!Ag;

De(F;)=ff

a (x

1

;:::;x

n )!f

b (x

1

;:::;x

n

)jf 2F;a;b2L

f

; abg;

Eq(F;)=ff

a (x

1

;:::;x

n )f

b (x

1

;:::;x

n

)jf2F;a;b2L

f

;ab;a6=bg:

(4)

trivial equations. When the signature F and the quasi-order %an be inferred

from the ontextwe just writeDe and Eq.We write Rfor the union of R

lab

andDeandE for the unionofE

lab

andEq.

Thenexttheoremstatesourrstequationalsemantilabellingresult.

Theorem1. LetR=E beanETRS overasignatureF,(A;%) amonotoneF-

algebra, and ` a monotone labelling for A. If A is a quasi-model of R=E and

R=E isterminatingthenR=E isterminating.

Proof. Weshowthatforalltermss;t2T(F;V)andassignmentswehave

1. ifs!

R

tthenlab

(s)

E

+

!

R lab

(t),

2. ifs`a

E

tthenlab

(s)

E lab

(t).

Supposes=C[l℄andt=C[r℄forsomerewriterulel!r2R,ontextC,and

substitution.Weshow(1)byindutiononC.IfC=thenlab

(s)=lab

(l)

and lab

(t) =lab

(r). Dene the assignment =[℄

A

Æ and thesubstitu-

tion = lab

Æ (i.e., is applied rst). An easy indution proof (e.g. [23,

Lemma 2℄) reveals that lab

(l)=lab

(l) and lab

(r)=lab

(r). Byde-

nitionlab

(l)!lab

(r)2R

lab

andhenelab

(s)=lab

(l) !

Rlab lab

(r) =

lab

(t).Fortheindutionstep,letC=f(u

1

;:::;C 0

;:::;u

n

).Theindutionhy-

pothesisyieldslab

(C

0

[l℄)

E

+

!

R lab

(C

0

[r℄).BeauseAisaquasi-model

ofR=E and C 0

[l℄!

R C

0

[r℄,wehave[℄

A (C

0

[l℄)%[℄

A (C

0

[r℄).Let

a=`

f ([℄

A (u

1

);:::;[℄

A (C

0

[l℄);:::;[℄

A (u

n ))

and

b=`

f ([℄

A (u

1

);:::;[℄

A (C

0

[r℄);:::;[℄

A (u

n )):

Monotoniityofthelabellingfuntion`

f

yieldsa%b.Wedistinguishtwoases.

Ifabthen

lab

(s)

E

+

!

R f

a (lab

(u

1

);:::;lab

(C

0

[r℄);:::;lab

(u

n ))

!

De f

b (lab

(u

1

);:::;lab

(C

0

[r℄);:::;lab

(u

n ))

= lab

(t):

Ifabthen

lab

(s)`a

=

Eq f

b (lab

(u

1

);:::;lab

(C

0

[l℄);:::;lab

(u

n ))

E

+

!

R f

b (lab

(u

1

);:::;lab

(C

0

[r℄);:::;lab

(u

n ))

= lab

(t):

Here`a

=

Eq

denotes`a

Eq

[=.Sine

E

+

!

R !

De

E

+

!

R and`a

=

Eq

E

+

!

R

E

+

!

R

,inbothasesweobtainthedesiredlab

(s)

E

+

!

R lab

(t) .

Theproofof (2)followsalongthesamelines. Intheindution stepwehave

[℄

A (C

0

[l℄) [℄

A (C

0

[r℄). Monotoniity of `

f

yields both a %b and b % a.

Hene ab andthus

lab

(s)= f

a (lab

(u

1

);:::;lab

(C

0

[l℄);:::;lab

(u

n ))

`a

=

Eq f

b (lab

(u

1

);:::;lab

(C

0

[l℄);:::;lab

(u

n ))

E f

b (lab

(u

1

);:::;lab

(C

0

[r℄);:::;lab

(u

n ))

= lab

(t)

(5)

From(1)and(2)itfollowsthatanyinniteR=E-rewritesequenegivesrise

toaninniteR =E-rewritesequene. ut

Theonverseoftheabovetheoremdoesnothold.Considertheterminating

ETRS R=E with R= ? and E = ff(a) ag. Let A be the algebra overthe

arrierf0;1gwith10andoperationsf

A

(x)=xforallx2f0;1ganda

A

=1.

Note that A is a(quasi-)model of R=E. By letting `

f

bethe identity funtion

and by hoosing L

a

= ?, weobtain the labelled ETRS R=E with R

lab

= ?,

De=ff

1 (x)!f

0 (x)g,E

lab

=ff

1

(a)ag,andEq=?.TheETRS R =E isnot

terminating: a

Elab f

1 (a) !

De f

0 (a)

Elab f

0 (f

1 (a)) !

De

Nevertheless, in

thisexampletherearenoinniteR =E-rewritesequenesthatontaininnitely

many R

lab

=E-steps,whih is known astherelative termination (Geser[10℄) of

R

lab

=E withrespettoDe.ItisnotdiÆulttoshowthatundertheassumptions

ofTheorem1terminationofR=EisequivalenttorelativeterminationofR

lab

=E

withrespetto De.

