• Keine Ergebnisse gefunden

Supplement of

N/A
N/A
Protected

Academic year: 2022

Aktie "Supplement of"

Copied!
12
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Supplement of Atmos. Chem. Phys., 20, 9591–9618, 2020 https://doi.org/10.5194/acp-20-9591-2020-supplement

© Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

Supplement of

Effective radiative forcing and adjustments in CMIP6 models

Christopher J. Smith et al.

Correspondence to:C. J. Smith (c.j.smith1@leeds.ac.uk)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

(2)

1.0 0.5 0.0 0.5 1.0 1.5

Forcing adjustment, W m2

1 1

1

1 1

1

1 1

1

1 1

1

1 1

1

1 1

1

1 1

1

1 1

1 2

2 2

2 2 2

2 2

2

2 2 2

2 2

2

2 2 2

2 2

2

2 2

2 3

3 3

3 3

3 3

3 3

3 3

3 3

3 3

3 3

3 3

3 3

3 3

3 4

4 4

4 4 4

4 4

4

4 4

4 4

4 4

4 4

4 4

4 4

4 4

4 5

5 5

5 5 5

5 5

5

5 5 5

5 5

5

5 5 5

5 5

5

5 5 5

6 6

6

6 6 6

6 6

6

6 6

6 6

6 6

6 6

6 6

6 6

6 6

6 7

7 7

7 7 7

7 7

7

7 7

7 7

7 7

7 7

7 7

7 7

7 7

7 8

8 8

8 8 8

8 8

8

8 8 8

8 8

8

8 8 8

8 8

8

8 8 8

9 9

9

9

9 9

9 9

9

9

9 9

9 9

9

9

9 9

9 9

9

9

9 9

11 11

11

11 11

11

11 11

11

11 11

11

11 11

11

11 11

11

11 11

11

11 11

11 12

12 12

12 12

12 12

12 12

12 12

12 12

12 12

12 12

12 12

12 12

12 12

12 13

13 13

13 13 13

13 13

13

13 13 13

13 13

13

13 13 13

13 13

13

13 13 13

14 14

14

14 14

14 14

14 14

14 14

14 14

14 14

14 14

14 14

14 14

14 14

14 15

15 15

15 15 15

15 15

15

15 15 15

15 15

15

15 15 15

15 15

15

15 15

15 16

16 16

16 16

16 16

16 16

16 16

16 16

16 16

16 16

16 16

16 16

16 16

16 17

17 17

17 17

17 17

17 17

17 17

17 17

17 17

17 17

17 17

17 17

17 17

17

18 18

18

18 18

18

18 18

18

18 18

18

18 18

18

18 18

18

18 18

18

18 18

18

ts ta_tr ta_st hus alb cl

1.4 × CO

2

1.0 0.5 0.0 0.5 1.0 1.5

Forcing adjustment, W m2

1 1

1 1

1 1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1

2 2

2 2

2 2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 3

3 3

3 3

3 3

3 3

3 3

3

3 3

3

3 3

3

3 3

3

3 3

3

4 4

4

4 4 4

4 4

4

4 4 4

4 4

4

4 4 4

4 4

4

4 4

4 5

5 5

5 5 5

5 5

5

5 5 5

5 5

5

5 5 5

5 5

5

5 5 5

6 6

6

6 6 6

6 6

6

6 6

6 6

6 6

6 6

6 6

6 6

6 6

6 7

7 7

7

7 7

7 7

7 7

7 7

7 7

7 7

7 7 7

7 7

7

7 7

8 8

8

8 8 8

8 8

8

8 8 8

8 8

8

8 8 8

8 8

8 8

8 8

9 9

9

9 9

9 9 9

9

9 9 9

9 9

9

9 9 9

9 9

9

9 9 9

11 11

11

11 11

11

11 11

11

11 11

11

11 11

11

11 11

11

11 11

11

11 11

11

12 12

12

12 12

12 12

12 12

12 12

12 12

12 12

12 12

12 12

12 12

12 12

12 13

13 13

