• Keine Ergebnisse gefunden

Peter Grünberg Institut PGI–6 “Electronic Properties”

N/A
N/A
Protected

Academic year: 2022

Aktie " Peter Grünberg Institut PGI–6 “Electronic Properties”"

Copied!
17
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

18. jan 2011 C. M. Schneider

Peter Grünberg Institut PGI–6 “Electronic Properties”

Perspectives in Spintronics:

Research @ PGI–6 / NanoSync

Mitglied der Helmholtz-Gemeinschaft

(2)

PGI–6 “Electronic Properties”

©MS 2012

challenges in nanomagnetism

2

lateral nano- structures

chemical/magnetic complexity

fast/ultrafast phenomena

magnetism and

spintransport on the

nanoscale

spin

coherence

& transport

precessional motion

ultrafast phase transitions

Ta

NiFe CoFe Cu CoFe IrMn

Ta SiO2 Cu

transition metal oxides

thin film systems

endohedral fullerenes in carbon nanotubes spin electronics

magnetic nanostructures magnetic molecules

• lateral resolution

• energy resolution

• time resolution

• information depth

(3)

PGI–6 “Electronic Properties”

©MS 2012

Scientific topics (selection)

 Spin-filter tunneling barriers

 Topological insulators

 Spin-transfer torque dynamics

 Ultrafast spin dynamics

 Resistive oxides (➨ R. Waser)

 Spectronanoscopy development

3

(4)

PGI–6 “Electronic Properties”

©MS 2012

Magnetic Oxides @ PGI-6

 ~100% Spin Filter

Europium Oxide

Nickel Ferrite

 Low-T C model system

… on Silicon

 functional MO/silicon hybrid

 High-T C spin filter (HTSF)

… thin films

 Sizable SF

efficiency at RT

4

(5)

PGI–6 “Electronic Properties”

©MS 2012

Magnetic Oxides I: Europium Oxide/Si

sample

Physical Review B 84, 205206 (2011) Phys. Status Solidi RRL 5, 441 (2011)

 EuO/Si interface control

 EuO bulk chemistry

HAXPES: High-energy

photoemission  spectroscopic bulk probe

 Epitaxy by Oxide-MBE

5

(6)

PGI–6 “Electronic Properties”

©MS 2012

Topological insulator: Bi 2 Te 3 thin films

 two-dimensional semiconductor

 Dirac-like dispersion

 interesting for spintronic applications

6

20nm --->>--->>--- 1nm

(7)

PGI–6 “Electronic Properties”

©MS 2012

Angle- and spin resolved PES on TIs

7

• Dirac cones in thin films

• Fermi level lies either within the CB or VB (no insulating state in bulk)

• Large ESP for in-plane component and non-zero ESP for out-of-plane,

• Reversal of ESP for two mirror symmetric points (A and B) ➨ single domain surface (no 60°

inverted domains), or one

dominant domain.

(8)

Spin-torque dynamics of stacked vortices in magnetic nanopillars

Spin-transfer torque (STT) in double vortex state:

• Controlled preparation of of 16 chirality/polarity combinations

• STT-induced dynamics of gyrotropic vortex dynamics

• Non-linear oscillator dynamics of coupled vortices

• Injection locking of vortex dynamics as prerequisite to oscillator synchronization

V. Sluka, A. Kakay, A.M. Deac, D.E. Bürgler, R. Hertel and C.M. Schneider, submitted (2011)

DC and HF transport experiments

Micromagnetic

simulations

(9)

Current polarity determines the excited disk and thus the excitation frequency

Possibility to switch the oscillator between two well-separated frequency bands

Experiment Simulation

Core-core interaction lifts the degeneracy of the coupled vortex dynamics

Possibility to read-out the polarization state for memory applications

V. Sluka, A. Kakay, A.M. Deac, D.E. Bürgler, R. Hertel and C.M. Schneider, submitted (2011)

Spin-torque dynamics of stacked vortices in magnetic nanopillars

(10)

PGI-6 “Electronic Properties”

©MS 2011 XRMS’11, Stanford, Oct. 2011

HHG set-up: ultrashort pulsed VUV source

10

IR Pump (780 nm)

CCD

camera

(11)

PGI–6 “Electronic Properties”

©MS 2012

evolution of asymmetry during demagnetization

11

Movie of asymmetry signal decay in Ni and Fe after fs-laser excitation

(12)

PGI–6 “Electronic Properties”

©MS 2012

Cu-doped Permalloy

12

Permalloy-Cu: Δ Fe, Ni = 80 fs

• Reduce the exchange coupling strength by alloying Cu into the Permalloy.

