• Keine Ergebnisse gefunden

Photoelectron Diffraction

N/A
N/A
Protected

Academic year: 2022

Aktie "Photoelectron Diffraction"

Copied!
1
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

PEARL = Photo-Emission and Atomic Resolution Laboratory

scientific case

structural characterization of local bonding geometry

molecular adsorbates on metal or semiconductor surfaces

nanostructured surfaces

surfaces of complex materials

structural, electronic, and magnetic properties methods

X-ray photoelectron diffraction

angle-scanned (XPD)

photon energy-scanned (PhD)

scanning tunneling microscopy (STM) and spectroscopy (STS)

X-ray absorption spectroscopy (XAS)

magnetic circular dichroism (XMCD)

PEARL Beamline

References Acknowledgements

http://www.psi.ch/sls/pearl

Photoelectron Diffraction

We thank all scientists, engineers, and technicians involved in the design and construction of PEARL, in particular

U. Staub, F. Nolting, J. Raabe, L. Patthey, V. Strokov, C. Piamonteze, O. Gröning, R. Wullschleger, Q. Chen, J. Krempasky, A. Jaggi

P. Ascher, C. Hess, B. Sarafimov, M. Schmidt, L. Rotach, T. Kälin, M. Mühlebach, A. Keller, S. Maag, J. Welte, D. Birchmeier

P. Müller, C. Lüscher, D. Armstrong, B. Marolt, A. Lüdeke

P. Huber, E. Zehnder, K. Dreyer, G. Kaeslin, H. Deppeler, J. Hadobas and many more ...

scattering phase shif

local

geometry atomic

scattering chemical state specific emission

wave vector / wave length

photoelectron diffraction probes local geometry

(bond length and bond angle)

Experimental Station

surface preparation heating to 1200 K cooling to 30 K organic evaporators LEED/AES evaporator portsRGA angle-resolved XPS

energy and angle multiplexing detector 60° acceptance angle

6 axis manipulator cooling to 30 K heating to 450 K

LT-STM

4 K, 77 K, 295 K

CO dosing in-situ sample transfer

fast entry lock synchrotron

radiation

2017-07-05

Surface Structure Studies at the PEARL Beamline

of the Swiss Light Source

Matthias Muntwiler :: Paul Scherrer Institut, Villigen PSI, Switzerland Jun Zhang :: Paul Scherrer Institut, Villigen PSI, Switzerland

Roland Stania :: Universität Zürich, Switzerland

Fumihiko Matsui :: Nara Institute of Science and Technology, Nara, Japan Thilo Glatzel :: Universität Basel, Switzerland

Thomas A. Jung :: Paul Scherrer Institut/Universität Basel, Switzerland Philipp P. Aebi :: Université de Fribourg, Switzerland

Thomas Greber :: Universität Zürich, Switzerland

Roman Fasel :: Federal Institute for Materials Science and Technology (Empa), Dübendorf, Switzerland

θ

φ

backscattering geometry

angle scan

(stereographic mapping) energy scan

(angle resolved) energy scan (axis)

normal emission

direction nearest-neighbour

axis

Beamline Performance

108 109 1010 1011

fux (photons/s)

2000 1500

1000 500

0

photon energy (eV)

G 600

G 1200 600

400 200 0

FWHM (meV)

2000 1000

0 photon energy (eV) G 600

G 1200

2

0

84 83

intensity (arb.)