13 13

13 13 13

13

13 13

13 13 13

13

13 13

13 13 13

13

13 13

14 13 14

14 14

14 14

14 14

14

14

14 14

14 14

14

14

14 14

14 14

14 14

14 14

15 15

15 15

15 15

15 15

15 15

15 15 15

15 15

15 15

15 15

15 15

15 15

15 16

16 16

16 16 16

16 16

16

16 16 16

16 16

16

16 16 16

16 16

16

16 16 16

18 18

18

18 18

18

18 18

18

18 18

18

18 18

18

18 18

18

18 18

18

18 18

18

ts ta_tr ta_st hus alb cl

ghg

1.0 0.5 0.0 0.5 1.0 1.5

Forcing adjustment, W m2

1 1

1 1 1

1

1 1

1 1 1

1

1 1

1 1 1

1

1 1

1 1 1

1 2

2 2

2

2 2

2

2 2

2

2 2

2

2 2

2

2 2

2

2 2

2

2 2

3 3

3 3

3 3

3 3

3 3

3 3

3 3

3 3

3 3

3 3

3 3

3 4 4 3

4 4 4 4

4 4

4 4 4 4

4 4

4 4 4 4

4 4

4 4 4 4

5 5

5 5 5 5

5 5

5 5 5 5

5 5

5 5 5 5

5 5

5 5 5 5

6 6 6 6 6 6

6 6 6 6 6

6

6 6 6 6 6

6

6 6 6 6 6

6

7 7 7 7

7 7

7 7 7 7

7 7

7 7 7 7

7 7

7 7 7 7

7 7

8

8 8 8

8 8 8

8 8 8

8 8

8

8 8 8

8 8

8

8 8 8

8 9 8

9

9 9 9

9 9

9

9 9 9

9 9

9

9 9 9

9 9

9

9 9 9

9

10 10

10 10 10

10

10 10

10 10 10

10

10 10

10 10 10

10

10 10

10 10 10

10

11 11

11 11 11 11

11 11

11 11 11 11

11 11

11 11 11 11

11 11

11 11 11 11

12 12

12 12 12 12

12 12

12 12 12 12

12 12

12 12 12 12

12 12

12 12 12 12

13 13

13 13 13

13

13 13

13 13 13

13

13 13

13 13 13

13

13 13

13 13 13

13 15

15 15

15 15

15

15 15

15 15

15 15

15 15

15 15

15 15

15 15

15 15

15 15

16 16

16 16 16 16

16 16

16 16 16 16

16 16

16 16 16 16

16 16

16 16 16 16

17 17 17 17 17

17

17 17 17 17 17

17

17 17 17 17 17

17

17 17 17 17

17 17 181818181818181818181818181818181818181818181818

ts ta_tr ta_st hus alb cl

aer

1.0 0.5 0.0 0.5 1.0 1.5

Forcing adjustment, W m2

2222 2222 2222 2222 2222 2222

3 3 3 3

3 3

33 33 33 33 3 3

3 3

3 3 3 3

3 3

5 5 5 5

5 5

55 55 55 55 5 5

5 5

5 5 5 5

5 5

6 6

6 6

6 6 6 6

6 6

6 6

6 6

6 6

6 6

6 6 6 6

6 6

7 7

7 7

7 7

7 7

7 7

7 7 7 7

7 7

7 7 7 7

7 7

7 8 8 7

8 8

8 8

8 8

8 8

8 8 8 8

8 8

8 8 8 8

8 8

8 9999 9999 9999 9999 9999 99989

11 11

11 11

11 11 11 11

11 11

11 11

11 11

11 11

11 11 11 11

11 11

11 11

12 12 12 12

12

12 12 12 12 12

12 12

12 12 12 12

12 12

12 12 12 12

12 12

131313131313131313131313131313131313131313131313

14 14 14 14

14 14

141414 141414 141414 141414 141414 141414

15 15

15 15

15 15

15 15

15 15

15 15 15 15

15 15

15 15 15 15

15 15

15

16 16 16 16 16 15

16

16 16 16 16 16

16

16 16 16 16 16

16

16 16 16 16 16

16

18 18 18 18

18

18 18 18 18 18

18 18

18 18 18 18

18

18 18 18 18 18

18 18

ts ta_tr ta_st hus alb cl

lu

1.0 0.5 0.0 0.5 1.0 1.5

Forcing adjustment, W m2

1 1