Zantema [24℄ showed theneessityof theinlusion ofDe inRfor theor-

retness of Theorem 1(with E = ?) by means of the TRS R = ff(g (x)) !

g (g (f(f(x))))g, the algebraAoverthearrier f0;1g withoperationsf

A (x)=1

andg

A

(x)=0forallx2f0;1g,andtheorder10.Bylabellingfwiththevalue

ofitsargument,weobtaintheTRSR

lab

=ff

0

(g (x))!g (g (f

1 (f

0 (x))));f

0 (g (x))

!g (g (f

1 (f

1

(x))))gwhihisompatiblewiththereursivepathorderwithpree-

denef

0

=f

1

;g .However,Risnotterminating:f(f(g (x)))!f(g (g (f(f(x)))))!

g (g (f(f(g (f(f(x)))))))!

Theinlusion of Eq in E isalso essentialfor theorretness ofTheorem 1.

ConsidertheETRSR=E withR=ff(a;b;x)!f(x;x;x);g (x;y)!x;g (x;y)!

yg and E = ?. Let A be the algebra over the arrier f0;1g with 0 1 and

operationsf

A

(x;y;z)=1,g

A

(x;y)=0,a

A

=0,andb

A

=1.Welabelfuntion

symbolf as follows: `

f

(x;y;z) =0 if x = y and `

f

(x;y;z) =1 if x 6= y. Note

that Ais aquasi-modelforR=E and `

f

is triviallymonotone.WehaveR

lab

=

ff

1

(a;b;x) ! f

0

(x;x;x);g (x;y) ! x;g (x;y) ! yg, De = ?, and E

lab

= ?.

Terminationof Riseasily shown.It iswell-known(Toyama[22℄)thatRisnot

terminating.NotethatinthisexampleEq=ff

0

(x;y;z)f

1

(x;y;z)gandhene

R=E isnotterminating.

Finally,bothmonotoniityrequirementsareessential.ConsidertheTRSR=

ff(g (a)) ! f(g (b));b ! ag. Let A be the algebraoverthe arrier f0;1g with

1 0 and operations f

A

(x) = 0, g

A

(x) = 1 x, a

A

= 0, and b

A

= 1. We

have l %

A

r for both rules l ! r 2 R. If `

f

(x) = x then weobtain the TRS

R= ff

1

(g (a))! f

0

(g (b));b ! a;f

1

(x) !f

0

(x)gwhih is ompatible with the

reursivepath order withpreedene f

1

=f

0

;g and f

1

=b=a. However,R is

not terminating. Note that g

A

is not monotone. Next onsider the algebra B

overthearrierf0;1gwith10and operationsf

B

(x)=0,g

B

(x)=x,a

B

=0,

and b

B

=1.If`

f

(x)=1 x then weobtainthe sameTRS Rasbefore. Note

that now`

f

isnotmonotone.

If the algebra A is a model of the ETRS R=E then (similar to ordinary

semantilabelling [24℄) we an dispense with De. Moreover, in this ase the

(6)

Theorem2. Let R=E be an ETRS over a signature F, (A;%) a monotone

F-algebra, and ` amonotonelabelling for A. If A isa model of R=E thenter-

mination of R

lab

=E isequivalenttoterminationof R=E.

Proof. Thefollowingstatementsareobtainedbyastraightforwardmodiation

oftheproofofTheorem1:

1. ifs!

R

tthenlab

(s)

E !

Rlab lab

(t),

2. ifs`a

E

tthenlab

(s)

E lab

(t).

Note that sine A is a model we have [℄

A (C

0

[l℄) [℄

A (C

0

[r℄) and hene

a b in the indution step. This explains why there is no need for De. So

termination of R

lab

=E implies termination of R=E. The onverse also holds;

eliminating all labels in an innite R

lab

=E-rewrite sequene yields an innite

R=E-rewritesequene(beausethere areinnitelymanyR

lab

-steps). ut

Ifthequasi-modelA in Theorem1is equipped withapartial order (i.e.,a

reexive, transitive,andanti-symmetrirelation)insteadof aquasi-order%

thenwean dispensewithEq.

Theorem3. LetR=E beanETRS overasignatureF,(A;) amonotoneF-

algebra, and ` a monotone labelling for A. If A is a quasi-model of R=E and

R=E

lab

isterminatingthen R=E isterminating.

Proof. TheproofofTheorem1applies;beausetheequivaleneassoiatedwith

apartialorderistheidentityrelationwehaveEq=?. ut

TherstexampleinthissetionshowsthattheonverseofTheorem3does

nothold.Combiningthepreedingtwotheoremsyieldsthefollowingresult.

Corollary 1. Let R=E be an ETRS over a signature F, (A;) a monotone

F-algebra, and ` amonotonelabelling for A. If A isa model of R=E thenter-

mination of R

lab

=E

lab

isequivalent toterminationofR=E. ut

Notethatifthepair(A;)isamodelofR=E thensois(A;=).Sineinthis

asemonotoniityofboththealgebraoperationsandthe labellingfuntions is

triviallysatised,weanrephrasetheaboveorollaryasfollows.

Corollary 2. Let R=E be an ETRS overa signature F, A an F-algebra, and

` a labelling for A. If A is a model of R=E then termination of R

lab

=E

lab is

equivalent totermination ofR=E. ut

Notethattheunspeiedquasi-orderisassumedtobetheidentityrelation,

somodelheremeansl=

A

rforallrulesl!r2Randallequationslr2E.

