• Keine Ergebnisse gefunden

The Correlated Environments Depress Entanglement Decoherence in the Dimer System

N/A
N/A
Protected

Academic year: 2022

Aktie "The Correlated Environments Depress Entanglement Decoherence in the Dimer System"

Copied!
7
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

The Correlated Environments Depress Entanglement Decoherence in the Dimer System

Qin-Sheng Zhua, Chuan-Ji Fua, and Wei Laib

aDepartment of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P.R.China

bExperimental Middle School of Chengdu Economic and Technology Development Zone, Chengdu 610054, China

Reprint requests to Q.-S. Z.; E-mail:zhuqinsheng@gmail.com Z. Naturforsch.68a,272 – 278 (2013) / DOI: 10.5560/ZNA.2012-0111

Received August 13, 2012 / revised October 7, 2012 / published online January 23, 2013

In this work, the decoherence properties of two independent dimer systems coupled to two corre- lated Fermi-spin environments is investigated under the non-Markovian condition. We demonstrate that the correlated spin bath can effectively depress the entanglement decoherence, and a steady en- tanglement can be achieved when the coupling parameterqexceeds a critical value. This result shows a possible method of the entanglement preservation in decohering environments.

Key words:Decoherence; Entanglement; Quantum Noise.

PACS numbers:03.65.Yz; 03.67.Bg; 42.50.Lc; 03.65.Ud 1. Introduction

In a realistic physical system, the decoherence phe- nomena of the entanglement arising from the in- evitable interaction between the environment and sys- tems always exist and play a coherence-destructive role [1,2]. Hence, how to depress the decoherence and how to instrumentally keep the system entangled under environmental noise is of paramount relevance for a number of applications in modern physics, espe- cially the quantum information and quantum computa- tion. Some works related to the non-equilibrium pro- cess have been carried out on this aspect in the frame- work of a non-Markovian dynamics, including sudden death and sudden birth of entanglement [3–8], non- Markovianity-assisted steady state entanglement [9], measure for non-Markovian behaviour of quantum processes [10], non-Markovian entanglement dynam- ics in the presence of system–bath coherence [11], and so on [12–22]. But these works were mainly restricted to the case of the independent environments. On the other hand, entanglement preservation for the case of correlated environments is still an open problem.

In the present work, we demonstrate that the de- coherence behaviour of a dimer system can be effec- tively depressed by increasing the coupling parameter qbetween the environments and that a steady entangle-

ment can be obtained when the parameterq exceeds a critical value. This result is of particular interest in understanding the mechanisms that depress the entan- glement decoherence and assist entanglement preser- vation in condensed matter and biomolecular systems, where non-Markovian dephasing is a dominant noise source [14,23–28].

2. Formulation of the Problem

We consider a two-qubit system with no mutual in- teraction. Every qubit is made of the simplest elec- tronic energy transfer system which can be formed by a dimer system (pseudo-spin-12 particles). The Hamil- tonian of two independent dimer systems is given by [9,29,30]

Hd=Hd1+Hd2 (1)

whereHd11|1ih1|+ε2|2ih2|+J1(|1ih2|+|2ih1|) andHd23|3ih3|+ε4|4ih4|+J2(|3ih4|+|4ih3|)de- note the Hamiltonian of two independent dimer sys- tems, respectively.εiand|ii(i=1,2,3,4)are the en- ergy levels and the energy states of the dimer system.

J1andJ2are the amplitude of transition.