1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 2

2 2

2 2

2

2

2 2

2 2

2

2

2 2

2 2

2

2 2

2 2

2 2

3 3

3 3

3 3

3 3

3

3 3

3

3 3

3

3 3

3

3 3

3 3

3 3

4 4

4

4 4 4

4 4

4

4 4 4

4 4

4

4 4 4

4 4

4

4 4

4 5

5 5

5 5

5 5

5 5

5 5 5

5 5

5

5 5 5

5 5

5

5 5

5 6

6 6

6 6

6 6

6 6

6

6 6

6 6

6

6 6 6 6

6 6

6 6

6 8

8 8

8

8 8 8

8 8

8 8

8 8

8 8

8 8

8 8

8 8

8 8

8

9 9

9

9 9

9

9 9

9

9 9

9

9 9

9

9 9

9

9 9

9

9 9

9 11

11 11

11 11

11 11

11 11

11 11

11 11

11 11

11 11

11 11

11 11

11 11

11 12

12 12

12 12

12 12

12 12

12 12

12 12

12 12

12 12

12 12

12 12

12 12

12 13

13 13

13 13

13 13

13 13

13 13

13 13

13 13

13 13

13 13

13 13

13 13

13 15

15 15

15

15 15

15 15

15

15

15 15

15 15

15

15

15 15

15 15

15 15

15 15

16 16

16

16 16

16 16

16 16

16 16

16 16

16 16

16 16

16 16

16 16

16 16

16 18

18 18

18 18

18 18

18 18

18 18

18 18

18 18

18 18

18 18

18 18

18 18

18

ts ta_tr ta_st hus alb cl

anthro

1: ACCESS-CM2 2: CanESM5 3: CESM2 4: CNRM-CM6-1 5: CNRM-ESM2-1 6: EC-Earth3 7: GFDL-CM4 8: GFDL-ESM4 9: GISS-E2-1-G p1 10: GISS-E2-1-G p3 11: HadGEM3-GC31-LL 12: IPSL-CM6A-LR 13: MIROC6 14: MPI-ESM1-2-LR 15: MRI-ESM2-0 16: NorESM2-LM 17: NorESM2-MM 18: UKESM1-0-LL

HadGEM3 kernel GFDL kernel ECHAM6 kernel CESM kernel

ts: surface temperature ta_tr: tropospheric temperature ta_st: stratospheric temperature hus: vater vapour

alb: surface albedo cl: clouds

Figure S1.Forcing adjustments from four radiative kernels for each model and adjustment. Clouds adjustments are calculated according to the cloud masking method described in Soden et al. (2008) and do not necessarily correspond to values in the main text.2

(3)

1000 800 680 560 440 310 180 50

1000 800 680 560 440 310 180 50

1000 800 680 560 440 310 180 50

1000 800 680 560 440 310 180 50

0 0.3 1.3 3.6 9.4 23 60 380 1000

800 680 560 440 310 180 50

0.15 0.12 0.09 0.06 0.03 0.00 0.03 0.06 0.09 0.12 0.15

Change in cloud fraction, %

isccp_clfr

2× CO

2

3× CH

4

2% Sol 10 ×B C 5× Su l Cloud top pressure (hPa)

Cloud optical depth

1000 800 680 560 440 310 180 50

1000 800 680 560 440 310 180 50

1000 800 680 560 440 310 180 50

1000 800 680 560 440 310 180 50

0 0.3 1.3 3.6 9.4 23 60 380 1000

800 680 560 440 310 180 50

0 0.3 1.3 3.6 9.4 23 60 380 0 0.3 1.3 3.6 9.4 23 60 380 0.15 0.12 0.09 0.06 0.03 0.00 0.03 0.06 0.09 0.12 0.15

W m

2

SW LW Net

Cloud top pressure (hPa)

Cloud optical depth 2× CO

2

3× CH

4

2% Sol 10 ×B C 5× Su l

Figure S2.ISCCP cloud radiative effect from idealised single forcing experiments in the HadGEM2-ES model as part of PDRMIP.