Letusonludethissetionbyillustratingthepowerofequationalsemanti

labelling onaonrete example.ConsidertheETRS R=E withR=fx 0!

x;s(x) s(y) ! x y;0s(y) ! 0;s(x)s(y) ! s((x y)s(y))g and

(7)

order>,andoperations0

A

=0,s

A

(x)=x+1,andx

A

y=x

A

y=x.This

algebraisaquasi-modelofR=E. If`

(x;y)=xthenwehaveR

lab

=fx 0!

x;s(x) s(y)!x y;0

0

s(y)!0g[fs(x)

n+1

s(y)!s((x y)

n s(y))j

n > 0g, De = fx

m

y ! x

n

y j m > ng, and E

lab

= f(x

n y)

n z

(x

n z)

n

y j n >0g. Termination of R=E

lab

anbeshown by the following

polynomial interpretation: [0℄ = 0, [s℄(x) = x+1, x[ ℄y = x+y +1, and

x[

n

℄y = x+ny+n+y for all n >0.Aording to Theorem 3the original

ETRS R=E is terminating as well. Note that a diret termination proof with

standardtehniquesisimpossiblesineaninstane ofthelastruleof Risself-

embedding.Inordertomakethisrulenon-self-embeddingitisessentialthatwe

label.ThisexplainswhyZantema'sversionofequationalsemantilabelling|

presentedin thenextsetion|willfailhere.

4 Semanti Labelling Cube

Theoriginalversionof equationalsemantilabellingdesribedin Zantema [24℄

ispresentedbelow.

Theorem4 ([24℄).LetR=E beanETRS overasignature F,AanF-algebra,

and`alabellingforAsuhthatfuntion symbolsourring inE areunlabelled.

If AisamodelofR=E thenterminationofR

lab

=E isequivalent totermination

of R=E. ut

In[24℄itisremarkedthattherestritionthatsymbolsinE areunlabelledis

essential.Corollary2,ofwhihTheorem4isanimmediateonsequene,shows

that this is nottrue. Zantema provides the non-terminating ETRS R=E with

R=f(x+y)+z !x+(y+z)g and E =fx+y y+xg, and themodel A

onsistingofthepositiveintegersN

+

withthefuntionsymbol+interpretedas

addition.Bylabelling+with thevalueofitsrstargument,weobtainR

lab

=

f(x+

i y)+

i+j

z!x+

i (y+

j

z)ji;j2N

+

gandE

lab

=fx+

i

yy+

j

xji;j2

N

+

g.Aordingto Corollary2thelabelledETRS R

lab

=E

lab

is notterminating

andindeedthere areinniterewritesequenes,e.g.

(x+

1 x)+

2

x!x+

1 (x+

1

x)(x+

1 x)+

2

x!

In [24℄ it is remarked that R

lab

=E 0

with E 0

= fx+

i

y ! y+

i

x j i 2 N

+ g is

terminating,sineitisompatible withthepolynomialinterpretationin whih

the funtion symbol +

i

is interpreted as addition plus i, for every i 2 N

+ .

However,E 0

isnot alabelledversionofE.

Thevariousversionsofequationalsemantilabellingpresentedabovedier

in three hoies:(1) theorder onthealgebraA(partialorder vs.quasi-order),

(2) the relation between the algebra A and the ETRS R=E (model vs. quasi-

model),and(3)thelabellingofthefuntion symbolsappearinginE (forbidden

vs.allowed).Thisnaturallygivesrisetotheubeofeightversionsofequational

semantilabelling possibilities shown in Figure 1.Everypossibility is given as

(8)

so ++denotestheversionofequationalsemantilabellingwithpartialorder,

quasi-model,and(possibly)labelledfuntionsymbolsinE.Alleightversionsof

equationalsemantilabellingaresound, i.e., termination ofthelabelled ETRS

implies termination of the original ETRS. The versions in whih termination

of the labelled ETRS is equivalent to termination of the original ETRS are

indiatedbyasurroundingbox.

++ +++

+ + +

+ ++

+

+++ Theorem1

+ + Theorem2

++ Theorem3

+ Corollary1(2)

Theorem4

Fig.1.Equationalsemantilabellingube.

Wepresentone moreversionof equationalsemantilabelling, stating that

the impliation of Theorem 1 beomes an equivalene in the speial ase that

E is variablepreserving (i.e., everyequationl r 2E hasthepropertythat l

and r have the samenumber of ourrenesof eah variable), the(strit part

of the) quasi-order%is well founded,and funtion symbolsourring in E are

unlabelled.Inotherwords,ifEisvariablepreserving(whihinpartiularistrue

for AC)and the quasi-order %is well foundedthen wean put a boxaround

++ in Figure 1. Before presenting the proof, we show the neessity of the

threeonditions.FirstonsidertheETRSR=E withR=?andE =ff(x;x)

xg where the signature ontainsa unary funtion symbolg in addition to the

funtion symbolf. LetAbethealgebraoverthearrierf0;1g with10and

operationsf

A

(x;y)=xandg

A

(x)=x.NotethatAisa(quasi-)modelofR=E.

