• Keine Ergebnisse gefunden

Long version

N/A
N/A
Protected

Academic year: 2022

Aktie "Long version"

Copied!
5
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

7th QEDMO 2010, Problem 8 (a variation on AMM problem #E2353 by J. G. Rau)

Let (a1, a2, ..., an) be ann-tuple of reals. Let (b1, b2, ..., bn) be ann-tuple of positive reals. We are searching for a permutation π of the set {1,2, ..., n} that minimizes the sum

n

X

k=1

aπ(k)

n

X

i=k

bπ(i) =aπ(1) bπ(1)+bπ(2)+...+bπ(n) +aπ(2) bπ(2)+bπ(3)+...+bπ(n) +...

+aπ(n)bπ(n). Prove that any permutation π that satisfies

aπ(1)

bπ(1) ≤ aπ(2)

bπ(2) ≤...≤ aπ(n) bπ(n) minimizes this sum.

Remark: This problem is slightly stronger than American Mathematical Monthly problem #E2353 by J. G. Rau. My solution below follows R. J. Dickson’s solution in [1].

Solution (according to R. J. Dickson)

We will prove a stronger assertion:

Theorem 1. Let (a1, a2, ..., an) be ann-tuple of reals. Let (b1, b2, ..., bn) be ann-tuple of positive reals. Letπ be a permutation of the set {1,2, ..., n}.

Then,

n

X

k=1

aπ(k)

n

X

i=k

bπ(i) ≥ X

k∈{1,2,...,n}

akbk+ 1 2

X

(i,k)∈{1,2,...,n}2; i6=k

min{akbi, aibk}. (1)

This inequality (1) becomes an equality if and only if aπ(1)

bπ(1) ≤ aπ(2)

bπ(2) ≤...≤ aπ(n) bπ(n). Proof of Theorem 1. We have

n

X

k=1

aπ(k)

n

X

i=k

bπ(i)

| {z }

=bπ(k)+

n

P

i=k+1

bπ(i)

=

n

X

k=1

aπ(k) bπ(k)+

n

X

i=k+1

bπ(i)

!

=

n

X

k=1

aπ(k)bπ(k)+

n

X

k=1

aπ(k)

n

X

i=k+1

bπ(i)

= X

k∈{1,2,...,n}

akbk+ X

(i,k)∈{1,2,...,n}2; i>k

aπ(k)bπ(i) (2)

(2)

(since

n

X

k=1

aπ(k)bπ(k) = X

k∈{1,2,...,n}

aπ(k)bπ(k) = X

k∈{1,2,...,n}

akbk

(here, we substituted k for π(k) in the sum, since π is a permutation of the set {1,2, ..., n}) and

n

X

k=1

|{z}

= P

k∈{1,2,...,n}

aπ(k)

n

X

i=k+1

| {z }

= P

i∈{1,2,...,n};

i>k

bπ(i)= X

k∈{1,2,...,n}

aπ(k) X

i∈{1,2,...,n};

i>k

bπ(i) = X

k∈{1,2,...,n}

X

i∈{1,2,...,n};

i>k

| {z }

= P

(i,k)∈{1,2,...,n}2; i>k

aπ(k)bπ(i)

= X

(i,k)∈{1,2,...,n}2; i>k

aπ(k)bπ(i)

). On the other hand, X

(i,k)∈{1,2,...,n}2; i>k

min

aπ(k)bπ(i), aπ(i)bπ(k)

= X

(k,i)∈{1,2,...,n}2; k>i

| {z }

= P

i∈{1,2,...,n}

P k∈{1,2,...,n};

k>i

= P

(i,k)∈{1,2,...,n}2; k>i

min

aπ(i)bπ(k), aπ(k)bπ(i)

| {z }

={aπ(k)bπ(i),aπ(i)bπ(k)}

(here we renamed (i, k) as (k, i) in the sum)

= X

(i,k)∈{1,2,...,n}2; k>i

min

aπ(k)bπ(i), aπ(i)bπ(k) , (3)

(3)

and

2· X

(i,k)∈{1,2,...,n}2; i>k

min

aπ(k)bπ(i), aπ(i)bπ(k)

= X

(i,k)∈{1,2,...,n}2; i>k

min

aπ(k)bπ(i), aπ(i)bπ(k) + X

(i,k)∈{1,2,...,n}2; i>k

min

aπ(k)bπ(i), aπ(i)bπ(k)

= X

(i,k)∈{1,2,...,n}2; i>k

min

aπ(k)bπ(i), aπ(i)bπ(k) + X

(i,k)∈{1,2,...,n}2; k>i

min

aπ(k)bπ(i), aπ(i)bπ(k) (by (3))

= X

(i,k)∈{1,2,...,n}2; i6=k

min

aπ(k)bπ(i), aπ(i)bπ(k)

since the set

(i, k)∈ {1,2, ..., n}2 | i6=k is the union of the two disjoint sets (i, k)∈ {1,2, ..., n}2 | i > k and

(i, k)∈ {1,2, ..., n}2 | k > i

= X

(i,k)∈{1,2,...,n}2; π(i)6=π(k)

| {z }

= P

i∈{1,2,...,n}

P k∈{1,2,...,n};

π(i)6=π(k)

min

aπ(k)bπ(i), aπ(i)bπ(k)

since i6=k is equivalent toπ(i)6=π(k) , because π is a permutation

= X

i∈{1,2,...,n}

X

k∈{1,2,...,n};

π(i)6=π(k)

min

aπ(k)bπ(i), aπ(i)bπ(k)

