• Keine Ergebnisse gefunden

Block Diagram

N/A
N/A
Protected

Academic year: 2022

Aktie "Block Diagram "

Copied!
20
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

HA16631P,

H A 1 6 6 3 1 M P - - - -

Read Ampllfler

Description

The HA16631P and HA16631MP monolithic read amplifiers for flexible disk drives provide wave- shaped output signals. The differentiator, zero-volt comparator generate data pulses from the amplified signals from the magnetic head and waveform shaper section.

Features

• Combines all the flexible disk read amplifier function active circuits in one chip

• Direct connection with 1TLs

Block Diagram

Fitter Network

12V

r---

HA16631P

HA16631MP

,

I 1 Peak : Detector

...__ __ __,:

(DP-18A)

(MP-18)

1ta1

o:s!tpu1

1 I I I I I I I

o-,.--~- I L - - - - - J

I I

-'Waveform Shape

---

. . . - - - + D.F.F

Magnetic Head

Gain Select OneShot 1

Q

OneShot2

sv

(2)

Pin Arrangement

HA16631P

HA16631MP

Amp.

Input Offset Decoupling

GND One- { Shot 1

One- { Shot 2

Vcc2

} Amp.

Output

} Diff.

Input

} Diff.

Comp.

Vcc1 Data Output

(Top view)

Offset Decoupling 3

Offset Decoupling 4

GND 5

One-Shot 1 6

One-Shot 1 7 Amp Input

2

Amp Input

1

8 9

One- One- Shot 2 Shot 2

0

Amp VCC2 Output

18 17

10 11 Data Vcc1 Output

(Top view)

16 Amp Output

15 Diff.

Input

14 Diff.

Input

13 Diff.

Comp.

12 Diff.

Comp.

(3)

HA16631 P, HA16631MP

Absolute Maximum Ratings (Ta = 25°C)

Item Symbol Rating Unit

Power supply voltage (Pin 11) vcc1 7.0 v

Power supply voltage (Pin 18) VCC2 16 v

Input voltage (Pins 1 and 2) VIN -0.2 to +7.0 v

Output voltage (Pin 10) Vo -0.2 to +7.0 v

Differential input voltage (Pins 1 and 2) VIN (diff) Oto +5.0 v

Operating temperature Topr Oto +70

oc

Storage temperature Tstg -55 to +125

oc

Electrical Characteristics

Operating Power Supply Voltage Range (Ta = 25°C)

Item Symbol Min Typ Max Unit Test Condition Test Circuit

Power supply voltage range Vcc1R 4.75 5.00 5.25

v

Power supply voltage range Vcc2R 10.0 12.0 14.0

v

Amplifier Section (Ta= 25°C, Vcc1 = 5.0 V, Vcc2 = 12.0 V, unless otherwise specified)

Item Symbol Min Typ Max Unit Test Condition Test Circuit Differential voltage gain AVD 80 110 140 VIV f = 250 kHz, Fig. 2

VIN= 5 m Vrms VCC1R, VCC2R

Input bias current llB 1 9 µA Vcc2 = 12 v, Fig. 4

VCM= 4 V

Common mode voltage range VcM 1.85 6.2 v Fig. 2

Output distortion ratio THD 1.5 5 % f = 1 kHz, Fig. 2 VIN = 25 mVp-p VCC1R, VCC2R

Differential output VOD 3.0 4.2 Vp-p VCC1R, VCC2R Fig 2 voltage swing

Output source current lo 8.0 mA Fig. 8

Output sink current los 2.8 4 mA VCC1R, VCC2R Fig. 9 (Pins 16 and 17)

Input resistance rlN 30 120 k.Q Fig. 5

Output resistance ro 15

n

Fig. 6

Common mode rejection CMRR 50 dB f = 100 kHz, Fig. 11

ratio VIN = 200 mVp-p

(4)

Item Symbol Min

TYP

Max Unit Test Condition Test Circuit Power supply rejection ratio PSRR1 50 dB Vee= 12.0 v Fig. 10

vee1 4.75 V~Vee1

~ 5.25 v

Power supply rejection ratio PSRR2 60 dB vee1=5.0 v Fig. 10

vee2 10.0 v ~ Vee2

~14.0 v

Differential output offset VDO 0.4 v Fig. 7

voltage

Common mode output voltage Veo 3.1 v Fig. 7

Effective differential emitter REFF 370 570 770

n

Fig. 3 resistance (Pins 3 and 4)

Peak Detector Section (Ta= 25°C, Vcc1=5.0 V, Vcc2 = 12.0 V, unless otherwise specified)