Bylabellingg with the valueof its argument, we obtainthe ETRS R=E with

R=De=fg

1

(x)!g

0

(x)gandE=E.TheETRSR=Eistriviallyterminating,

but R =E admitsthefollowinginniterewritesequene:

g

1

(x)f(g

1 (x);g

1

(x))!f(g

0 (x);g

1

(x))f(g

0 (x);f(g

1 (x);g

1

(x)))!

Notethat E isnotvariablepreserving.Theneessityofthewell-foundednessof

the quasi-order% followsby onsidering theterminating TRS R=E with R=

ff(x)!g (x)gandE=?,thealgebraAoverthearrierZwithstandardorder

>and operationsf

A (x) =g

A

(x)=x,and thelabelling`

f

(x)=x.In thisase

wehaveR

lab

=ff

i

(x)!g (x)ji2ZgandDe=ff

i (x)!f

j

(x)ji>jg,soR

(9)

E mustbeunlabelledisjustiedbytheounterexamplefollowingTheorem1.

Theorem5. Let R=E be an ETRS over a signature F with E variable pre-

serving, (A;%) amonotone F-algebra with % well-founded, and ` a monotone

labelling for (A;%) suh that funtion symbols ourring in E areunlabelled. If

Aisaquasi-modelofR=E thenterminationofR=E isequivalenttotermination

of R=E.

Proof. First notethat R =E =(R

lab

[De )=(E[Eq)beausefuntion symbols

ourringinE areunlabelled.The\if"partisaonsequeneofTheorem1.For

the\only if"partweshowthat the ETRSDe=(E[Eq)is terminating.Fora

termt2T(F

lab

;V)let(t)denotethemultisetofalllabelsourringin t.The

followingfats arenotdiÆulttoshow:

{ ifs!

De

tthen(s)

mul (t),

{ ifs`a

Eq

tthen(s)

mul (t),

{ ifs`a

E

tthen(s)=(t).

Here

mul

denotesthemultisetextensionof([5℄)and

mul

denotesthemulti-

setextensionoftheequivalenerelation(whihoinideswiththeequivalene

relation assoiated with the multisetextension %

mul

of %, see e.g.[17, Deni-

tion5.6℄).ForthevalidityofthelastobservationitisessentialthatEisvariable

preservingandthatfuntionsymbolsourringin E areunlabelled. Fromthese

fatsandthewell-foundednessof%

mul

weobtaintheterminationofDe=(E[ Eq).

Now,ifR =E isnotterminatingthenitadmitsaninniterewritesequenewhih

ontains innitely many R

lab

-steps. Erasingall labels yields an innite R=E-

rewritesequene,ontraditingtheassumptionthatR=E is terminating. ut

5 Dummy Elimination for Equational Rewriting

Ferreira,Kesner,andPuel [7℄extendeddummyelimination[8℄toAC-rewriting

byompletelyremovingtheAC-axioms.Weshowthat theirresultiseasilyob-

tained in our equational semanti labelling framework. Our denition of

dummy (R) isdierentfromtheonein[7,8℄,buteasilyseentobeequivalent.

Denition3. Let R be a TRS over a signature F. Let e be a distinguished

funtion symbolin F of aritym>1andletbeafreshonstant.WewriteF

for(Fnfeg)[fg.Themappingap: T(F;V)!T(F

;V)isindutivelydened

as follows: ap(t)=t if t2V,ap(e(t

1

;:::;t

m

))=, andap(f(t

1

;:::;t

n ))=

f(ap(t

1

);:::;ap(t

n

))if f 6=e.Themapping dummy assignstoevery term in

T(F;V)asubset ofT(F

;V):

dummy (t)=fap(t)g[fap(s)js isanargumentofan esymbol intg:

Finally, wedene

dummy (R)=fap(l)!r 0

jl!r2Randr 0

2dummy (r) g:

(10)

havefewervariablesthanl.Inthatase,however,dummy (R)isnotterminating

andtheresultspresentedbelowholdvauously.FerreiraandZantema[8℄showed

that ifdummy (R)is terminatingthenRisterminating.Asimpleproofof this

fat using self-labelling, a speial ase of semanti labelling, an be found in

Middeldorpet al.[16℄.Twoextensionsofthis resulttoequationalrewritingare

known.In[6℄FerreirashowedthatterminationofR=E followsfromtermination

ofdummy (R)=EprovidedthatEisvariablepreservinganddoesnotontainthe

funtionsymbole.TheextensionpresentedinFerreiraetal.[7℄isstatedbelow.

Theorem6. LetR=E beanETRS withE=AC(e).If dummy (R)isterminat-

ingthen R=E isterminating.

Inotherwords,AC-terminationofRisreduedtoterminationofdummy (R).

Proof. We turn the set of terms T(F

;V) into an F-algebra A by dening

e

A (t

1

;:::;t

n

)=andf

A (t

1

;:::;t

n )=f(t

1

;:::;t

n

)forallother funtion sym-

bolsf 2Fandtermst

1

;:::;t

n 2T(F

;V).WeequipAwiththe(well-founded)

partialorder=!

dummy(R)

.OneanverifythatAismonotonewithrespetto

.Aneasyindutionproofshowsthat[℄(t)=ap(t)foralltermst2T(F;V).

Weshowthat Aisaquasi-modelofR=E.Let:V !T(F

;V)beanarbitrary

assignmentandletl!r2R.Wehave[℄(l)=ap(l)and[℄(r)=ap(r)by

theaboveproperty.Therewriteruleap(l)!ap(r) belongsto dummy (R)by

denition andhene[℄(l)[℄(r).Forthetwoequationslr2E welearly

have[℄(l)==[℄(r).HeneAisaquasi-modelofR=E.

