• Keine Ergebnisse gefunden

How well do state-of-the-art Atmosphere-Ocean general circulation models reproduce atmospheric teleconnection patterns?

N/A
N/A
Protected

Academic year: 2022

Aktie "How well do state-of-the-art Atmosphere-Ocean general circulation models reproduce atmospheric teleconnection patterns?"

Copied!
13
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Tellus000, 000–000 (0000) Printed 20 September 2012 (Tellus LATEX style file v2.2)

How well do state-of-the-art Atmosphere-Ocean general circulation models reproduce atmospheric teleconnection patterns?

Supplementary Material

By D¨orthe Handorf

1

, Klaus Dethloff

1

,

1Alfred Wegener Institute for Polar and Marine Research, Research Department Potsdam, Telegrafenberg A43, D-14471 Potsdam, German

20 September 2012

c 0000 Tellus

(2)

0.5 0.6

0.7

0.8

0.9

0.95

0.99

1 0

5 10 15

Standard deviation

l at i o n Coe

ff i ci e

nt

CNRM GFDL1 GISSer IAP INMCM3 IPSL CCCT63 CCCT47 UKMOcm BCCR CSIRO0 CSIRO5 GFDL0 GISSaom GISSeh INGV

0.5 0.6

0.7

0.8

0.9

0.95

0.99

1 0

5 10 15

Standard Deviation

l at i o n Coe

ff i ci e

nt

MIROm MIROh MRI CNRM GFDL1 GISSer IAP INMCM3 IPSL

REANA AMIP CMIP

Figure 1.Taylor plots for EA/WR of fields ofZ500 CMIP3/AMIP3 model runs and NCEP/NCAR and ERA40 reanalysis, DJF. (a) CMIP from 1958-1999, (b) CMIP/AMIP from 1979-1999.

c 0000 Tellus,000, 000–000

(3)

ATMOSPHERIC TELECONNECTION PATTERNS

3

(a) (b)

0 0.1 0.2 0.3

0.4 0.5

0.6 0.7

0.8

0.9

0.95

0.99

1 0

5 10 15 20 25

Standard deviation

Co rr e l at i o

n Coe ff

i ci e nt

ERA40 NCEP MPI NCARcc NCARpcm UKMOgem MIROm MIROh MRI CNRM GFDL1 GISSer IAP INMCM3 IPSL CCCT63 CCCT47 UKMOcm BCCR CSIRO0 CSIRO5 GFDL0 GISSaom GISSeh INGV

0 0.1 0.2 0.3

0.4 0.5

0.6 0.7

0.8

0.9

0.95

0.99

1 0

5 10 15 20 25

Standard Deviation

Co rr e l at i o

n Coe ff

i ci e nt

ERA40 NCEP MPI NCARcc NCARpcm UKMOgem MIROm MIROh MRI CNRM GFDL1 GISSer IAP INMCM3 IPSL

REANA AMIP CMIP

Figure 2.Taylor plots for SCAN of fields ofZ500CMIP3/AMIP3 model runs and NCEP/NCAR and ERA40 reanalysis, DJF. (a) CMIP from 1958-1999, (b) CMIP/AMIP from 1979-1999.

c 0000 Tellus,000, 000–000

(4)

0.5 0.6

0.7

0.8

0.9

0.95

0.99

1 0

5 10 15 20

Standard deviation

l at i o n Coe

ff i ci e

nt

CNRM GFDL1 GISSer IAP INMCM3 IPSL CCCT63 CCCT47 UKMOcm BCCR CSIRO0 CSIRO5 GFDL0 GISSaom GISSeh INGV

0.5 0.6

0.7

0.8

0.9

0.95

0.99

1 0

5 10 15 20

Standard Deviation

l at i o n Coe

ff i ci e

nt

MIROm MIROh MRI CNRM GFDL1 GISSer IAP INMCM3 IPSL

REANA AMIP CMIP

Figure 3.Taylor plots for EP/NP of fields ofZ500 CMIP3/AMIP3 model runs and NCEP/NCAR and ERA40 reanalysis, DJF. (a) CMIP from 1958-1999, (b) CMIP/AMIP from 1979-1999.