After some calculations, the eigenvalues and eigen- vectors of Hd can be obtained in the absence of the environment:

© 2013 Verlag der Zeitschrift f¨ur Naturforschung, T¨ubingen·http://znaturforsch.com

(2)

E1=∆1+∆3+ q

22+J12+ q

42+J22, Ψ1=

2+q

22+J12 J1

|1i+|2i

4+q

42+J22 J2

|3i+|4i

,

E2=∆1+∆3+ q

22+J12−q

42+J22, Ψ2=

2+q

22+J12 J1

|1i+|2i

4−q

42+J22 J2

|3i+|4i

,

E3=∆1+∆3− q

22+J12+ q

42+J22, Ψ3=

2−q

22+J12 J1

|1i+|2i

4+q

42+J22 J2

|3i+|4i

,

E4=∆1+∆3− q

22+J12− q

42+J22, Ψ4=

2−q

22+J12

J1 |1i+|2i

4−q

42+J22

J2 |3i+|4i

, (2)

where∆1=ε12 2,∆2=ε1−ε2 2,∆3=ε32 4, and∆4=

ε3−ε4 2 .

The aim of this paper is to show, in general condi- tionsε16=ε2andε36=ε4, the dynamic evolution of the entanglement for the two dimers in contact with the same two spin environments. The Hamiltonian of the total system has the following form [5,9,29,30]:

H=Hd+

i=1,2

HBi+Hd1B1+Hd1B2+Hd2B1+Hd2B2

+q

N1

k=1 N2

k0=1

σk,1z 2

σkz0,2 2 .

(3)

Here, each environment Bi consists ofNi particles (i=1,2)with spin 12:

HBii

Ni k=1

σk,iz

2 , (4)

where σk,iz are the Pauli matrices, and αi is the fre- quency ofσk,iz .

Because a dimer system is a system made of two subsystems (for example, two spin-like particles or two qubits) by the typically bound to each other, we con- sider two subsystems (every subsystem is a pseudo- spin-12 particles) in different environments [31], re- spectively. The interaction between the subsystem and the environment can be described byγσ2zNk=1i σ

k,iz

2 [5]

(whereγis the coupling constant, andσzis the pseudo- spin Pauli operator which describes the pseudo-spin-12 particles). Here we only consider the interaction be- tween the upper level and the environment [9,29–31],

so the interaction between the dimer and the environ- ment is described by [9,29–31]

Hd1B1=

N1 k=1

γ1|1ih1|σk,1z

2 , Hd1B2=

N2 k=1

γ2|2ih2|σk,2z 2 , Hd2B1=

N1 k=1

γ3|3ih3|σk,1z

2 , Hd2B2=

N2 k=1

γ4|4ih4|σk,2z 2 .

(5)

The last termqNk=11Nk02=1 σk,1z

2 σkz0,2

2 of (3) describes an Ising-type correlation between the environments with strengthq. The casesq=0 and q6=0 describe independent and correlated spin bath, respectively.

In order to obtain the exact solution of the sys- tem, we define collective spin operatorsSzi=∑Nk=1i σ

k,i z

2 . Thus, the total Hamiltonian can be written as

H=Hd0

1+Hd0

2+

i=1,2

αiSzi+qSz1Sz2,

Hd0

1= (ε11Sz1)|1ih1|+ (ε22S2z)|2ih2|

+J1(|1ih2|+|2ih1|), Hd0

2= (ε33Sz1)|3ih3|+ (ε44S2z)|4ih4|

+J2(|3ih4|+|4ih3|).

(6)

We introduce an orthonormal basis in the bath Hilbert spaceHBconsisting of states|j,mi[5]. These states are defined as eigenstates ofSzand ofS2and

S2|j,mi=j(j+1)|j,mi,

Sz|j,mi=m|j,mi, S2=S2x+S2y+S2z (7) withj=0, . . . ,N2,m=j, . . . ,−j.

(3)

The formal solution of the von Neumann equation d

dtρ(t) =Lρ(t) =−i[H,ρ(t)] (8) can then be written as

ρ(t) =eLtρ(0), (9) whereρ(t)denotes the density matrix of the total sys- tem.

Our main goal is to derive the dynamics of the re- duced density matrixρd(t).

ρd(t) =TrB(eLtρ(0)) (10) where TrB denotes the partial trace taken over the Hilbert space of the spin bath.