Item Symbol Min Typ Max Unit Test Condition Test Circuit

Sink current (Pins 12 and 13) ISO 1.0 1.5 mA Fig. 12

Peak shift Ps 5 % f = 250 kHz, Fig. 13

VIN = 1.0 Vp-p

Input resistance rlD 30 kn Fig. 17

Outupt resistance rQP 40

n

(5)

HA 16631 P, HA 16631 MP

Waveform Shaper Section (Ta

=

25°C, Vcc1R, Vcc2R, unless otherwise specified)

hem Symbol Min Typ Max Unit Test Condhlon Test Circuit

Output voltage H (Pin 10) VOH 2.7 v vcc1=4.75 v Fig. 15 Vcc2 = 12.0 v,

IOH =-0.4 mA

Output voltage L (Pin 10) VOL 0.5 v Vcc1=4.75 v Fig. 16 Vcc2 = 12.0 v,

IOL= 8 mA

Rising time (Pin 10) tTLH 25 ns Vcc1=5.0 V, Fig. 14

Vcc2 = 12.0 v Vout = 0.5 V

--+ 2.7 v

Falling time (Pin 10) tTHL 25 ns vcc1=5.0 v, Fig. 14

vcc2 = 12.0 v Vout = 2.7 V

--+ 0.5 v Timing range #1 t1A, B 600 2000 ns f = 125 kHz

600 1000 ns f = 250 kHz

Timing accuracy #1 t1 850 1000 1150 ns t1 = 0.625 C1 R1 Fig. 14 +150

C1 = 200 pF, R1=6.8 kn

Timing capacitance #1 C1 150 680 pF Fig. 14

Timing resistance #1 R1 1.5 10 kn Fig. 14

Timing range #2 t2A, B 150 1000 ns f = 125 kHz 150 750 ns f = 250 kHz

Timing accuracy #2 t2 170 200 230 ns t1 = 0.625 C1R1 Fig. 14 C1 = 200 pF,

R1=1.6 kn

Timing capacitance #2 C2 100 800 pF Fig. 14

Timing resistance #2 R2 1.5 10 kn Fig. 14

(6)

Test Circuits

4V

2.5 µF

V;n 510

4V

12 v

2 17

--

lcc2

3 16

4 15

5 14

6 13

7

8 11 5V

9 10

--

lcc1

1.6k0

6.4k0

Figure 1 Power Supply Current

4V

2 3 4 5 6 7 8 9

1.6k0

6.4k0 18 17 16 15 14 13 12 11 10

12 v

1.5k0

4.75V

Av= Vo16 - Vo17 Vin

Figure 2 Voltage Gain, Band-width, Output Voltage Swing,

Output Distortion Ratio

(7)

HA16631 P, HA16631MP

2.5 !IF

18

2 17

3 16

4 15

5 14

6 13

7 12

8 11

9 10

1.6k0

6.4k0

12V VoutR (0)

Vin =5 m Vrms f

=

250 kHz

Av Vout

1---.---< l 5 v 2 Vin Re Rrx

re+ =Am

7iir -1 500

= VoutO _ VoutR 1 Rex=500n

Figure 3 Pre-Amplifier Section Effective Emitter Resistance (Pins 3 and 4)

llBI

,._._

18 12V

2 17

3 16

4 15

4V 5 14

6 13

7 12

8 11 5V

9 10

1.6k0

6.4k0 Measure llR2 in the same way.

Figure 4 Input Bias Current

(8)

Vin 51 n

2.5µF 4V

2.5 µF

4V

18

2 17

4V

3 16

4 15

5 14

6 13

7 12

8 11

9 10

1.6k0

6.4k0

1 - - - < ) 12 v

1---,V~R (0)

---<1

5 v

V VoubR • Riex IN

=

Vout :.. Vout R

Rjex

=~ VOOfFr -1 Riex = 100 kn

Figure 5 Input Resistance

18 12 v

2 17 Vout R

1~:1

loo)

3 16

4 15

5 14

6 13

7 12

8 11 5V

9 10

Vout = Vo~ - V~ut R • Roex out

= Roex (Vout 00NoutR-1) 1.6k0

Roex = 500'1 6.4k0

Figure 6 Output Resistance

(9)

HA 16631 P, HA 16631 MP

4V 18 12V

2 17 V11

3 16 V1&

4 15

5 14 Voo = I V11 - V1s I

6 13

7 12

8 11 5V

9 10

1.6k0

6.4k0

Figure 7 Differential Output Offset Voltage, Common Mode Output Voltage

4 v 1 8 t - - - < J

~-.... 2 17.__~---f

3 16

4 15

...-~5 14

6 13

,..---~ 7 12t---.