= X

i∈{1,2,...,n}

X

k∈{1,2,...,n};

i6=π(k)

min

aπ(k)bi, aibπ(k)

(here, we substitutedi for π(i) in the sum, since π is a permutation of the set {1,2, ..., n}))

= X

i∈{1,2,...,n}

X

k∈{1,2,...,n};

i6=k

| {z }

= P

(i,k)∈{1,2,...,n}2; i6=k

min{akbi, aibk}

(here, we substitutedk forπ(k) in the sum, sinceπ is a permutation of the set {1,2, ..., n}))

= X

(i,k)∈{1,2,...,n}2; i6=k

min{akbi, aibk}

Dividing this equation by 2, we obtain X

(i,k)∈{1,2,...,n}2; i>k

min

aπ(k)bπ(i), aπ(i)bπ(k) = 1 2

X

(i,k)∈{1,2,...,n}2; i6=k

min{akbi, aibk}. (4)

Now, for every pair (i, k)∈ {1,2, ..., n}2 satisfying i > k, we have the inequality aπ(k)bπ(i) ≥min

aπ(k)bπ(i), aπ(i)bπ(k) , with equality if and only ifaπ(k)bπ(i) ≤aπ(i)bπ(k).

(4)

In other words,

aπ(k)bπ(i) ≥min

aπ(k)bπ(i), aπ(i)bπ(k) , (5)

with equality if and only if aπ(k)

bπ(k) ≤ aπ(i) bπ(i) (since aπ(k)bπ(i) ≤aπ(i)bπ(k) is equivalent to aπ(k)

bπ(k) ≤ aπ(i)

bπ(i)). Summing up the inequality (5) over all pairs (i, k)∈ {1,2, ..., n}2 satisfying i > k, we obtain

X

(i,k)∈{1,2,...,n}2; i>k

aπ(k)bπ(i) ≥ X

(i,k)∈{1,2,...,n}2; i>k

min

aπ(k)bπ(i), aπ(i)bπ(k) ,

with equality if and only if

aπ(k)

bπ(k) ≤ aπ(i)

bπ(i) for every pair (i, k)∈ {1,2, ..., n}2 satisfying i > k

.

In other words, X

(i,k)∈{1,2,...,n}2; i>k

aπ(k)bπ(i)≥ X

(i,k)∈{1,2,...,n}2; i>k

min

aπ(k)bπ(i), aπ(i)bπ(k) , (6)

with equality if and only if aπ(1)

bπ(1) ≤ aπ(2)

bπ(2) ≤...≤ aπ(n) bπ(n) (because

aπ(k)

bπ(k) ≤ aπ(i)

bπ(i) for every pair (i, k)∈ {1,2, ..., n}2 satisfying i > k

is equiv- alent to aπ(1)

bπ(1) ≤ aπ(2)

bπ(2) ≤ ... ≤ aπ(n)

bπ(n)). Due to (4), we can rewrite the inequality (6) as

X

(i,k)∈{1,2,...,n}2; i>k

aπ(k)bπ(i)≥ 1 2

X

(i,k)∈{1,2,...,n}2; i6=k

min{akbi, aibk}, (7)

with equality if and only if aπ(1)

bπ(1) ≤ aπ(2)

bπ(2) ≤...≤ aπ(n) bπ(n) Upon addition of P

k∈{1,2,...,n}

akbk, the inequality (7) becomes

X

k∈{1,2,...,n}

akbk+ X

(i,k)∈{1,2,...,n}2; i>k

aπ(k)bπ(i) ≥ X

k∈{1,2,...,n}

akbk+1 2

X

(i,k)∈{1,2,...,n}2; i6=k

min{akbi, aibk},

(8) with equality if and only if aπ(1)

bπ(1) ≤ aπ(2)

bπ(2) ≤...≤ aπ(n) bπ(n). Due to (2), we can rewrite the inequality (8) as

n

X

k=1

aπ(k)

n

X

i=k

bπ(i)≥ X

k∈{1,2,...,n}

akbk+1 2

X

(i,k)∈{1,2,...,n}2; i6=k

min{akbi, aibk},

with equality if and only if aπ(1)

bπ(1) ≤ aπ(2)

bπ(2) ≤...≤ aπ(n) bπ(n).

(5)

Thus, Theorem 1 is proven.

References

[1] J. G. Rau, W. O. J. Moser, R. J. Dickson, L. P. Prostanstus, Optimal Sequence of Products (problem E 2353 and solutions), American Mathematical Monthly vol. 80 (1973), pp. 437-438.

Referenzen

ÄHNLICHE DOKUMENTE

(Improved version of the Representation theorem for semilattices) Every semilattice (S, ∨) satisfying the ascending chain condition can be embedded into (2 M , ∪) where M denotes

• Adjoint equation, optimality condition 2.8.4 Optimal stationary temperature control problem. with a

• Percy Alexander MacMahon, An introduction to Combinatory analysis, Cambridge University Press, 1920,

Induction base: Let n = 0. Assume that Lemma 2.2 holds for every nonnegative integer n < ν. ) is strictly increasing beginning with f 2 and therefore unbounded from above

(See [Grinbe15, proof of Theorem 2.74] for the details of this derivation.) It is clear how to perform induction using Theorem 2.2.3: It differs from standard induction only in that

Prostanstus, Optimal Sequence of Products (problem E 2353 and solutions), American Mathematical

American Mathematical Monthly Problem 11426

Using the ASA developed STARK Pilot toolbox the user can obtain scenarios of optimal growth for various data sets, time periods and input parameters. The methodology is verified