For the initial stateρ(0) =ρd(0)⊗ρB(0), the den- sity matrixρd(t)of the dimer system is

ρd(t) =TrB

U(t)ρd(0)ρB(0)U(t)

(11)

=1 Z

N1/2

j1=0 j1

m1=−j1 N2/2

j2=0 j2

m2=−j2

ν(N1,J1)ν(N2,J2) eβ α1m1eβ α2m2eβqm1m2

×ADA

Here, the bath is given as the canonical distribution

ρB(0) =1 ZeSz1Sz2

2

i=1

e−β αiSzi (12)

withβ =K1

BT (KBis Boltzmann constant,T is temper- ature) and the initial conditionρd(0) =AGA, where A,D, and Gdenote the matrices which are given in theAppendix.

The partition functionZof the bath is

Z=

N1/2

j1=0 j1

m1=−j1 N2/2

j2=0 j2

m2=−j2

ν(N1,J1)ν(N2,J2) eβ α1m1eβ α2m2eβqm1m2 , (13) where ν(Ni,Ji) denotes the degeneracy of the spin bath [5,32,33].

To quantify the entanglement, we use the Woot- ters concurrence [34], defined asC(ρ) =max{0,λ1− λ2−λ3−λ4}, whereλl(l =1,2,3,4)are the square roots of the eigenvalues of the matrixR1/2y⊗ σyy⊗σy1/2in decrease order, andρis the den- sity matrix expressed in the standard basis| ↑↑i,| ↑↓i,

| ↓↑i,| ↓↓i.σyis the normal Pauli matrix, and the as- terisk indicates complex conjugation.

3. Results

After some calculation, we can obtain the evolu- tion of the entanglement states, as shown in Figure1 and Figure2.

In Figure1, we show the entanglement dynamics of two qubits for the initial stateA(disentanglement state) with parameter q and time t. From Figure1, for the smaller parameterq, the entanglement does not exhibit sudden birth. When we adjust the coupling strength be- tween the spin baths, namely the larger parameterq, the entanglement appears. The time evolution of en- tanglement presents the phenomenon of sudden birth and sudden death and shows the non-periodic oscilla- tion evolution.

In Figure2, it is shown that the entanglement dy- namics of two qubits for the entanglement initial state changes with parameterqand timet. The time evolu- tion of entanglement presents the phenomenon of sud- den birth and sudden death even if the initial state is the entanglement state, and shows the oscillation evo- lution. The most important and interesting nature is ef- fectively depressing the entanglement decoherence by increasing the parameterq. Especially, for the smaller concurrence [34] C(ρ) of the initial state, we must use largerqto depress the decoherence. The time evo-

0 2

4 6

8 10

0 1 2 3 4 5 60 0.02 0.04 0.06 0.08 0.1

q t

C

Fig. 1 (colour online). Change of the concurrence for the initial state φd(0) =

2 4 |1i|3i+

2 4 |2i|3i+

6 4 |1i|4i+

6

4 |2i|4i. The parameters are:γ1=0.2 ps−12=0.3 ps−1, γ3=0.4 ps−14=0.15 ps−1,J1=10 ps−1,J2=12 ps−1, N1 =22, N2 =20, α1 =250 ps−1, α2 =10 ps−1, ∆1 = 20 ps−1,∆2=10 ps−1,∆3=22 ps−1,∆4=12 ps−1, and the temperature of the baths is 300 K.

(4)

0 2 4 6 8 10 0

2 4 60 0.02 0.04 0.06 0.08

q t

C

0 2 4 6 8 10

0 2 4 60 0.2 0.4 0.6 0.8

q t

C

(a)

(b)

Fig. 2 (colour online). Change of the concurrence for the entanglement initial state. In (a), the initial state φd(0) = 0.5|1i|3i+0.48|2i|3i+0.49|1i|4i+0.53|2i|4i. In (b), the initial state φd(0) =0.4|1i|3i+0.2|2i|3i+0.25|1i|4i+ 0.86|2i|4i. The parameters are:γ1=0.2 ps−12=0.3 ps−1, γ3=0.4 ps−14=0.15 ps−1,J1=10 ps−1,J2=12 ps−1, N1 =22, N2 =20, α1= 250 ps−1, α2 =10 ps−1, ∆1= 20 ps−1,∆2=10 ps−1,∆3=22 ps−1,∆4=12 ps−1, and the temperature of the baths is 300 K.

