• Keine Ergebnisse gefunden

Journey to the deep sea:

N/A
N/A
Protected

Academic year: 2022

Aktie "Journey to the deep sea: "

Copied!
7
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Journey to the deep sea:

Do Arctic sea-ice bacteria hitchhike on ice-algal aggregates?

Josephine Z. Rapp, Mar Fernández-Méndez, Christina Bienhold & Antje Boetius HGF-MPG Joint Research Group for Deep Sea Ecology and Technology AWI PhD Days Sylt

3rd of June, 2015

Why study bacteria?

Seawater: 105 mL-1 - 106 mL-1

Sea ice:

104 mL-1 - 107 mL-1

Sediment: 108 mL-1 - 109 mL-1 return

nutrients remineralize

organic matter

return nutrients remineralize

organic matter

return nutrients remineralize

organic matter

Key role in biogeochemical functioning of the

ecosystem

(2)

3

Knowledge on Arctic ecosystem functioning

re-drawn from Wassmann et al. 2010 and Wassmann 2011

structure and function of food webs is adequately known and published climate change impacts on marine biota have been reported

Cruise track of IceArc2012 (ARK-XXVII/3) from August to October, 2012

4

Central Arctic in 2012

(3)

4400 m

Central Arctic in 2012

bottom ice melt-pond

water

melt-pond aggregate

water under the ice

deep-sea algae deposit

152

deep-sea algae deposit

169

surface sediment holothurian

gut

Eukaryotic diversity

Actinocyclus Attheya Bolidomonas

CCMP2297 Chaetoceros Cylindrotheca Fragilariopsis

Melosira Nitzschia Paraphysomonas Pseudo-nitzschia Thalassiosira

unclassified

JR2_IB' Ac#nocyclus*

A+heya*

Bolidomonas*

CCMP2297*

Chaetoceros*

Cylindrotheca*

Fragilariopsis*

Melosira*

Nitzschia*

Paraphysomonas*

Pseudo@nitzschia*

Thalassiosira*

unclassified*

JR3_MP3W( Ac#nocyclus*

A+heya*

Bolidomonas*

CCMP2297*

Chaetoceros*

Cylindrotheca*

Fragilariopsis*

Melosira*

Nitzschia*

Paraphysomonas*

Pseudo@nitzschia*

Thalassiosira*

unclassified*

JR4_MP1AGG* Ac#nocyclus*

A+heya*

Bolidomonas*

CCMP2297*

Chaetoceros*

Cylindrotheca*

Fragilariopsis*

Melosira*

Nitzschia*

Paraphysomonas*

Pseudo@nitzschia*

Thalassiosira*

unclassified*

JR8_surSED+ Ac#nocyclus*

A+heya*

Bolidomonas*

CCMP2297*

Chaetoceros*

Cylindrotheca*

Fragilariopsis*

Melosira*

Nitzschia*

Paraphysomonas*

Pseudo@nitzschia*

Thalassiosira*

unclassified*

JR5_WUI( Ac#nocyclus*

A+heya*

Bolidomonas*

CCMP2297*

Chaetoceros*

Cylindrotheca*

Fragilariopsis*

Melosira*

Nitzschia*

Paraphysomonas*

Pseudo@nitzschia*

Thalassiosira*

unclassified*

JR7_DSAGG169, Ac#nocyclus*

A+heya*

Bolidomonas*

CCMP2297*

Chaetoceros*

Cylindrotheca*

Fragilariopsis*

Melosira*

Nitzschia*

Paraphysomonas*

Pseudo@nitzschia*

Thalassiosira*

unclassified*

JR6_DSAGG152, Ac#nocyclus*

A+heya*

Bolidomonas*

CCMP2297*

Chaetoceros*

Cylindrotheca*

Fragilariopsis*

Melosira*

Nitzschia*

Paraphysomonas*

Pseudo@nitzschia*

Thalassiosira*

unclassified*

JR11_KGut) Ac#nocyclus*

A+heya*

Bolidomonas*

CCMP2297*

Chaetoceros*

Cylindrotheca*

Fragilariopsis*

Melosira*

Nitzschia*

Paraphysomonas*

Pseudo@nitzschia*

Thalassiosira*

unclassified*

composition of Ochrophyta 18S tag sequencing, Illumina

MiSeq 300 bp paired-end reads

(4)