(4)

Figure S3.Change in (a,b) black carbon loading, (c,d) organic carbon loading, (e,f) mineral dust loading, (g,h) liquid cloud droplet number concentration and (i,j) ice cloud particle concentration for (left column) piClim-lu and (right column) piClim-aer in NorESM2-LM relative

to piClim-control. 4

(5)

CanESM5 (mean +0.004) CESM2 (mean -0.000) CNRM-ESM2-1 (mean -0.001)

GFDL-CM4 (mean +0.001) GFDL-ESM4 (mean -0.004) HadGEM3-GC31-LL (mean +0.000)

MRI-ESM2-0 (mean -0.000) NorESM2-LM (mean -0.001) UKESM1-0-LL (mean -0.001)

0.050 0.040 0.030 0.020 0.010 0.005 0.002 0.002 0.005 0.010 0.020 0.030 0.040 0.050 Change in aerosol optical depth at 550nm

Change in aerosol optical depth in land-use forcing experiment

Figure S4.Aerosol optical depth change at 550 nm in the land-use forcing experiment.

References

Soden, B., Held, I., Colman, R., Shell, K., Kiehl, J., and Shields, C.: Quantifying Climate Feedbacks Using Radiative Kernels, J. Climate, 21, 3504–3520, https://doi.org/10.1175/2007JCLI2110.1, 2008.

Watson-Parris, D., Bellouin, N., Deaconu, L. T., Schutgens, N. A. J., Yoshioka, M., Regayre, L. A., Pringle, K. J., Johnson, J. S., Smith, C. J., Carslaw, K. S., and Stier, P.: Constraining Uncertainty in Aerosol Direct Forcing, Geophysical Research Letters, 47, e2020GL087 141, 5

https://doi.org/10.1029/2020GL087141, 2020.

(6)

Table S1.Different definitions of 4×CO2[effective] radiative forcing as shown in Figure 1. ERFreg150 is the 150-year Gregory regression from an abrupt-4xCO2 experiment

# Model ERFreg150 ERF_reg RF ERF_trop ERF_ts ERF_λ ERF

1 ACCESS-CM2 6.73 8.11 7.47 8.87 8.36 8.27 7.95

2 CanESM5 7.40 7.54 7.70 8.43 8.03 7.93 7.61

3 CESM2 6.42 8.47 7.47 9.74 9.42 9.28 8.91

4 CNRM-CM6-1 7.45 7.89 8.39 8.76 8.43 8.40 8.00

5 CNRM-ESM2-1 5.98 5.51 8.39 8.54 8.28 8.21 7.93

6 EC-Earth3 6.29 7.33 8.95 8.49 8.45 8.09

7 GFDL-CM4 6.37 8.64 7.67 9.17 8.62 8.69 8.24

8 GFDL-ESM4 7.82 7.45 6.87 8.08 8.09 8.41 7.74

9 GISS-E2-1-G p1 7.83 7.87 7.94 8.39 7.75 7.89 7.35

11 HadGEM3-GC31-LL 6.97 7.74 7.59 9.33 8.56 8.42 8.09

12 IPSL-CM6A-LR 6.83 7.78 8.06 8.99 8.50 8.48 8.00

13 MIROC6 7.26 7.79 7.63 8.17 7.76 7.76 7.32

14 MPI-ESM1-2-LR 8.59 9.42 7.86 9.34 8.82 9.17 8.35

15 MRI-ESM2-0 6.80 7.64 7.89 8.30 7.99 8.10 7.65

16 NorESM2-LM 6.98 9.28 7.52 8.97 8.62 8.89 8.15

17 NorESM2-MM 7.34 8.70 7.60 9.16 8.87 9.22 8.38

18 UKESM1-0-LL 7.25 7.82 7.33 9.15 8.42 8.32 7.94

Mean 7.11 7.94 7.71 8.84 8.41 8.46 7.98

Standard dev. 0.63 0.82 0.37 0.45 0.41 0.44 0.38

6

(7)