Denethe(monotone)labelling`asfollows:`

f

=f

A

forallfuntionsymbols

f 2F.AordingtoTheorem3itissuÆienttoshowthatR =E

lab

isterminating.

Dene apreedene =on F

lab

asfollows: f

s

=g

t

if andonly ifs ([B) +

t,

whereBisthepropersupertermrelation.Notethat=inheritswell-foundedness

from.WelaimthatRispreedeneterminating withrespetto=.Rewrite

rulesinDeareoftheformf

s (x

1

;:::;x

n )!f

t (x

1

;:::;x

n

)withstandthus

f

s

=f

t

.ForrulesinR

lab

wemakeuseofthefollowingproperty:

iftErthenap(t)Er 0

forsometermr 0

2dummy (r). ()

Nowletl!r2R

lab

.Bydenitionthereexistanassignment:V !T(F

;V)

and arewrite rule l 0

! r 0

2 R suh that l = lab

(l

0

) and r = lab

(r

0

). The

labeloftherootsymboloflis[℄(l 0

)=ap(l 0

).Letsbethelabelofafuntion

symbol in r. By onstrution s = [℄(t) = ap(t) for some subterm t of r 0

.

Aording to (1)wehaveap(t) Er 0 0

forsomer 0 0

2dummy (r 0

).By denition

ap(l 0

) ! r 0 0

2 dummy(R) and hene ap(l 0

) r 0 0

D ap(t) = s. Conse-

quently,root(l)=f foreveryfuntionsymbolf inr.Thisompletestheproofof

preedeneterminationofR .SineE

lab

=AC(e

),terminationofR =E

lab follows

fromLemma 1. ut

Thereaderisinvitedtoompareourproofwiththeonein[7℄.Fortheabove

simpleproofweindeed neededournewpowerfulversionofequationalsemanti

labelling,i.e.,Zantema'srestritedversion(Theorem4)wouldnothaveworked.

(11)

dummyeliminationpresentedin[6℄analsobesimpliedbyequationalsemanti

labelling.Thisturnsoutnottobethease.Onereasonisthatfuntionsymbols

ofEthatalsoappearinRwillbelabelled,ausingE

lab

(andE)tobeessentially

dierent from E. In partiular, if E onsists of AC-axioms then E

lab

ontains

non-AC axioms and hene AC-ompatible orders are not appliable to R=E.

Moreover,Lemma1doesnotextendtoarbitraryESsEanditisunlearhowto

hangethedenition ofpreedenetermination suhthat itdoes.

Reently, Nakamuraand Toyama[18℄ improved dummy elimination by re-

stritingr 0

inthedenition ofdummy (R)totermsin(dummy(r)nT(F

C

;V))[

fap(r)g with F

C

denoting the onstrutors of R. In other words, elements

of dummy (r)nfap(r)g that do not ontain a dened funtion symbol need

not be onsidered when forming the right-hand sides of the rewrite rules in

dummy (R). For example, the TRS R = ff(a) ! f(b);b ! e(a)g is trans-

formedintothenon-terminatingTRSdummy(R)=ff(a)!f(b);b!;b!ag

by dummyelimination whereas theabove improvementyields theterminating

TRS ff(a) ! f(b);b ! g. Aoto 1

suggested that a further improvement is

possiblebystripping otheoutermostonstrutor ontextof everyelementin

dummy (r)nfap(r)g. ForR=ff(a(x))!f(b);b!e(a(f()))gthiswouldyield

theterminatingTRSff(a(x))!f(b);b!;b!f()gwhereasthetransforma-

tionof [18℄produesdummy (R) =ff(a(x))!f(b);b!;b!a(f())g,whih

islearlynotterminating.

Theseideasareeasily inorporatedinourdenition ofdummy elimination.

HereF

D

=FnF

C

denotesthedened symbolsofR.

Denition4. Let Rbe aTRS over asignature F. The mapping dummy 0

as-

signs toeveryterm inT(F;V)asubset ofT(F

;V),asfollows:

dummy 0

(t)=ap(t)[

ap(s)

sisamaximalsubterm of anargument

ofein tsuhthat root(s)2F

D nfeg

:

Wedene

dummy 0

(R)=fap(l)!r 0

jl!r2Randr 0

2dummy 0

(r)g:

Theorem7. Let R=E be an ETRS with E =AC(e). If dummy 0

(R) is termi-

natingthen R=E isterminating.

Proof. VerysimilartotheproofofTheorem6.Thediereneisthatwedonot

label thefuntion symbolsin F

C

. Inorderto obtainpreedenetermination of

Rweextendthepreedene=onF

lab byf

t

=gforeveryf 2F

D

,t2T(F

;V),

andg2F

C

.Inaddition,() isreplaedbythefollowingproperty:

iftErandroot(t)2F

D

thenap(t)Er 0

forsometermr 0

2dummy 0

(r).

Taking these hanges into onsideration, termination of R=E is obtainedasin

theproofofTheorem6. ut

1

Remarkmadeatthe14thJapaneseTermRewritingMeeting,NaraInstituteofSi-

eneandTehnology,Marh15{16,1999.