Reduce in exchange coupling  increase in decoupling

• Possible interpretation:

! “Ultrafast breakdown of exchange

! interaction”?

Fluence-dependent measurements Permalloy: Δ Fe, Ni = 20 fs

R e d u ce d Exch a n g e

-0.2 0 0.2 0.4 0.6 0.8 1

0.2 0.4 0.6 0.8 1

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

0.1 1

!

!"#

Asymme try A/ A

0!

N o rma lize d Asymme try C h a n g e s D A !

b!

!

!$%&'

(#!

!$%)*#

Delay

!

Permalloy-Cu !

-0.2 0 0.2 0.4 0.6 0.8 1

0.7 0.8 0.9 1

Time Delay (ps)!

Asymme try A/ A

0!

a!

Fe!

Ni!

Permalloy !

Fe!

Ni!

Freitag, 20. Januar 2012

(13)

elliptical undulator, var. pol., 50 - 1500 eV

planar undulator

lin. pol., 10 - 400 eV planar undulator

lin. pol. 200 - 1000 eV 1 sector, 4 experiments

2 - 150 keV

NanoESCA

var. pol., 50 - 1000 eV

JSRL

Dortmund, Germany Dortmund, Germany

Trieste, Italy

Berlin, Germany

Argonne,

USA

(14)

15. September 2011 Folie 8

Energy-filtered PEEM imaging at core levels

800 600 400 200 0

0 1000 2000 3000 4000

Au4p

AuVB Au4d

Intensity [a.u.]

Ebin[eV]

NanoESCA:

1mm slits, 100eV passenergy Sample: Chessy

h! = 4900eV

Au4f

Si2p

105 100 95 90 85 80 75

0 1000 2000 3000 4000 5000

SiOx

Intensity [a.u.]

Ebin[eV]

NanoESCA:

1mm slits, 100eV passenergy Sample: Chessy

h! = 6500eV

Au4f

Si

Au 4f

7/2

Si1s

PGI “Electronic Properties”

©MS 2011

imaging HAXPES in the NanoESCA @ PETRA III

14

Aug. 2011

(15)

PGI “Electronic Properties”

©MS 2011

information depth

15

sample: SrTiO 3 with Au top electrode

lateral resolution: ~400 nm at present

(16)

PGI–6 “Electronic Properties”

©MS 2012

acknowledgment

16

(17)

PGI–6 “Electronic Properties”

©MS 2012 17

Referenzen

ÄHNLICHE DOKUMENTE

The model assumes a homogeneously magnetized particle in single domain state and in the shape of an elongated, unstrained ellipsoid placed in a homogeneous magnetic field

Here, a linear parameter-varying (LPV) vehicle dynamics controller is designed and implemented to control two independent electric machines driving the front wheels of a

These circumferential fields tend to switch the magnetization of FM free into a vortex state also at positive currents, just with the opposite vorticity com- pared to

In diesem Kapitel wurden zunächst die bekannten Phasengrenzen einer MnSi- Volumenprobe durch Messungen des planaren Längs- und Hall-Widerstands mit dem Magnetfeld parallel

„Ständig sind wir der Angst vor uner- träglicher Schwere ausgesetzt: der Schwere von Unterdrückung, der Schwere von Einengung, der Schwere von Regiertsein, der Schwere von Dul-

It should also be noted that the nonadiabatic spin torque effect term predicts a symmetric behavior with the current polarity; i.e., the decrease in the depinning field for a

18 So there is a clear discrepancy between the values extracted from the different approaches (b a or b > a), and it is unclear whether this is due to the different samples used

Because of the opposite chirality and opposite current direction, the Oersted-field effect is the same (moving the VC in the x direction), and due to the opposite polarity and