8 11 t - - - - 1 1 - - · u 5 V

...-~g 10

1.6 kO

6.4k0

Measure pin 16 in the same way.

Rco: V11 (oo)

{V11(00)-V1.,(R)J :;0.1 V

Figure 8 Output Source Current

(10)

18 12V

2 17

-

3 5V

4 15

4V 5 14

6 13

7 12

8 11 5V

9 10

1.6k0 Measure pin 12 in the same way.

6.4k0

Figure 9 Output Sink Current

500

18 Vcc2

2 17

~

500 ~ + 3kO

3 16

4V - + 4 15

10mF

5 14

200pF

6 13

7

8 11 Vcc1

9 10

Fluke 8375A Digital Multimeter.

Figure 10 Power Supply Rejection Ratio

(11)

HA16631 P, HA16631 MP

2.5 µF

Vin 51 n

4V

2 3 2.5µF

4 5 6 7 8 9

1.6k0

6.4k0

18 ' t - - - 1 . J 12 v

17 16 15 14 13 12 11 10

1 - - - n Vo11

,___ _ _ _ _ ,} Vo1&

1---<----n 5 v

Vin = 200 mVp-p f =-1.0 MHz

100 VIN CMRR = 20 log10

v

016 _

vo

17

Perform measurement using Vector Voltmeter hp8405A or equivalent.

Figure 11 Common Mode Rejection Ratio

4V 18 12 v

2 17

3 16

4 15

5 14

6 5V

7 12

8 11 5V

9 10

1.5k0

6.4k0

Measure pin 2 in the same way.

Figure 12 Differentiator Output Sink Current

(12)

4V

C1 200pF

18 12V

2 17

3 16 f = 250 kHz

4 15 Vin = 1.0 Vp-p

5 14

6 13 1kn 0.1 µF

7 12

-11

8 11 sv

200p

9 10 sv

R2 1.6 kn

R1 6.4 kn

Pin 10 tps,

Vout

~ ~

1.5V_ --- - - ·

lps2

.n...__

PS= 1/2 • tps 1 - tps2 x 100%

tps1 + tps2

Figure 13 Peak Shift

(13)

HA16631P, HA16631MP

4V

C1 200pF

C2 200pF

ov

Vout Pin 10

2

3 16

4 5

6 13

7 12

8 11

9 10

R2 1.6kn

R1 6.Bkn

l1A l1e

1.5V 1.SV

12V

1 kn 0.1 µF 400 mVp-p

"Voo,

5V

11

v ..

Vout Pin 10

tTLH = tTHL = 10 ns

f = 250 kHz 50% Duty Cyde

ttA

EnA = 1,000 ns x 100%

t1e

Ene = 1,000 ns x 100%

Et2 = t2

200 ns x 100%

Figure 14 Timing Accuracy, Rising Time, Falling Time

(14)

4V 18 12 v

2 17

3 16

4 15

5 14

6 13

7 12

8 11 4.75V

9 10 VOUT

1400µA

6.4k0

Figure 15 Output Voltage High (Pin 10)

4V 18 12 v

2 17

3 16

4 15

5 14

6 13

7 12

!

8mA

8 11 5V

9 10 Vour

1.6k0

6.4k0

Figure 16 Output Voltage Low (Pin 10)

(15)

HA16631 P, HA16631 MP

~

Differentiator Input (Pins 12 and 13)

Differentiator Output

Comparator Output

1 18

Other Pins Open

2 17

3 16

_,

4 15 ~ } 0.5V

5 14

6 13

7 12

8 11

9 10

R =

I(~~)

(kn)

Figure 17 Input Resistance

I I I I I I I

I I I I I I I

One Shot# 1 Q

I I I I I I I

---t.I si q P q r 0 r=

I I I I I

D-Flip-Flop

Q

One Shot# 2 Q Pin 10

I I I I

I I I I

I : I .--1

- . . . - - 1

I I I I

I I

I

-H-t2

0

I I I I

I I I I

I I I I

: n o o

Figure 18 Timing Waveforms

(16)

~

riQ"

~

=

~

~ \C

n

~-

5. -

=

'O

a

;" 300pF

5.6 "1

2kn

HA178M05P

10 kn

Vcc1

I I o

OataOut

-1LJL

I

)>

...

O>

O>

(..)

...

.""O

I

)>

...

O>

O>

(..)

...