(12)

Nextweshowthatourresultsonequationalsemantilabellinganalsobeused

to extend the distribution elimination transformation of [23℄ to the AC ase.

Again, for that purpose we need our powerful version of equational semanti

labelling, i.e., Theorem4doesnot suÆe.LetRbeaTRS overasignature F

and let e 2 F be a designated funtion symbol whose arity is at least one. A

rewriterulel!r2Risalled adistribution rule foreifl=C[e(x

1

;:::;x

m )℄

and r = e(C[x

1

℄;:::;C[x

m

℄) for some non-empty ontext C in whih e does

not ourand pairwise dierent variables x

1

;:::;x

m

. Distribution elimination

isatehniquethattransformsRbyeliminating alldistributionrulesfor eand

removingthesymbolefromtheright-handsidesoftheotherrules.LetF

distr

=

F nfeg. We indutively dene amapping distr that assigns to everyterm in

T(F;V)anon-emptysubsetofT(F

distr

;V),asfollows:

distr(t)= 8

>

>

>

<

>

>

>

:

ftg ift2V;

m

[

i=1 distr(t

i

) ift=e(t

1

;:::;t

m );

ff(s

1

;:::;s

n )js

i

2distr(t

i

)g ift=f(t

1

;:::;t

n

)withf 6=e:

Itisextendedtorewritesystemsasfollows:

distr(R)=fl!r 0

jl!r2Risnodistributionrule foreandr 0

2distr(r) g:

A rewrite system is alled right-linear if no right-hand side of arule ontains

multiple ourrenesofthesamevariable.Thefollowingtheoremextends Zan-

tema'ssoundnessresultfordistributionelimination totheACase.

Theorem8. LetR=E bean ETRSwith E =AC(e) suhthat edoesnot our

in the left-handsides of rewrite rules ofR thatarenotdistribution rulesfor e.

If distr(R) isterminatingandright-linear thenR=E isterminating.

Proof. We turn the set of nite non-empty multisets over T(F

distr

;V) into an

F-algebraAbydening

f

A (M

1

;:::;M

n )=

(

ff(t

1

;:::;t

n )jt

i 2M

i

forall16i6ng iff 6=e;

M

1 [M

2

iff =e

for all funtion symbols f 2 F and nite non-empty multisets M

1

;:::;M

n of

terms in T(F

distr

;V). (Notethat n=2if f = e.)We equip Awith the (well-

founded)partial order =

=

mul

where =! +

distr(R)

. Oneeasily shows that

(A;) is amonotone F-algebra. It an be shown (f. the nontrivial proof of

Theorem12in [23℄)that

1. l=

A

rforeverydistributionrule l!r2R,

2. l

A

rforeveryotherrulel!r2R.

(13)

e

A

weobtaine(x;y)=

A

e(y;x)and e(e(x;y);z)=

A

e(x;e(y;z)).Hene(A;)

isaquasi-modelofR=E.

Denethe(monotone)labelling`asfollows:`

f

=f

A

forallfuntionsymbols

f 6=e.AordingtoTheorem3itissuÆienttoshowthatR=E

lab

isterminating.

Dene the preedene =on F

lab

asfollows:f =g if and only ifeither f 6= e

andg=eorf =f 0

M

andg=g 0

N

withM(([B) +

)

mul

N.Notethat=iswell

founded.WelaimthatRispreedeneterminatingwithrespetto=.Rewrite

rulesin De areof theform f

M (x

1

;:::;x

n )!f

N (x

1

;:::;x

n

)withM

mul N

and thus f

M

= f

N

. Forrules in R

lab

we make use of the following property,

whihisnotdiÆultto prove:

3. iftCrthen[℄(r)B

mul

[℄(t)foreveryassignment.

Nowletl!r2R

lab

.Bydenition thereisanassignment:V !T(F

distr

;V)

and a rewriterule l 0

!r 0

2 R suh that l=lab

(l

0

) and r =lab

(r

0

). Sine

root(l 0

) 6=e, the label of the root symbolof l is [℄(l 0

). If e ours in r 0

then

root(l) = e by denition. Let M be the label of a funtion symbol in r. By

onstrutionM=[℄(t)forsomesubtermtofr 0

.Wedistinguishtwoases.First

onsidertheasethatl 0

!r 0

2Risadistributionrule.Beauseroot(r 0

)=e,tis

apropersubtermofr 0

.Property(3)yields[℄(r 0

)B

mul

[℄(t).Wehave[℄(l 0

)=

[℄(r 0

)by(1). Hene[℄(l 0

)(([B) +

)

mul

M asrequired.Next letl 0

!r 0

2R

beanon-distribution rule.From(3) we inferthat [℄(r 0

)D

mul

[℄(t) (if t =r 0

then[℄(r 0

)=[℄(t)holds).Aordingto(2)wehave[℄(l 0

)

mul [℄(r

0

).Hene

also in this asewe obtain[℄(l 0

)(([B) +

)

mul

M. This ompletes the proof

ofpreedeneterminationofR .SineE

lab

=E=AC(e), terminationofR=E

lab

followsfrom Lemma1. ut

Nextweshowthat theright-linearityrequirementin thepreeding theorem

an be dropped if terminationis strengthened to total termination. A TRS is

alled totally terminatingifit is ompatible with awell-founded monotoneal-

gebra in whih the underlying order is total. Sine adding a onstant to the

signature does not aet total termination, from now on we assume that the

set ofgroundterms isnon-empty. Totaltermination isequivalent (see[9,The-

orem13℄)toompatibilitywithawell-foundedmonotonetotalorderonground

terms.Here,\ompatibility" meansthat l r holds forallrules l!r2R

and all substitutions suh that l is a ground term. It should be noted that

standardterminationtehniqueslikepolynomialinterpretations,reursivepath

order,and Knuth-Bendixorderallyieldtotaltermination.