Table S2.As for table S1 but for 1850–2014 well-mixed greenhouse gas forcing.

# Model RF ERF_trop ERF_ts ERF_λ ERF

1 ACCESS-CM2 2.89 3.25 3.17 3.14 3.04

2 CanESM5 2.88 3.07 3.02 2.98 2.87

3 CESM2 2.67 3.18 3.18 3.13 3.03

4 CNRM-CM6-1 2.78 2.94 2.89 2.87 2.74

5 CNRM-ESM2-1 2.58 2.74 2.61 2.59 2.51

6 EC-Earth3 2.96 2.88 2.87 2.75

7 GFDL-CM4 2.92 3.44 3.26 3.28 3.13

8 GFDL-ESM4 2.95 3.34 3.35 3.46 3.23

9 GISS-E2-1-G p1 3.15 3.16 3.03 3.17 2.89

11 HadGEM3-GC31-LL 2.84 3.34 3.25 3.21 3.11

12 IPSL-CM6A-LR 2.66 3.11 2.95 2.99 2.82

13 MIROC6 2.85 2.83 2.82 2.67 2.69

14 MPI-ESM1-2-LR 2.75 2.92 2.83 2.94 2.69

15 MRI-ESM2-0 3.02 3.21 3.15 3.18 3.03

16 NorESM2-LM 2.76 3.01 2.93 3.01 2.80

18 UKESM1-0-LL 2.67 3.31 3.11 3.07 2.95

Mean 2.82 3.11 3.03 3.04 2.89

Standard dev. 0.15 0.19 0.19 0.21 0.19

(8)

Table S3.As for table S1 but for 1850–2014 aerosol forcing.

# Model RF ERF_trop ERF_ts ERF_λ ERF

1 ACCESS-CM2 −1.18 −1.16 −1.13 −1.09

2 CanESM5 −0.61 −0.86 −0.87 −0.86 −0.85

3 CESM2 −1.50 −1.32 −1.35 −1.37

4 CNRM-CM6-1 −1.20 −1.19 −1.23 −1.20 −1.15

5 CNRM-ESM2-1 −0.76 −0.80 −0.80 −0.77 −0.74

6 EC-Earth3 −0.66 −1.43 −0.87 −0.83 −0.80

7 GFDL-CM4 −0.58 −0.79 −0.78 −0.77 −0.73

8 GFDL-ESM4 −0.38 −0.67 −0.74 −0.73 −0.70

9 GISS-E2-1-G p1 −0.49 −1.32 −1.37 −1.41 −1.32 10 GISS-E2-1-G p3 −1.03 −1.04 −0.98 −1.00 −0.93 11 HadGEM3-GC31-LL −1.03 −1.13 −1.16 −1.13 −1.10 12 IPSL-CM6A-LR −0.71 −0.77 −0.69 −0.63 −0.63

13 MIROC6 −1.13 −1.16 −1.10 −1.14 −1.04

15 MRI-ESM2-0 −0.47 −1.20 −1.24 −1.23 −1.21

16 NorESM2-LM −1.14 −1.17 −1.21 −1.20 −1.21

17 NorESM2-MM −1.12 −1.38 −1.29 −1.30 −1.26

18 UKESM1-0-LL −0.95 −1.14 −1.17 −1.13 −1.11

Mean −0.86 −1.09 −1.06 −1.03 −1.01 Standard dev. 0.31 0.22 0.22 0.23 0.23

8

(9)

Table S4.As for table S1 but for 1850–2014 land-use forcing.