binding energy (eV) 2

0

84 83

200 eV

1200 eV

bulk surface

Au(111) Au 4f 7/2

XPS example

surface core level shif

grating equation

photon energy 60 – 1100, 200 – 2000 eV ultimate

energy resolution < 0.1 eV (E < 1000 eV) polarization linear horizontal

circular +/- (< 70%)

spot size 200 µm x 70 µm (H x V, FWHM) 1000 µm x 1000 µm

photon flux energy resolution

N2 XAS

Hexagonal Boron Nitride on Ni(111) – Photoelectron Diffraction

LEED

[4] XPD

[2,3] DFT

[4] PhD

[this]

registry (N,B) (top,fcc) (top,fcc) (top,fcc) corrugation dN-B 0.18 Å 0.07 Å 0.11 Å

dN-Ni 2.22 Å 1.95 Å 2.19 Å 2.11 Å

dNi1-Ni2 1.98 Å 2.03 Å 1.99 Å

d

N-Ni

d

Ni1-Ni2

d

N-B

Ekin = 399 eVN 1s (α,θ)-normalized three-fold average

30°

90° 60°

30° 60°

ϕ

θ

θ-normalized two-fold average

experiment multiple scattering

calculation

92.8°

multi-dimensional cluster optimization 7 parameters

13700 configurations

d

N-Ni

= 2.11 ± 0.02 Å

R-factor modulation function

2D modulation function

Angle-Scanned Photoelectron Diffraction (XPD)

θ step 1°

Φ step 15°

2184 angle settings stereographic projection

scanning scheme

0.6 0.4 0.2 0.0 -0.2

modulation

400 300

200 100

kinetic energy (eV) expcalc

1.0 0.8 0.6 0.4

R factor

2.2 2.1

2.0

distance (Å)

Energy-Scanned Photoelectron Diffraction (PhD)

optimized cluster

structural parameters

1 C. S. Fadley, Prog Surf Sci 16, 275 (1984) 2 D. P. Woodruff, Surf Sci Rep 62, 1 (2007)

3 F. J. García de Abajo et al., Phys Rev B 63, 75404 (2001) 4 Y. Gamou et al., Sci Rep RITU A 44, 421 (1997)

5 W. Auwärter et al., Surf Sci 429, 229 (1999) 6 M. Muntwiler et al., Surf Sci 472, 125 (2001) 7 G. Grad et al., Phys Rev B 68, 85404 (2003)

8 J. Zhang et al., Chem Commun 50, 12289 (2014) 9 M. Muntwiler et al., in preparation

Metal-Organic Network – Scanning Tunnelling Spectroscopy

1 nm 1 nm

0.14 V

LUMO-derived confined surface state

topography

hi-res topography

dI/dV map

(local density of states) 9,10-dicyanoanthracene (DCA) on Cu(111)

10 nm

N C

-0.4 -0.2 0.0 0.2

E - EF(eV)

-0.2 0.0 0.2 k||-1)

QWSSS

dI/dV (arb. units)

-0.5 0.0 0.5

sample voltage (V) C

B

A

Cu(111) SS

A1 A2 B1

B2 C1

surface state

λ = shape factor Ω = area

particle in a box

confinement of surface state: quantum well states

STM topography

α θ

β

x y

z

ψ ϕ

k

n

analysis geometry

exp calc

Referenzen

ÄHNLICHE DOKUMENTE

In this chapter, first, the proposed global motion planning algorithm for object transportation is presented and subsequently, a ROS local planner plugin is introduced that can take

Us- ing RNA-seq data from human lymphoblastoma cell lines obtained from GEUVADIS project we performed statistical fine mapping and colocalization analysis with external databases..

The architecture of the developed star tracker consists of a CMOS image sensor for taking images of the stars, an FPGA for extracting stars from the image and a microcontroller for

Effects units are electronic devices which take the input sig- nal from an instrument - in the context of this thesis, an electric guitar - and output a modified signal according to

Division of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama- cho, Ikoma, Nara 630-0192, Japan. *Corresponding author:

PPyTF-fiber-40ks and PPyTF-film-40ks are investigated under isometric ECMD measurements in PC-TF electrolyte at applied potential between 0.65V to -0.5V square wave potentials

On-board computer system’s electronics board features a pin header (Figure 4.23) that is used to connect with attitude and orbit control system’s sensor board (Figure 4.33)..

The main joint of the skeleton for the action detection is neck and if the OpenPose algorithm can not detect the human neck, the whole skeleton will not be predicted on the