Theorem9. LetR=E bean ETRSwith E =AC(e) suhthat edoesnot our

in the left-handsides of rewrite rules ofR thatarenotdistribution rulesfor e.

If distr(R) istotally terminatingthenR=E isterminating.

Proof. There is a well-founded monotone total order on T(F

distr

) whih is

ompatible with distr(R). We turn T(F

distr

) into an F-algebra A bydening

f

A (t

1

;:::;t

n ) =f(t

1

;:::;t

n

)if f 6= eand f

A (t

1

;:::;t

n

)=maxft

1

;t

2

gif f =

(14)

1 n distr

the (well-founded) partial order . One an show that (A;) is a monotone

F-algebra. It is not diÆult to verify that l =

A

r for every distribution rule

l!r2Randthetwoequationslr2E.An easyindutionproofshowsthat

1. foralltermsr2T(F;V)andassignmentsthereexistsaterms2distr(r)

suhthat [℄(r)=[℄(s).

Using this property, weobtain (by indution on r)that l

A

r for everynon-

distributionrulel!r2R.Hene(A;)isaquasi-modelofR=E.

Denethe(monotone)labelling`asfollows:`

f

=f

A

forallfuntionsymbols

f 6=e.AordingtoTheorem3itissuÆienttoshowthatR=E

lab

isterminating.

Denethepreedene=onF

lab

asfollows:f =gifandonlyifeitherf 6=eand

g=eorf =f 0

s

andg=g 0

t

withs([B) +

t.Notethat=iswellfounded.The

followingpropertyisnotdiÆulttoprove:

2. iftCrthen[℄(r)D[℄(t)foreveryassignment.

However,[℄(r)B[℄(t) neednot hold (onsidere.g.t Ce(t;t)) andasa on-

sequene the labelled distribution rules in R are not preedene terminating

withrespetto=.Nevertheless,thepreedeneterminationofthelabellednon-

distributionrulesinR

lab

aswellastherulesinDeisobtainedasintheproofof

Theorem8.HeneanyAC-ompatiblereursivepathorder= AC

rpo

induedbythe

preedene=thatisdenedontermswithvariables(f.theproofofLemma1)

will orientthese rulesfrom leftto right.Letl=C[e(x;y)℄!e(C[x℄;C[y℄)=r

beadistributionruleinRandletbeanarbitraryassignment.Welaimthat

lab

(l)=

AC

rpo lab

(r). SineC 6=,root(lab

(l))=e=root(lab

(r))bydeni-

tion.ItsuÆestoshowthatlab

(l)=

AC

rpo lab

(C[x℄)andlab

(l)=

AC

rpo lab

(C[y℄).

Wehave lab

(C[x℄)=C

1 [x℄, lab

(C[y℄)=C

2

[y℄ forsomelabelled ontextsC

1

andC

2

,andlab

(l)=C

1

[e(x;y)℄if(x)(y)andlab

(l)=C

2

[e(x;y)℄other-

wise.Weonsideronlythease(x)(y)here.WehaveC

1

[e(x;y)℄= AC

rpo C

1 [x℄

by the subterm property of = AC

rpo

. If (x) = (y) then C

2

[y℄ = C

1 [y℄ and

thus also C

1

[e(x;y)℄ = AC

rpo C

2

[y℄ by the subterm property. If (x) (y) then

C

1

[e(x;y)℄ = AC

rpo C

2

[y℄ beause the rewrite rule C

1

[e(x;y)℄ ! C

2

[y℄ is pree-

dene terminating. This anbe seen as follows. The label of the root symbol

of C

1

[e(x;y)℄ is [℄(C[x℄). Let q be the label of a funtion symbol in C

2 [y℄.

Byonstrution q =[℄(t) for somesubterm t of C[y℄. We obtain[℄(C[y℄)D

[℄(t)=q from (2). Themonotoniity ofAyields [℄(C[x℄)[℄(C[y℄).Hene

[℄(C[x℄)([B) +

q asdesired.WeonludethatR=E

lab

isterminating.The-

orem3yieldstheterminationofR=E. ut

Theabovetheorem extends asimilar result forTRSs in Zantema [23℄.A-

tually, in [23℄ it is shown that R is totally terminating if distr(R) is totally

terminating. Our semanti labelling proof does not give total termination of

R=E. Nevertheless,themoreompliatedproof in[23℄ anbeextended todeal

withAC(e),soR=E isin fattotallyterminating.

InMiddeldorp et al. [16℄ it is shown that forE = ? theright-linearityre-

quirementinTheorem8anbedroppediftherearenodistribution rulesinR.

(15)

thatthesemantilabellingproofin[16℄doesnotextendtoR=E beausethein-

terpretationof edened there,anarbitraryprojetionfuntion,isinonsistent

withtheommutativityofe.