# Model RF ERF_trop ERF_ts ERF_λ ERF

2 CanESM5 −0.09 −0.15 −0.09 −0.08 −0.08

3 CESM2 −0.09 −0.08 −0.02 −0.03 −0.04

5 CNRM-ESM2-1 −0.10 −0.06 −0.08 −0.09 −0.07

6 EC-Earth3 −0.11 −0.20 −0.15 −0.17 −0.13

7 GFDL-CM4 −0.41 −0.41 −0.30 −0.34 −0.33

8 GFDL-ESM4 −0.26 −0.27 −0.24 −0.28 −0.28

9 GISS-E2-1-G p1 0.03 0.06 0.02 0.01 −0.00

11 HadGEM3-GC31-LL −0.17 −0.16 −0.12 −0.13 −0.11 12 IPSL-CM6A-LR −0.09 −0.10 −0.04 −0.03 −0.05

13 MIROC6 −0.06 −0.09 −0.02 −0.24 −0.03

14 MPI-ESM1-2-LR −0.05 −0.11 −0.09 −0.10 −0.10

15 MRI-ESM2-0 −0.32 −0.17 −0.17 −0.17 −0.17

16 NorESM2-LM −0.00 0.16 0.26 0.25 0.26

18 UKESM1-0-LL −0.17 −0.27 −0.18 −0.19 −0.18

Mean −0.14 −0.13 −0.09 −0.11 −0.09 Standard dev. 0.12 0.14 0.13 0.14 0.13

(10)

Table S5.As for table S1 but for 1850–2014 anthropogenic forcing.

# Model RF ERF_trop ERF_ts ERF_λ ERF

1 ACCESS-CM2 2.09 1.98 1.98 1.90

2 CanESM5 2.72 2.55 2.51 2.49 2.37

3 CESM2 1.68 2.31 2.22 2.18 2.05

4 CNRM-CM6-1 1.56 1.82 1.68 1.70 1.61

5 CNRM-ESM2-1 1.78 1.73 1.70 1.70 1.66

6 EC-Earth3 2.38 2.18 2.17 2.09

7 GFDL-CM4 2.85 3.03 2.45 2.44 2.34

8 GFDL-ESM4 2.63 2.64 2.29 2.37 2.17

9 GISS-E2-1-G p1 2.81 1.88 2.01 2.11 1.93

11 HadGEM3-GC31-LL 1.97 2.26 1.90 1.88 1.81

12 IPSL-CM6A-LR 2.36 2.67 2.43 2.43 2.32

13 MIROC6 1.98 1.96 1.89 1.74 1.80

14 MPI-ESM1-2-LR 2.35 2.23 2.13

15 MRI-ESM2-0 2.69 2.40 2.05 2.10 1.95

16 NorESM2-LM 2.17 2.36 2.20 2.29 2.06

18 UKESM1-0-LL 1.87 2.19 1.90 1.87 1.79

Mean 2.24 2.29 2.10 2.10 2.00

Standard dev. 0.44 0.33 0.25 0.27 0.23

10

(11)

Table S6.Contribution of cloud adjustments to aerosol forcing. LWP = liquid water path; CLT = cloud fraction; ISCCP = ISCCP simulator kernel; MMPRP = monthly mean partial radiative perturbation; CRE = cloud radiative effect. Columns are left blank where estimates are either unavailable or it is not appropriate to use them (e.g. CRE and ISCCP estimates for models which include ice-cloud nucleation). LW adjustment is the mean of available methods in each model.

Model SW LWP SW CLT SW adj. LW CRE LW ISCCP LW MMPRP LW adj. Net adj.