c 0000 Tellus,000, 000–000

(5)

ATMOSPHERIC TELECONNECTION PATTERNS

5

(a) (b)

0 0.1 0.2 0.3

0.4 0.5

0.6 0.7

0.8

0.9

0.95

0.99

1 0

5 10 15 20 25

Standard deviation

Co rr e l at i o

n Coe ff

i ci e nt

ERA40 NCEP MPI NCARcc NCARpcm UKMOgem MIROm MIROh MRI CNRM GFDL1 GISSer IAP INMCM3 IPSL CCCT63 CCCT47 UKMOcm BCCR CSIRO0 CSIRO5 GFDL0 GISSaom GISSeh INGV

0 0.1 0.2 0.3

0.4 0.5

0.6 0.7

0.8

0.9

0.95

0.99

1 0

5 10 15 20 25

Standard Deviation

Co rr e l at i o

n Coe ff

i ci e nt

ERA40 NCEP MPI NCARcc NCARpcm UKMOgem MIROm MIROh MRI CNRM GFDL1 GISSer IAP INMCM3 IPSL

REANA AMIP CMIP

Figure 4.Taylor plots for POL of fields ofZ500CMIP3/AMIP3 model runs and NCEP/NCAR and ERA40 reanalysis, DJF. (a) CMIP from 1958-1999, (b) CMIP/AMIP from 1979-1999.

c 0000 Tellus,000, 000–000

(6)

0.5 0.6

0.7

0.8

0.9

0.95

0.99

1 0

5 10 15

Standard deviation

l at i o n Coe

ff i ci e

nt

CNRM GFDL1 GISSer IAP INMCM3 IPSL CCCT63 CCCT47 UKMOcm BCCR CSIRO0 CSIRO5 GFDL0 GISSaom GISSeh INGV

0.5 0.6

0.7

0.8

0.9

0.95

0.99

1 0

5 10 15

Standard Deviation

l at i o n Coe

ff i ci e

nt

MIROm MIROh MRI CNRM GFDL1 GISSer IAP INMCM3 IPSL

REANA AMIP CMIP

Figure 5.Taylor plots for TNH of fields ofZ500CMIP3/AMIP3 model runs and NCEP/NCAR and ERA40 reanalysis, DJF. (a) CMIP from 1958-1999, (b) CMIP/AMIP from 1979-1999.

c 0000 Tellus,000, 000–000

(7)

ATMOSPHERIC TELECONNECTION PATTERNS

7

(a) (b)

0 0.1 0.2 0.3

0.4 0.5

0.6 0.7

0.8

0.9

0.95

0.99

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 5 10 15 20 25

Standard deviation

Co rr e l at i o

n Coe ff

i ci e nt

ERA40 NCEP MPI NCARcc NCARpcm UKMOgem MIROm MIROh MRI CNRM GFDL1 GISSer IAP INMCM3 IPSL CCCT63 CCCT47 UKMOcm BCCR CSIRO0 CSIRO5 GFDL0 GISSaom GISSeh INGV

0 0.1 0.2 0.3

0.4 0.5

0.6 0.7

0.8

0.9

0.95

0.99

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 5 10 15 20 25

Standard Deviation

Co rr e l at i o

n Coe ff

i ci e nt

ERA40 NCEP MPI NCARcc NCARpcm UKMOgem MIROm MIROh MRI CNRM GFDL1 GISSer IAP INMCM3 IPSL

REANA AMIP CMIP

Figure 6.Taylor plots for NAO of fields ofZ500CMIP3/AMIP3 model runs and NCEP/NCAR and ERA40 reanalysis, DJF. (a) CMIP3 from 1958-1999, (b) CMIP3/AMIP3 from 1979-1999. The red lines are the skill score isolines defined by Eq. 2 withR0 = 0.96 (see Table 3.

c 0000 Tellus,000, 000–000

(8)