Aknowledgements. We are grateful to the anonymous referees for their areful

reading. Aart Middeldorp is partially supported by the Grant-in-Aid for Sienti

ResearhC(2)11680338oftheMinistryofEduation, Siene,SportsandCultureof

Japan.JurgenGieslissupportedbytheDFGundergrantGI274/4-1 .

Referenes

1. T. Arts and J. Giesl, Termination of Term Rewriting Using DependenyPairs,

TheoretialComputerSiene236,pp.133{178,2000.

2. A.BenCherifaandP.Lesanne,TerminationofRewritingSystemsbyPolynomial

Interpretationsand itsImplementation,SieneofComputerProgramming9(2),

pp.137{159,1987.

3. F. BaaderandT. Nipkow,Term Rewriting andAll That,CambridgeUniversity

Press, 1998.

4. N. Dershowitz, Termination of Rewriting, Journal of Symboli Computation 3,

pp.69{116,1987.

5. N.DershowitzandZ.Manna,ProvingTerminationwithMultisetOrderings,Com-

muniationsoftheACM22(8),pp.465{476,1979.

6. M.C.F. Ferreira, Dummy Elimination in Equational Rewriting, Pro. 7th RTA,

LNCS1103,pp.78{92, 1996.

7. M.C.F. Ferreira, D.Kesner, andL. Puel,Reduing AC-Termination toTermina-

tion,Pro.23rdMFCS,LNCS1450,pp.239{247,1998.

8. M.C.F.FerreiraandH.Zantema,DummyElimination:MakingTerminationEas-

ier,Pro.10thFCT,LNCS965,pp.243{252,1995.

9. M.C.F.FerreiraandH.Zantema,TotalTerminationofTermRewriting,Appliable

AlgebrainEngineering,CommuniationandComputing7,pp.133{162,1996.

10. A.Geser,RelativeTermination,Ph.D.thesis,UniversitatPassau,1990.

11. J.-P.Jouannaud and M. Mu~noz, Termination of aSet ofRules Modulo aSet of

Equations,Pro.7thCADE,LNCS170,pp.175{193,1984.

12. D.KapurandG.Sivakumar,A Total,GroundPathOrderingfor ProvingTermi-

nationofAC-RewriteSystems,Pro.8thRTA,LNCS1232,pp.142{155,1997.

13. D.Kapur,G.Sivakumar,andH.Zhang,ANew MethodforProvingTermination

ofAC-RewriteSystems,Pro.10thFSTTCS,LNCS472,pp.133{148,1990.

14. C.MarheandX.Urbain,TerminationofAssoiative-CommutativeRewritingby

DependenyPairs, Pro.9thRTA,LNCS1379,pp.241{255,1998.

15. A.MiddeldorpandH.Ohsaki,TypeIntrodutionforEquationalRewriting,Ata

Informatia,2000.Toappear.

16. A. Middeldorp, H. Ohsaki, and H.Zantema, TransformingTermination by Self-

Labelling,Pro.13thCADE,LNAI1104, pp.373{387,1996.

17. A.Middeldorp,H.Zantema,SimpleTerminationofRewriteSystems,Theoretial

ComputerSiene175,pp.127{158,1997.

18. M.NakamuraandY.Toyama,OnProvingTerminationbyGeneralDummyElim-

ination, Tehnialreportof IEICE, COMP 98-58 (1998-11), pp. 57{64, 1998. In

Japanese.

(16)

1999.

20. A.RubioandR.Nieuwenhuis,ATotalAC-CompatibleOrderingBasedonRPO,

TheoretialComputerSiene142,pp.209{227,1995.

21. J. Steinbah,Termination of Rewriting:Extensions, Comparison and Automati

GenerationofSimpliationOrderings,Ph.D.thesis,Univ.Kaiserslautern,1994.

22. Y.Toyama,CounterexamplestoTerminationfortheDiretSumofTermRewriting

Systems,InformationProessingLetters25,pp.141{143,1987.

23. H.Zantema,TerminationofTermRewriting:InterpretationandTypeElimination,

JournalofSymboliComputation17,pp.23{50,1994.

24. H.Zantema,TerminationofTermRewriting bySemantiLabelling,Fundamenta

Informatiae24,pp.89{105,1995.

Abbildung

Fig. 1. Equational semanti labelling ube.

Referenzen

ÄHNLICHE DOKUMENTE

Standards, Sustainability Criteria, Human Rights, Trade Flows, Tropical Deforestation... Main Text: In the last 50 years, the real monetary value of international trade has grown more

The thermodynamic equilibrium constant

chemical apparent equilibrium constant on molality- base of enolase reaction.. mol∙(kg

Those lines are shown in green and red (obtained at the position of the red vertical line) lines on the right side of the maps. The violet line marks the cross section of the

significant dechlorination activity of nZVI pure (+50 ppm Ni) was observed, which was in the same order of magnitude as for nZVI impure. Based on this finding, the

Synthesising valuation methods, being dependent on input from other methods, seem to be suitable to elicit value types in both the instrumental and relational value dimensions, as

The results of our longitudinal analyses in 631 children from the city of Leipzig, Germany, show that early life residence in places with many trees and allergenic trees

Figure 22.3: Consumption of TDA measured via HPLC during the cultivation of an isolated strain on TDA as sole source of carbon and energy in mineral medium (filled squares) and in