lution of the behaviour of the concurrence gradually changes from non-periodic evolution to periodic evo- lution and the amplitude of the concurrence becomes smaller. Finally, the fluctuation of the concurrence dis- appears when the coupling parameterqexceeds some value which depends on the initial state. For the initial states in Figure2, the threshold value of the coupling parameter q is about 5. This means that we can ob- tain a steady entanglement by adjusting the coupling strength between the environments. This nature may provide promising prospect for the study of quantum information, the design of quantum devices, and en- tanglement preservation.

From the view of the non-equilibrium statistical physics, we may understand this novel result, namely the information transfer or the entropy transfer be- tween the dimer system and the environments. Firstly, the coupling of the environments led to the exchange of information (entropy) between the environments, and this exchange has been gradually strengthened with in-

creasingq. Secondly, under the non-Markovian condi- tion, the interaction between each single dimer system and its own spin bath not only makes the information (entropy) of the dimer system flow into the spin bath, but also arouses the feedback of the information (en- tropy) from the spin bath to the dimer system [4,6,8], showing sudden birth and sudden death phenomena.

Finally, based on the above two reasons, there is a mu- tual influence between the information (entropy) of the two dimer systems, and this mutual influence strength- ens the coherence of the dimer systems with increas- ingq. Especially, for the initial state of entanglement, a steady entanglement can be obtained when the pa- rameterqexceeds some value depending on the initial state.

Further, we study an interesting special case, namely all the environments with zero temperature. Under this condition, all the spin baths will be in the ground states, and the ground states of the spin baths have the follow- ing forms:

ψ1B(0)

=

N1 2 ,−N1

2

N2 2 ,−N2

2

,

forq<q0 ψ2B(0)

=

N1 2 ,−N1

2

N2 2 ,N2

2

,

forq>q012

ψ3B(0)

=

N1 2 ,N1

2

N2 2 ,−N2

2

,

forq>q012 q0=2 min

α1

N2

2

N1

.

(14)

In the case of degeneracy of the parameters, for ex- ample,q0=qorα12, the ground state is the linear combination of|ψ1B(0)i,|ψ2B(0)i, and|ψ3B(0)i.

Considering the reservoirsHBi commuting withHd, Hd1Bi, and Hd2Bi, the states of the system will have the following form for the random initial condition φd(0) =a13|1i|3i+a23|2i|3i+a14|1i|4i+a24|2i|4i (satisfy|a13|2+|a23|2+|a14|2+|a24|2=1):

Total(t)i=e−iΘt

k=3,4

i=1,2;`=1,2,3

fik(t)|ii|ki ⊗ |ψ`B(0)i, (15)

whereΘ =hψ`B(0)|α1S1z2S2z+qSz1Sz2`B(0)i, and the index` change according to the value ofq0. The

fik(t)are given in theAppendix.

(5)

After we trace out the degrees of freedom of the spin bath, the dynamic evolution of the system is obtained.

Using the definition of concurrenceC(ρ)[34], we can obtain the following expression about concurrence and further study the properties of the entanglement:

C(TrE(|ψTotal(t)i)hψTotal(t)|)

=2|a13a24a14a23|. (16) From above equation, we know that the concur- rence of the random initial states do not change with time under zero temperature. It can be understood from the view of the non-equilibrium statistical physics that the information or the entropy is transfered between the dimer system and the environments. For non- Markovian dynamics, the action of the environments do not make the information (entropy) of the dimer system flow into the environments, and the changing of the environments always feedbacks some informa- tion (entropy) to the dimer system. However, for zero temperature, because the environments do not change, there does not exist an information (entropy) transfer between the dimer system and the environments.

