• Keine Ergebnisse gefunden

Solution to 7th QEDMO, Problem 8 (a slight extension of American Mathematical Monthly problem #E2353 by J. G. Rau)

N/A
N/A
Protected

Academic year: 2022

Aktie "Solution to 7th QEDMO, Problem 8 (a slight extension of American Mathematical Monthly problem #E2353 by J. G. Rau)"

Copied!
3
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

7th QEDMO 2010, Problem 8 (a variation on AMM problem #E2353 by J. G. Rau)

Let (a1, a2, ..., an) be ann-tuple of reals. Let (b1, b2, ..., bn) be ann-tuple of positive reals. We are searching for a permutation π of the set {1,2, ..., n} that minimizes the sum

n

X

k=1

aπ(k)

n

X

i=k

bπ(i) =aπ(1) bπ(1)+bπ(2)+...+bπ(n) +aπ(2) bπ(2)+bπ(3)+...+bπ(n) +...

+aπ(n)bπ(n). Prove that any permutation π that satisfies

aπ(1)

bπ(1) ≤ aπ(2)

bπ(2) ≤...≤ aπ(n) bπ(n) minimizes this sum.

Remark: This problem is slightly stronger than American Mathematical Monthly problem #E2353 by J. G. Rau. My solution below follows R. J. Dickson’s solution in [1].

Solution (according to R. J. Dickson) We will prove a stronger assertion:

Theorem 1. Let (a1, a2, ..., an) be ann-tuple of reals. Let (b1, b2, ..., bn) be ann-tuple of positive reals. Letπ be a permutation of the set {1,2, ..., n}.

Then,

n

X

k=1

aπ(k)

n

X

i=k

bπ(i)

n

X

k=1

akbk+1 2

X

(i,k)∈{1,2,...,n}2; i6=k

min{akbi, aibk}. (1)

This inequality (1) becomes an equality if and only if aπ(1)

bπ(1) ≤ aπ(2)

bπ(2) ≤...≤ aπ(n) bπ(n). Proof of Theorem 1. We have

n

X

k=1

aπ(k)

n

X

i=k

bπ(i)

| {z }

=bπ(k)+

n

P

i=k+1

bπ(i)

=

n

X

k=1

aπ(k)bπ(k)

| {z }

=

n

P

k=1

akbk, since πis a permutation

+

n

X

k=1

aπ(k)

n

X

i=k+1

bπ(i)

| {z }

=

n

P

k=1 n

P

i=k+1

aπ(k)bπ(i)

= P

(i,k)∈{1,2,...,n}2; i>k

aπ(k)bπ(i)

= X

k∈{1,2,...,n}

akbk+ X

(i,k)∈{1,2,...,n}2; i>k

aπ(k)bπ(i) ≥ X

k∈{1,2,...,n}

akbk+ X

(i,k)∈{1,2,...,n}2; i>k

min

aπ(k)bπ(i), aπ(i)bπ(k)

(2) 1

(2)

(since aπ(k)bπ(i)≥min

aπ(k)bπ(i), aπ(i)bπ(k) for any pair (i, k)∈ {1,2, ..., n}2 satisfying i > k). On the other hand,

2· X

(i,k)∈{1,2,...,n}2; i>k

min

aπ(k)bπ(i), aπ(i)bπ(k)

= X

(i,k)∈{1,2,...,n}2; i>k

min

aπ(k)bπ(i), aπ(i)bπ(k) + X

(i,k)∈{1,2,...,n}2; i>k

min

aπ(k)bπ(i), aπ(i)bπ(k)

| {z }

= P

(i,k)∈{1,2,...,n}2; k>i

min{aπ(k)bπ(i),aπ(i)bπ(k)},

since min{aπ(k)bπ(i),aπ(i)bπ(k)}is invariant under the substitution (i,k)7→(k,i)

= X

(i,k)∈{1,2,...,n}2; i>k

min

aπ(k)bπ(i), aπ(i)bπ(k) + X

(i,k)∈{1,2,...,n}2; k>i

min

aπ(k)bπ(i), aπ(i)bπ(k)

= X

(i,k)∈{1,2,...,n}2; i6=k

min

aπ(k)bπ(i), aπ(i)bπ(k) = X

(i,k)∈{1,2,...,n}2; i6=k

min{akbi, aibk}

(here, we substituted π(i) and π(k) for i and k, since π is a permutation). Dividing this equation by 2, we obtain

X

(i,k)∈{1,2,...,n}2; i>k

min

aπ(k)bπ(i), aπ(i)bπ(k) = 1 2

X

(i,k)∈{1,2,...,n}2; i6=k

min{akbi, aibk}.

Hence, (2) becomes

n

X

k=1

aπ(k)

n

X

i=k

bπ(i) ≥ X

k∈{1,2,...,n}

akbk+1 2

X

(i,k)∈{1,2,...,n}2; i6=k

min{akbi, aibk}.

Thus, the inequality (1) is proven. It remains to see when it becomes an equality. But this is more or less obvious: In our above proof of (1), we added together the inequalities aπ(k)bπ(i) ≥min

aπ(k)bπ(i), aπ(i)bπ(k) for all pairs (i, k)∈ {1,2, ..., n}2 satisfying i > k.

Hence, the inequality (1) becomes an equality if and only if each of these inequalities aπ(k)bπ(i) ≥min

aπ(k)bπ(i), aπ(i)bπ(k) for (i, k) ∈ {1,2, ..., n}2 satisfying i > k becomes an equality. Thus, we have the following equivalence of assertions:

(the inequality (1) becomes an equality)

⇐⇒

for each pair (i, k)∈ {1,2, ..., n}2 satisfying i > k, the inequality aπ(k)bπ(i) ≥min

aπ(k)bπ(i), aπ(i)bπ(k) becomes an equality

⇐⇒

for each pair (i, k)∈ {1,2, ..., n}2 satisfying i > k, we have aπ(k)bπ(i)= min

aπ(k)bπ(i), aπ(i)bπ(k)

⇐⇒ for each pair (i, k)∈ {1,2, ..., n}2 satisfying i > k, we have aπ(k)bπ(i) ≤aπ(i)bπ(k)

⇐⇒

for each pair (i, k)∈ {1,2, ..., n}2 satisfying i > k, we have aπ(k)

bπ(k) ≤ aπ(i) bπ(i)

⇐⇒

aπ(1)

bπ(1) ≤ aπ(2)

bπ(2) ≤...≤ aπ(n) bπ(n)

.

2

(3)

Thus, Theorem 1 is proven.

References

[1] J. G. Rau, W. O. J. Moser, R. J. Dickson, L. P. Prostanstus, Optimal Sequence of Products (problem E 2353 and solutions), American Mathematical Monthly vol. 80 (1973), pp. 437-438.

3

Referenzen

ÄHNLICHE DOKUMENTE

[r]

(See [Grinbe15, proof of Theorem 2.74] for the details of this derivation.) It is clear how to perform induction using Theorem 2.2.3: It differs from standard induction only in that

Thus, we see that the problem

Theorem 4 is the so-called Abel’s generalized binomial formula and appears in [1], section 1.5, and in [2] as Theorem 5 in section 3.1. Theorems 5 and 7 are the so-called first

Specializing further, we arrive at the following result (which I proved in [1], post #2):.

American Mathematical Monthly Problem 11392 by Omran Kouba, Damascus, Syria.. Let P be a

American Mathematical Monthly Problem 11426

American Mathematical Monthly Problem 11453 by Richard Stanley, Cambridge, MA.. [See the solution below for a generalized