bottom ice melt-pond

water

melt-pond aggregate

water under the ice

deep-sea algae deposit

152

deep-sea algae deposit

169

surface sediment holothurian

gut

Bacterial diversity

Acidimicrobiia Actinobacteria Alphaproteobacteria

Betaproteobacteria Gammaproteobacteria

Deltaproteobacteria Epsilonproteobacteria

JTB23 TA18 Flavobacteriia Sphingobacteriia Verrucomicrobiae

Opitutae Phycisphaerae Planctomycetacia

others

JR6_DSAGG152, Acidimicrobiia*

Ac+nobacteria*

Alphaproteobacteria*

Betaproteobacteria*

Gammaproteobacteria*

Deltaproteobacteria*

Epsilonproteobacteria*

JTB23*

TA18*

Flavobacteriia*

Sphingobacteriia*

Verrucomicrobiae*

Opitutae*

Phycisphaerae*

Planctomycetacia*

others*

JR7_DSAGG169, Acidimicrobiia*

Ac+nobacteria*

Alphaproteobacteria*

Betaproteobacteria*

Gammaproteobacteria*

Deltaproteobacteria*

Epsilonproteobacteria*

JTB23*

TA18*

Flavobacteriia*

Sphingobacteriia*

Verrucomicrobiae*

Opitutae*

Phycisphaerae*

Planctomycetacia*

others*

JR4_MP1AGG*

Acidimicrobiia*

Ac+nobacteria*

Alphaproteobacteria*

Betaproteobacteria*

Gammaproteobacteria*

Deltaproteobacteria*

Epsilonproteobacteria*

JTB23*

TA18*

Flavobacteriia*

Sphingobacteriia*

Verrucomicrobiae*

Opitutae*

Phycisphaerae*

Planctomycetacia*

others* JR5_WUI(

Acidimicrobiia*

Ac+nobacteria*

Alphaproteobacteria*

Betaproteobacteria*

Gammaproteobacteria*

Deltaproteobacteria*

Epsilonproteobacteria*

JTB23*

TA18*

Flavobacteriia*

Sphingobacteriia*

Verrucomicrobiae*

Opitutae*

Phycisphaerae*

Planctomycetacia*

others*

JR8_surSED+

Acidimicrobiia*

Ac+nobacteria*

Alphaproteobacteria*

Betaproteobacteria*

Gammaproteobacteria*

Deltaproteobacteria*

Epsilonproteobacteria*

JTB23*

TA18*

Flavobacteriia*

Sphingobacteriia*

Verrucomicrobiae*

Opitutae*

Phycisphaerae*

Planctomycetacia*

others*

JR11_KGut) Acidimicrobiia*

Ac+nobacteria*

Alphaproteobacteria*

Betaproteobacteria*

Gammaproteobacteria*

Deltaproteobacteria*

Epsilonproteobacteria*

JTB23*

TA18*

Flavobacteriia*

Sphingobacteriia*

Verrucomicrobiae*

Opitutae*

Phycisphaerae*

Planctomycetacia*

others*

JR3_MP3W(

Acidimicrobiia*

Ac+nobacteria*

Alphaproteobacteria*

Betaproteobacteria*

Gammaproteobacteria*

Deltaproteobacteria*

Epsilonproteobacteria*

JTB23*

TA18*

Flavobacteriia*

Sphingobacteriia*

Verrucomicrobiae*

Opitutae*

Phycisphaerae*

Planctomycetacia*

others*

JR2_IB' Acidimicrobiia*

Ac+nobacteria*

Alphaproteobacteria*

Betaproteobacteria*

Gammaproteobacteria*

Deltaproteobacteria*

Epsilonproteobacteria*

JTB23*

TA18*

Flavobacteriia*

Sphingobacteriia*

Verrucomicrobiae*

Opitutae*

Phycisphaerae*

Planctomycetacia*

others*

JR1_IT' Acidimicrobiia*

Ac+nobacteria*

Alphaproteobacteria*

Betaproteobacteria*

Gammaproteobacteria*

Deltaproteobacteria*

Epsilonproteobacteria*

JTB23*

TA18*

Flavobacteriia*

Sphingobacteriia*

Verrucomicrobiae*

Opitutae*

Phycisphaerae*

Planctomycetacia*

others*

top ice

> 1% relative abundance 16S tag sequencing, Illumina

MiSeq 300 bp paired-end reads

Shared groups

Bacteria Eukaryota

12% 19% 15% 18%

1% 1%

7% 3%

1% 0%

1% 2%

(5)

9

Central Arctic sea ice, melt ponds, seawater, sediment and algal aggregates host distinct bacterial communities

Strongest differences in bacterial community structure and composition between surface and deep-sea environments

Contribution of surface-derived bacterial cells to community composition in aggregate deposits in the deep sea

Aggregates constitute link between surface and bottom bacterial communities

Transport occurs via large aggregates, sediments without aggregates have (almost) no contribution of surface cells

Summary

Central Arctic in the future?

(6)

Central Arctic in the future?

Implications

Higher productivity of sub-ice algae in the future?

Increased melt-out and export of sub-ice algae?

Higher turnover of cells between sea ice and deep sea?

Substantial changes in biodiversity and biogeochemistry of the central basins

(7)

ERC Abyss to Antje Boetius

Questions?

contact: josephine.rapp@awi.de

Thanks to …

Captain, crew and scientists of RV Polarstern expedition

ARK-XXVII/3

© Stefan Hendricks, AWI

& you

Referenzen

ÄHNLICHE DOKUMENTE

The atmospheric response to the overall sea-ice changes indi- cates a circulation pattern characterized by a dipole of low pressure over the central Arctic and high pressure over

Types of algal aggregates and their degradation stages By macroscopic and microscopic observations of the diatom composition (Fig. 3), two different types of algal aggregates

We investigated the spatial distribution of ice algal aggregates and quantified their biomass, using under-ice image surveys obtained by an upward-looking camera on a remotely

Algal aggregates underneath the sea ice of the central Arctic have been described sporadically, but the frequency and distribution of their occurrence as well as their role in

drift ice station, we observed macroscopic aggregates floating within the meltwater layer beneath sea ice and accumulating in under-ice domes, open melt ponds (Figure 2A) and

• Arctic cod and Antarctic krill may play similar key roles in transferring carbon from sea ice into the pelagic food web. • In both Polar Regions, sea ice-associated key species

Six different melt stages could be distin- guished: the dry snow stage, the melting snow stage, the onset of melt pond formation stage, the melt pond evolution stage, the peak of

 Comparing volumes of sea ice, melt ponds and surface waters, ice algae contribute most of the NPP.  NPP is not limited to the bottom part of the ice