0.5 0.6

0.7

0.8

0.9

0.95

0.99

1 0

0.25 0.5 0.75

1 1.2

Standard deviation

l at i o n Coe

ff i ci e

nt

CNRM GFDL1 GISSer IAP INMCM3 IPSL CCCT63 CCCT47 UKMOcm BCCR CSIRO0 CSIRO5 GFDL0 GISSaom GISSeh INGV

0.5 0.6

0.7

0.8

0.9

0.95

0.99

1 0

0.25 0.5 0.75

1 1.2

Standard Deviation

l at i o n Coe

ff i ci e

nt

MIROm MIROh MRI CNRM GFDL1 GISSer IAP INMCM3 IPSL

Daten AMIP CMIP

Figure 7.Taylor plots for unfiltered time-series of NAO of fields ofZ500, CMIP3 model runs and NCEP/NCAR and ERA40 reanalysis, DJF. (a) CMIP from 1958-1999, (b) CMIP from 1979-1999, AMIP from 1979-1999.

c 0000 Tellus,000, 000–000

(9)

ATMOSPHERIC TELECONNECTION PATTERNS

9

(a) (b)

0 0.1 0.2 0.3

0.4 0.5

0.6 0.7

0.8

0.9

0.95

0.99

1 0

0.25 0.5 0.75

1 1.2 1.5

Standard deviation

Co rr e l at i o

n Coe ff

i ci e nt

ERA40 NCEP MPI NCARcc NCARpcm UKMOgem MIROm MIROh MRI CNRM GFDL1 GISSer IAP INMCM3 IPSL CCCT63 CCCT47 UKMOcm BCCR CSIRO0 CSIRO5 GFDL0 GISSaom GISSeh INGV

0 0.1 0.2 0.3

0.4 0.5

0.6 0.7

0.8

0.9

0.95

0.99

1 0

0.25 0.5 0.75

1 1.2 1.5

Standard Deviation

Co rr e l at i o

n Coe ff

i ci e nt

ERA40 NCEP MPI NCARcc NCARpcm UKMOgem MIROm MIROh MRI CNRM GFDL1 GISSer IAP INMCM3 IPSL

Daten AMIP CMIP

Figure 8.Taylor plots for unfiltered time-series of PNA of fields ofZ500, CMIP3 model runs and NCEP/NCAR and ERA40 reanalysis, DJF. (a) CMIP from 1958-1999, (b) CMIP from 1979-1999, AMIP from 1979-1999.

c 0000 Tellus,000, 000–000

(10)

30˚

60˚

90˚270˚

300˚

330˚

-100 -60 -45 -30 -15 15 30 45 60 100 [gpm]

30˚

60˚

90˚270˚

300˚

330˚

0.0 0.2 0.4 0.6 0.8

1000 500 200 100

Expl. Var.

p [hPa]

(e) (f) (g) (h)

30˚

60˚

90˚

120˚

180˚ 150˚

210˚

240˚

270˚

300˚

330˚

-100 -60 -45 -30 -15 15 30 45 60 100 [gpm]

30˚

60˚

90˚

120˚

180˚ 150˚

210˚

240˚

270˚

300˚

330˚

0.0 0.2 0.4 0.6 0.8

1000 500 200 100 50

Expl. Var.

p [hPa]

UKMO_HADGEM1/, explained variance with NAO

u−PC1 u−PC2

(i) (j) (k) (l)

30˚

60˚

90˚

120˚

180˚ 150˚

210˚

240˚

270˚

300˚

330˚

-100 -60 -45 -30 -15 15 30 45 60 100 [gpm]

30˚

60˚

90˚

120˚

180˚ 150˚

210˚

240˚

270˚

300˚

330˚

0.0 0.2 0.4 0.6 0.8

1000 500 200 100 50

Expl. Var.

p [hPa]

CCCMA_CGCM3_1/, explained variance with NAO

u−PC1 u−PC2

Figure 9. Summary of the NAO patterns and their relation to ATL-u-EOF1 for ERA40 reanalysis (a-d), UKMO HadGEM1 (e-h), CCCma CGCM3.1 (T47) (i-l). DJF-data from 1958-1999. From left to right: the NAO pattern (a,e,i); the regression pattern of the global geopotential height field at 500hPa onto ATL-u-PC1 at 250hPa (b,f,j); the regression pattern of the global zonal wind field at 250hPa onto ATL-u-PC1 at 250hPa (colours with overlaid Atlantic mean jet) (c,g,k); the vertical profile of explained variance between the NAO-index and the sectoral ATL-u-PC1 at each height (d,h,l).