4. Conclusions

The possible relevance of the Fermi-spin environ- ment to the entanglement has been investigated. For the initial state of entanglement or disentanglement, we show that the correlations between the spin baths with coupling strength parameterqimpact on the evolution of the entanglement. Especially, for the entangling ini- tial state, we can effectively depress the entanglement decoherence by increasing the value of the parameter q, and a steady entanglement can be obtained whenq exceeds the critical value. This means that we can real- ize the preservation and control of entanglement by ad- justing the coupling strength between the environments in the dimer system. The results of this paper may be practically useful for further study of the controllable quantum device, entanglement preservation [17–22], the quantum information of the biological systems, and more complex environmental models.

Acknowledgements

The authors are grateful to Prof. S. J. Wang, Prof.

X. Y. Kuang, and Prof. S. Y. Wu for valuable sugges- tions. The work was supported by the Fundamental Re- search Funds for the Central Universities under Grants No. ZYGX2011J046.

Appendix

In this appendix, we did not only give the parameters A,D,G, and fik(t)in (11) and (15), respectively, but also the main process about the parameters calculation method is been given. Considering the commutation relations ofHd0

1,Hd0

2,∑i=1,2αiSzi, andqSz1Sz2, the main process has the following steps.

The eigenvalues ofHd0 1+Hd0

2:

1,p=∆1+z1,p, ∆2,p=∆2+z2,p,

3,p=∆3+z3,p, ∆4,p=∆4+z4,p, (p=0,1) z1,0=

ψ`B(0)

γ1Sz12Sz2 2

ψ`B(0) , z2,0=

ψ`B(0)

γ2Sz2−γ1Sz1 2

ψ`B(0) , z3,0=

ψ`B(0)

γ3Sz14Sz2 2

ψ`B(0) , z4,0=

ψ`B(0)

γ4Sz2−γ3Sz1 2

ψ`B(0) , z1,11m12m2

2 , z2,1=−γ1m1−γ2m2

2 ,

z3,13m14m2

2 , z4,1=−γ3m1−γ4m2

2 ,

E1,p=∆1,p+∆3,p+ q

(∆2,p)2+J12+ q

(∆4,p)2+J22,

E2,p=∆1,p+∆3,p+ q

(∆2,p)2+J12−q

(∆4,p)2+J22,

E3,p=∆1,p+∆3,p−q

(∆2,p)2+J12+ q

(∆4,p)2+J22,

E4,p=∆1,p+∆3,p−q

(∆2,p)2+J12−q

(∆4,p)2+J22.

The conversion factors between the states|ii|ki(i= 1,2;k=3,4)and the eigenvectors ofHd0

1+Hd0 2: M1,p=1

4

J1J2 q

(∆2,p)2+J12 q

(∆4,p)2+J22 ,

M2,p=1 4

1− ∆2,p

q

(∆2,p)2+J12

J2 q

(∆4,p)2+J22

,

M3,p=1 4

1+ ∆2,p

q

(∆2,p)2+J12

J2 q

(∆4,p)2+J22

,

M4,p=1 4

J1 q

(∆2,p)2+J12

1− ∆4,p

q

(∆4,p)2+J22

,

(6)

M5,p=1 4

J1

q

(∆2,p)2+J12

1+ ∆4,p

q

(∆4,p)2+J22

,

M6,p=1 4

1− ∆2,p

q

(∆2,p)2+J12

1− ∆4,p

q

(∆4,p)2+J22

,

M7,p=1 4

1+ ∆2,p

q

(∆2,p)2+J12

1− ∆4,p

q

(∆4,p)2+J22

,

M8,p=1 4

1− ∆2,p

q

(∆2,p)2+J12

1+ ∆4,p

q

(∆4,p)2+J22

,

M9,p=1 4

1+ ∆2,p q

(∆2,p)2+J12

1+ ∆4,p q

(∆4,p)2+J22

,

Q1,p=

2,p+ q

(∆2,p)2+J12

J1 ,

Q2,p=

2,p−q

(∆2,p)2+J12 J1

,

Q3,p=

4,p+q

(∆4,p)2+J22

J2 ,

Q4,p=∆4,p−q

(∆4,p)2+J22

J2 .