CanESM5 −0.06 −0.14 −0.19 −0.08 −0.10 −0.09 −0.28

CESM2 −0.10 −0.01 −0.11 0.16 0.16 0.05

CNRM-CM6-1 0.01 0.05 0.06 −0.05 −0.12 −0.08 −0.09 −0.03

CNRM-ESM2-1 0.00 −0.03 −0.02 −0.02 −0.07 −0.00 −0.03 −0.06

EC-Earth3 −0.04 −0.08 −0.12 −0.02 −0.02 −0.14

GFDL-CM4 −0.04 −0.09 −0.13 −0.06 −0.03 −0.03 −0.04 −0.17

GFDL-ESM4 −0.06 −0.06 −0.12 −0.17 −0.10 −0.14 −0.26

GISS-E2-1-G p1 −0.07 −0.94 −1.01 0.10 0.05 0.07 −0.93

GISS-E2-1-G p3 −0.00 −0.06 −0.07 −0.05 0.01 −0.02 −0.09

HadGEM3-GC31-LL −0.02 −0.07 −0.09 −0.00 −0.07 −0.09 −0.05 −0.14

IPSL-CM6A-LR 0.00 0.06 0.06 −0.07 −0.13 −0.08 −0.09 −0.03

MIROC6 0.01 −0.01 −0.00 −0.02 −0.02 −0.02

MRI-ESM2-0 −0.08 −0.38 −0.46 −0.22 −0.22 −0.68

NorESM2-LM −0.08 −0.10 −0.19 0.06 0.06 −0.12

NorESM2-MM −0.12 −0.17 −0.29 0.04 0.15 0.10 −0.19

UKESM1-0-LL −0.03 −0.10 −0.13 −0.01 −0.05 −0.09 −0.05 −0.18

Mean −0.04 −0.13 −0.17 −0.03 −0.08 −0.02 −0.03 −0.20

(12)

Table S7.Shortwave clear-sky ERF from the APRP method from CMIP6 models used in Watson-Parris et al. (2020).

Model Clear-sky SW ERFari (W m−2)

ACCESS-CM2 −0.70

CanESM5 −0.35

CESM2 −0.07

CNRM-CM6-1 −0.54

CNRM-ESM2-1 −0.35

EC-Earth3 −0.59

GFDL-CM4 −0.49

GFDL-ESM4 −0.41

GISS-E2-1-G p1 −0.94

GISS-E2-1-G p3 −1.01

HadGEM3-GC31-LL −0.67

IPSL-CM6A-LR −0.56

MIROC6 −0.49

MRI-ESM2-0 −0.48

NorESM2-LM −0.42

NorESM2-MM −0.46

UKESM1-0-LL −0.59

Mean −0.54

St. Dev. 0.21

12

Referenzen

ÄHNLICHE DOKUMENTE

Diese bestehen aus einem Grundger¨ ust, an dem funk- tionale Bestandteile kovalent gebunden sind (siehe Abb. Als Seitenkettengruppen werden hier beispielsweise Elektronen-

Since there are no suitable instruments on the market, a miniature spectrometer module was chosen as the core of the spectrometer sys- tem and it was integrated with other

A method for combining ground-based passive microwave radiometer retrievals of integrated liquid water (LWP), radar reflectivity profiles (Z ), and statistics of a cloud model

The standard deviation for the retrieved LWPs for clear-sky cases (classified with IR-Meteosat data) from measured SSM/I Tb’s for REG, TWO, and ALL/85V as a function of latitude

Im Winter ist dies hauptsächlich auf die zum Teil großen Unterschiede in der Oberfl.ächenalbedo zurückzuführen (eisfreie Ostsee - niedrige Albedo, schneebedeckte Landflächen -

We show in the IPSL-CM6A-LR model where a full set of climate diagnostics are available that the HadGEM3-GA7.1 kernel exhibits linear behaviour and the residual error term is small,

In particular, we consider the impact of ocean – atmosphere coupling on the rotational Raman scattering (Section 4.1), fi lling-in of Fraunhofer lines by the vibrational Raman

The lack of a liquid-rich cloud scene resulted in CRF near zero (Fig. 14a) and estimates of the total surface energy residual before 12 UTC were generally larger than -20 W m -2