c 0000 Tellus,000, 000–000

(11)

ATMOSPHERIC TELECONNECTION PATTERNS

11

(a) (b) (c) (d)

30˚

60˚

90˚

120˚

180˚ 150˚

210˚

240˚

270˚

300˚

330˚

-100 -60 -45 -30 -15 15 30 45 60 100 [gpm]

30˚

60˚

90˚

120˚

180˚ 150˚

210˚

240˚

270˚

300˚

330˚

0.0 0.2 0.4 0.6 0.8

1000 500 200 100 50

Expl. Var.

p [hPa]

ERA40/, explained variance with EA

u−PC1 u−PC2

(e) (f) (g) (h)

30˚

60˚

90˚

120˚

180˚ 150˚

210˚

240˚

270˚

300˚

330˚

-100 -60 -45 -30 -15 15 30 45 60 100 [gpm]

30˚

60˚

90˚

120˚

180˚ 150˚

210˚

240˚

270˚

300˚

330˚

0.0 0.2 0.4 0.6 0.8

1000 500 200 100 50

Expl. Var.

p [hPa]

UKMO_HADGEM1/, explained variance with EA

u−PC1 u−PC2

(i) (j) (k) (l)

30˚

60˚

90˚

120˚

180˚ 150˚

210˚

240˚

270˚

300˚

330˚

-100 -60 -45 -30 -15 15 30 45 60 100 [gpm]

30˚

60˚

90˚

120˚

180˚ 150˚

210˚

240˚

270˚

300˚

330˚

0.0 0.2 0.4 0.6 0.8

1000 500 200 100 50

Expl. Var.

p [hPa]

CCCMA_CGCM3_1/, explained variance with EA

u−PC1 u−PC2

Figure 10.Summary of the EA patterns and their relation to ATL-u-EOF2 for ERA40 reanalysis (a-d), UKMO HadGEM1 (e-h), CCCma CGCM3.1 (T47) (i-l). DJF-data from 1958-1999. From left to right: the EA pattern (a,e,i); the regression pattern of the global geopotential height field at 500hPa onto ATL-u-PC2 at 250hPa (b,f,j); the regression pattern of the global zonal wind field at 250hPa onto ATL-u-PC2 at 250hPa (colours with overlaid Atlantic mean jet) (c,g,k); the vertical profile of explained variance between the EA-index and the sectoral ATL-u-PC2 at each height (d,h,l).

c 0000 Tellus,000, 000–000

(12)

30˚

60˚

90˚270˚

300˚

330˚

-100 -60 -45 -30 -15 15 30 45 60 100 [gpm]

30˚

60˚

90˚270˚

300˚

330˚

0.0 0.2 0.4 0.6 0.8

1000 500 200 100

Expl. Var.

p [hPa]

(e) (f) (g) (h)

30˚

60˚

90˚

120˚

180˚ 150˚

210˚

240˚

270˚

300˚

330˚

-100 -60 -45 -30 -15 15 30 45 60 100 [gpm]

30˚

60˚

90˚

120˚

180˚ 150˚

210˚

240˚

270˚

300˚

330˚

0.0 0.2 0.4 0.6 0.8

1000 500 200 100 50

Expl. Var.

p [hPa]

MIROC3_2_hires/, explained variance with PNA

u−PC1 u−PC2

(i) (j) (k) (l)

30˚

60˚

90˚

120˚

180˚ 150˚

210˚

240˚

270˚

300˚

330˚

-100 -60 -45 -30 -15 15 30 45 60 100 [gpm]

30˚

60˚

90˚

120˚

180˚ 150˚

210˚

240˚

270˚

300˚

330˚

0.0 0.2 0.4 0.6 0.8

1000 500 200 100 50

Expl. Var.

p [hPa]