The expression of the parameters fik(t):

R1=

a13M1,0+a23M2,0+a14M4,0+a24M6,0 , R2=

a13M1,0a23M2,0+a14M5,0+a24M8,0 , R3=

a13M1,0+a23M3,0a14M4,0+a24M7,0 ,

R4=

a13M1,0a23M3,0a14M5,0+a24M9,0 , f13(t) =R1Q1,0Q3,0e−iE1,0t+R2Q1,0Q4,0e−iE2,0t

+R3Q2,0Q3,0e−iE3,0t+R4Q2,0Q4,0e−iE4,0t, f23(t) =R1Q3,0e−iE1,0t+R2Q4,0e−iE2,0t

+R3Q3,0e−iE3,0t+R4Q4,0e−iE4,0t, f14(t) =R1Q1,0e−iE1,0t+R2Q1,0e−iE2,0t

+R3Q2,0e−iE3,0t+R4Q2,0e−iE4,0t, f24(t) =R1e−iE1,0t+R2e−iE2,0t

+R3e−iE3,0t+R4e−iE4,0t.

The expression of the parametersA,D, andG:

(A)= h3|h1| h3|h2| h4|h1| h4|h2|

G=

a13a13 a23a13 a14a13 a24a13 a13a23 a23a23 a14a23 a24a23 a13a14 a23a14 a14a14 a24a14 a13a24 a23a24 a14a24 a24a24

 ,

M=

M1,1 −M1,1 −M1,1 M1,1

M2,1 −M2,1 M3,1 −M4,1 M4,1 M5,1 −M4,1 −M5,1 M6,1 M8,1 M7,1 M9,1

 ,

B=

e−iE1,1t 0 0 0

0 e−iE2,1t 0 0

0 0 e−iE3,1t 0

0 0 0 e−iE4,1t

 ,

Q=

Q1,1Q3,1 Q3,1 Q1,1 1 Q1,1Q4,1 Q4,1 Q1,1 1 Q2,1Q3,1 Q3,1 Q2,1 1 Q2,1Q4,1 Q4,1 Q2,1 1

 ,

D= (Q)B(M)GMBQ.

[1] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford University Press, Oxford 2002.

[2] M. A. Nielsen and I. L. Chuang, Quantum Computa- tion and Quantum Information, Cambridge University Press, Cambridge, England 2000.

[3] M. P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. P. Walborn, P. H. S. Ribeiro, and L. Davidovich, Sci- ence316, 579 (2007).

[4] L. Mazzola, S. Maniscalco, J. Piilo, K.-A. Suominen, and B. M. Garraway, Phys. Rev. A79, 42302 (2009).

[5] H.-P. Breuer, D. Burgarth, and F. Petruccione, Phys.

Rev. B70, 45323 (2004).

[6] Z. He, J. Zou, L. Li, and B. Shao, Phys. Rev. A 83, 12108 (2011).

[7] P. Haikka, J. D. Cresser, and S. Maniscalco, Phys. Rev.

A83, 12112 (2011).

[8] H. T. Wang, C. F. Li, Y. Zou, R. Ch. Ge, and G. C. Guo, Physica A,390, 3183 (2011).

[9] S. F. Huelga, ´A. Rivas, and M. B. Plenio, Phys. Rev.

Lett.108, 160402 (2012).

[10] H.-P. Breuer, E.-M. Laine, and J. Piilo, Phys. Rev. Lett.

103, 210401 (2009).

[11] A. G. Dijkstra and Y. Tanimura, Phys. Rev. Lett.104, 250401 (2010).

[12] S. F. Huelga and M. B. Plenio, Phys. Rev. Lett. 98, 170601 (2007).