3::

""O

(17)

HA 16631 P, HA 16631 MP

6

0

IO C\I

-

(\I

-

(\;

-

-

>

- - + -

E (.)

>

Cl>

O>

-

«S

0

>

-

::> a. c

Cl>

-0 0

E I c 0

E E

(.) 0

1 1

Vcc1 R

~

Vcc2R f = 125 kHz

Vin = 0.4 V

P-P ~

0 10 20 30 40 50 60 70 80

Ambient Temperature Ta (°C)

Figure 20 Timing Accuracy vs Ambient Temperature

8

7

6

1 1

Vcc1=5 V

~

VCC2= 12 V

r---...

---...

~ r----.J r--....

~ r----.J

0 10 20 30 40 50 60 70 80

Ambient Temperature Ta (°C)

Figure 21 Common-Mode Input Voltage vs Ambient Temperature

(18)

> 1.8

- I

e 1.6

>

0 Cl>

~

1.4

0

>

s 1.2

a. c:

~ 1.0 E

I

5 0.8 E E

(..) 0.6 0

0

I I

Vcc1=5 V -

VCC2= 12 V

10 20 30 40 50 60 70 80

Ambient Temperature Ta (°C)

Figure 22 Common-Mode Input Voltage vs Ambient Temperature

-

N

1.2

I .::c:.

0 0

T""

-

Cl

1.0

>

~ Cl

> 0.8

<(

...

N

I'!..

""'

"(ij c:

0.6

(.!) Cl>

O>

-

cu

0.4

0

>

0.2

100k 200k 500k 1M 2M SM 10M

Frequency f (Hz)

Figure 23 Voltage Gain vs Frequency

(19)

HA16631P, HA16631MP

6

1(,

1.05

~

u

()

:::::::

u

()

-

c

~

....

(.) :J

>-

1.00

a. g.

0.95

en

T T

Vcc1 R _ Vcc2R

0 10 20 30 40 50 60 70 80

Ambient Temperature Ta (°C)

Figure 24 Supply Current vs Ambient Temperature (1)

6

1(,

1.05

~

C\I () ()

:::::::

() C\I ()

1.00

-

c (J)

.... ....

(.) :J

>-

a. g.

0.95

en

T I

V CC1 R

---1

Vcc2R

-

~

r---... ~

~

0 10 20 30 40 50 60 70 80

Ambient Temperature Ta (°C)

Figure 25 Supply Current vs Ambient Temperature (2)

(20)

0 1.05

&-,

~ 0

>

~ >

< 1.00

·ca

c:

CJ

CJ)

g>

g - 0.95

I I

Vcc1 R _ Vcc2R

...._

-

0 10 20 30 40 50 60 70 80

Ambient Temperature Ta (°C)

Figure 26 Voltage Gain vs Ambient Temperature

~ 1.05

IO

-

C\I 'r'"

-

...

'r'"

- ~

1.00 ....

::J 0

<

0 O>

.E

c:

i= 0.95

I I

Vcc1 R

-I

Vcc2R f = 125 kHz Vin = 0.4 V

P-P -1

0 10 20 30 40 50 60 70 80

Ambient Temperature Ta (°C)

Figure 27 Timing Accuracy vs Ambient Temperature

Referenzen

ÄHNLICHE DOKUMENTE

Based on publicly available RSPO documents and data provided by suppliers, Ferrero mapped the boundaries of more than 300 of these estates, and acquired point data indicating

Two discrete WALS datasets, Order of object and verb (Dryer 2005d, WALS Map 83), and Occurrence of nominal plurality (Haspelmath 2005, WALS Map 34), are compared to frequency counts

Transcription from fusion promoters generated during transposition of transposon Tn4652 is posi- tively affected by integration host factor in Pseudomonas putida.. Effects of

Durch diese Beschaltung ist dafUr gesorgt. dai3 sich immer dann, wenn die Schalteinrichtung den MOSFET abschaltet am Kondensator eine Span- nung aufbaut, die belm

Zur Erleichterung der Betatigung ist hierbei vorgesehen, daS zur Lagerung des Endoskopschaftes (1) in dem Hyste- roskop-Adapter (2) eine Betatigungshulse (3) vorgesehen ist, die

The voltage converter, consisting of a boost control cir- cuit and a voltage converter circuit, receives clocks from the clock generator circuit and boosts the input power voltage (V

◊ When the CK counter counts 8 of shift clock input (CK input) (reads the input 8-bit serial data), the serial data taken in the command/data register is output to the display

The line count register is incremented by the CL clock once for every display line, thus generating a pointer to the current line of data in display data RAM being transferred to