CNRM_CM3/, explained variance with PNA

u−PC1 u−PC2

Figure 11.Summary of the PNA patterns and their relation to PAC-u-EOF1 for ERA40 reanalysis (a-d), MIROC3.2(hires) (e-h), CNRM-CM3 (i-l). DJF-data from 1958-1999. From left to right: the PNA pattern (a,e,i); the regression pattern of the global geopotential height field at 500hPa onto PAC-u-PC1 at 250hPa (b,f,j); the regression pattern of the global zonal wind field at 250hPa onto PAC-u-PC1 at 250hPa (colours with overlaid Pacific mean jet) (c,g,k); the vertical profile of explained variance between the PNA-index and the sectoral PAC-u-PC1 at each height (d,h,l).

c 0000 Tellus,000, 000–000

(13)

ATMOSPHERIC TELECONNECTION PATTERNS

13

(a) (b) (c) (d)

30˚

60˚

90˚

120˚

180˚ 150˚

210˚

240˚

270˚

300˚

330˚

-100 -60 -45 -30 -15 15 30 45 60 100 [gpm]

30˚

60˚

90˚

120˚

180˚ 150˚

210˚

240˚

270˚

300˚

330˚

0.0 0.2 0.4 0.6 0.8

1000 500 200 100 50

Expl. Var.

p [hPa]

ERA40/, explained variance with WP

u−PC1 u−PC2

(e) (f) (g) (h)

30˚

60˚

90˚

120˚

180˚ 150˚

210˚

240˚

270˚

300˚

330˚

-100 -60 -45 -30 -15 15 30 45 60 100 [gpm]

30˚

60˚

90˚

120˚

180˚ 150˚

210˚

240˚

270˚

300˚

330˚

0.0 0.2 0.4 0.6 0.8

1000 500 200 100 50

Expl. Var.

p [hPa]

MIROC3_2_hires/, explained variance with WP

u−PC1 u−PC2

(i) (j) (k) (l)

30˚

60˚

90˚

120˚

180˚ 150˚

210˚

240˚

270˚

300˚

330˚

-100 -60 -45 -30 -15 15 30 45 60 100 [gpm]

30˚

60˚

90˚

120˚

180˚ 150˚

210˚

240˚

270˚

300˚

330˚

0.0 0.2 0.4 0.6 0.8

1000 500 200 100 50

Expl. Var.

p [hPa]

CNRM_CM3/, explained variance with WP

u−PC1 u−PC2

Figure 12.Summary of the WP patterns and their relation to PAC-u-EOF2 for ERA40 reanalysis (a-d), MIROC3.2(hires) (e-h), CNRM- CM3 (i-l). DJF-data from 1958-1999. From left to right: the WP pattern (a,e,i); the regression pattern of the global geopotential height field at 500hPa onto PAC-u-PC2 at 250hPa (b,f,j); the regression pattern of the global zonal wind field at 250hPa onto PAC-u-PC2 at 250hPa (colours with overlaid Pacific mean jet) (c,g,k); the vertical profile of explained variance between the WP-index and the sectoral PAC-u-PC2 at each height (d,h,l).

c 0000 Tellus,000, 000–000

Referenzen

ÄHNLICHE DOKUMENTE

In this work we show the application of the wavelet analysis for the study of mean seasonal snow depth in the Adige catchment and discharge data of the Adige and Inn river basins..

Abstract Temporal disaggregation methods are used to disaggregate low frequency time series to higher frequency series, where either the sum, the average, the first or the last value

The mechanism has similar implications for the persistence of long-run neg- ative shock on the level of output than those of Kim and Piger’s MS augmented model, however

The model space will be reduced by considering subclasses that are popular in the literature. With regard to the ‘other attributes’ we will not consider restrictions on : That is,

predictions of the endogenous growth models, (c) Greiner, Semler and Gong’s (2004) pioneering attempt to estimate the structural parameters of endogenous growth models with

The y fall into four categories viz., (a) Jones’ (1995a, 1995b) calibration techniques to test the predictions of the endogenous growth model, (b) similarly Kocherlakota and Mu

The illustrated process can be subdivided into three phases: (i) motif pattern discovery phase, where motifs are discovered in a multivariate time series and characterized in

Below we analyze the predictive performance of the survey predictor, the time series models as well as several bilateral combinations of the two: Dynamic combinations based on