[13] N. Lambert, R. Aguado, and T. Brandes, Phys. Rev. B 75, 045340 (2007).

(7)

[14] B. Bellomo, R. Lo Franco, and G. Compagno, Phys.

Rev. Lett.99, 160502 (2007).

[15] A. Rivas, S. F. Huelga, and M. B. Plenio, Phys. Rev.` Lett.105, 50403 (2010).

[16] M. M. Wolf, J. Eisert, T. S. Cubitt, and J. I. Cirac, Phys.

Rev. Lett.101, 150402 (2008).

[17] R. Lo Franco, B. Bellomo, E. Andersson, and G. Com- pagno, Phys. Rev. A85, 32318 (2012).

[18] R. Lo Franco, B. Bellomo, S. Maniscalco, and G. Com- pagno,arXiv: 1205.6419.

[19] R. Lo Franco, A. D’ Arrigo, G. Falci, G. Compagno, and E. Paladino, Phys. Script.T147, 14019 (2012).

[20] B. Bellomo, R. Lo Franco, and G. Compagno, Phys.

Rev. A78, 062309 (2008).

[21] B. Bellomo, R. Lo Franco, S. Maniscalco, and G. Com- pagno, Phys. Rev. A78, 60302 (2008).

[22] B. Bellomo, R. Lo Franco, and G. Compagno, Adv. Sci.

Lett.2, 459 (2009).

[23] F. Caruso, A. W. Chin, A. Datta, S. F. Huelga, and M. B. Plenio, Phys. Rev. A81, 62346 (2010).

[24] M. Sarovar, A. Ishizaki, G. R. Fleming, and K. B. Wha- ley, Nature Phys.6, 462 (2010).

[25] A. G. Dijkstra and Y. Tanimura, Phys. Rev. Lett.104, 250401 (2010).

[26] J.-Q. Liao, J.-F. Huang, L.-M. Kuang, and C. P. Sun, Phys. Rev. A82, 52109 (2010).

[27] P. Rebentrost and A. Aspuru-Guzik, J. Chem. Phys.

134, 101103 (2011).

[28] V. I. Novoderezhkin and R. van Grondelle, Phys.

Chem. Chem. Phys.12, 7352 (2010).

[29] I. Sinayskiy, A. Marais, F. Petruccione, and A. Ekert, Phys. Rev. Lett.108, 20602 (2012).

[30] G. L. Giorgi and T. Busch,arXiv: 1208.2131v1.

[31] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A.

Fisher, A. Garg, and W. Zwerger, Rev. Mod. Phys.59, 1 (1987).

[32] J. Wesenberg and K. Molmer, Phys. Rev. A65, 62304 (2002).

[33] Y. Hamdouni, M. Fannes, and F. Petruccione, Phys.

Rev. B73, 245323 (2006).

[34] W. K. Wootters, Phys. Rev. Lett.80, 2245 (1998).

Referenzen

ÄHNLICHE DOKUMENTE

These forms of couplings, rather than Ising interaction, are more encountered in solid state devices, and there- fore make it possible to perform one-way quantum computation

[r]

In this appendix, we present numerical results on the magnetic field dependence of the Fermi velocity v F (h) and Luttinger parameter K(h) in the ground state of the XXZ chain..

However, questions such as how can new media be used to improve teaching in the best possible way and can multimedia help keeping learning material more up to date, have a

Because those flows, in the aggregate, were helping to finance trade and economic growth, many analysts and policy makers concluded that opening capital markets was an important

Are we now facing a cascade of nuclear proliferation that will destroy the 1970 Nonproliferation Treaty, or can we hold the nuclear ambitions of states and other actors in check..

Ceasefire/peace negotiations should therefore include representatives of the Assad regime, Syrian political opponents and armed rebels from the Free Syrian Army, and

Revealing a lack of ambition, on the other hand, is the IEA’s prediction of no more than a 12 percent reduction in emissions as a result of the lowering of fossil-fuel