• Keine Ergebnisse gefunden

Tree level: b ! cc̄s

N/A
N/A
Protected

Academic year: 2021

Aktie "Tree level: b ! cc̄s"

Copied!
115
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)UNIVERSITÄT ZÜRICH. Flavour physics course (PHY568) [What to expect and the future of flavour physics] Rafael Silva Coutinho May 22nd, 2019.

(2) Ideas/discussion on b → s l +l J/ (1S) (1S). P'. 5. [LHCb JHEP 02 (2016) 104]. 1 SM from DHMV. 0.5. LHCb Run 1 analysis Belle arXiv:1612.05014. 0. (2S) (2S). (). d dq 2. C7. Tree level: b ! cc̄s. b!s (). ⇤. (). C7 C9. !"#$%&$%$"'$(. −0.5. −1 0. (). ( ). C9 )"*( C10 Double-charm. +,"-(*!.#)"'$( contributions ',"#%!/01,".(&%,2(cc̄ )/,3$(,4$"('5)%2( #5%$.5,6*((. 5. 10. 15. q2 [GeV2/ c4]. 4 [m(µ)]2. q2. How to have a full understanding of the q2 for these channels? Disentangle effects of charm loop contributions, is of paramount importance to interpret these anomalous patterns R. Silva Coutinho (UZH). 2.

(3) cc̄ Effects of „Isobar‰ amplitude fit. •. At low q2on , main Impact C9e↵contribution is from the J/ψ.. Using simple B-W model, get large contributions all thestates wayparametrised down Amplitude fit using „Isobar Model‰ baseline, i.e. charmonium e↵ 2 Cq2=0. to 9 = C9 + Y (q ) by the sum of Breit-Wigners 2 [LHCb, Eur. Phys. J. C (2017) 77: 161] •. 300. At high q2Cget contribution fromLHCb heavy cc̄ resonances. e↵ large (positive) = C + Y (q 2 ) 9. 9. P. Owen. Candidates / (44 MeV/c2). •. ! Y (q ) summarises contributions from bs q̄q operators 250. Candidates / (25 MeV/c2). ∆(C9). data of the resonances that are subsequently anal10 total 200 data ysed, resolution effects are neglected. While LHCb 8 short-distance total 150 2 resonances the (2S) state is narrow, the large branching ⌘ At low the J/ 150q main culprit is nonresonant phase = 0 6 interference interference fraction means that its non-Gaussian tail is e↵ phase = π /2 background !100 Corrections to C9 ( resonances C9 ) all 4 100 significant and hard to model. The phase (2S) 2 = π conthe way down to q = 0 background 2 tamination is reduced to a negligible level by 50 strongly dependent on ! 50 Effect 0 2 requiring mµ+ µ > 3770 MeV/c . This dimuon relative0 phase with penguin mass range −is2 defined as the low recoil region 0 4 used in this −analysis. −50 4000 4200 4400 4600 3800 5 10 15 20 1000 2000 3000 4000 In order to estimate the amountq2 of back2 4 rec [MeV/ 2] [GeV /c ] mµ µm [MeV/ c2] c µµ ground present in the mµ+ µ spectrum, an unPhys. Rev. Lett. 111, 112003 (2013) 2 = 0 =maximum phase at pole + π/2 binnedPhase extended likelihood fit is per- Corrections to C9 are relevant all the way to q Figure 1: Dimuon mass distribution of data with + + formed to the K µ µ mass distribution with- Effect with penguin (Same depends conventionstrongly as this ref)on the relativefitphase results overlaid for the fit that includes con5 + out the B mass constraint. The signal shape K.A. Petridis (UoB) Experimental prospects in rare decays HF Quo Vadis 2016 6 / 24 tributions from the non-resonant vector and ax+ + is taken from a mass fit to the B ! (2S)K ial vector components, and the (3770), (4040), mode in data with the shape parameterised and (4160) resonances. Interference terms are R. Silva Coutinho (UZH) as the sum of two Crystal Ball functions [17], + −. 3.

(4) cc̄ Effects of „Isobar‰ amplitude fit. •. At low q2on , main Impact C9e↵contribution is from the J/ψ.. Using simple B-W model, get large contributions all thestates wayparametrised down Amplitude fit using „Isobar Model‰ baseline, i.e. charmonium e↵ 2 Cq2=0. to 9 = C9 + Y (q ) by the sum of Breit-Wigners 2 [LHCb, Eur. Phys. J. C (2017) 77: 161] •. 300. At high q2Cget contribution fromLHCb heavy cc̄ resonances. e↵ large (positive) = C + Y (q 2 ) 9. 9. P. Owen. Candidates / (44 MeV/c2). •. ! Y (q ) summarises contributions from bs q̄q operators 250. Candidates / (25 MeV/c2). ∆(C9). data of the resonances that are subsequently anal10 total 200 data ysed, resolution effects are neglected. While LHCb 8 short-distance total 150 2 resonances the (2S) state is narrow, the large branching ⌘ At low the J/ 150q main culprit is nonresonant phase = 0 6 interference interference fraction means that its non-Gaussian tail is e↵ phase = π /2 background !100 Corrections to C9 ( resonances C9 ) all 4 100 significant and hard to model. The phase (2S) 2 = π conthe way down to q = 0 background 2 tamination is reduced to a negligible level by 50 strongly dependent on ! 50 Effect 0 2 requiring mµ+ µ > 3770 MeV/c . This dimuon relative0 phase with penguin mass range −is2 defined as the low recoil region 0 4 used in this −analysis. −50 4000 4200 4400 4600 3800 5 10 15 20 1000 2000 3000 4000 In order to estimate the amountq2 of back2 4 rec [MeV/ 2] [GeV /c ] mµ µm [MeV/ c2] c µµ ground present in the mµ+ µ spectrum, an unPhys. Rev. Lett. 111, 112003 (2013) Limitations (e.g.): =maximum phase at pole π/2 binnedPhase extended likelihood fit is+perFigure 1: Dimuon mass distribution of data with + + overlapping resonances → sum - K Near of the contributions violates unitarity; formed to the µ µ mass distribution with(Same convention as this ref) fit results overlaid for the fit that includes con5 out the B + - mass constraint. The signal shape Non-trivial ofprospects RBWtributions distances far the2016 polevector K.A. Petridis (UoB)interpretation Experimental inat rare decays HFfrom Quo Vadis 6 / 24 from the non-resonant and ax+ + is taken from a mass fit to the B ! (2S)K ial vector components, and the (3770), (4040), mode in data with the shape parameterised and (4160) resonances. Interference terms are R. Silva Coutinho (UZH) as the sum of two Crystal Ball functions [17], + −. 4.

(5) The unbinned fit amplitude Theory of exclusive B ! M `+ ` (in a nutshell). [C. Bobeth, M. Chrzaszcz, D. van Dyk, and J. Virto ZU-TH 17/17 in preparation] +. Theory of exclusive B ! M ` ` (in a nutshell) Theory of exclusive B ! M `+ ` (in a nutshell). h i GF ↵ µ M = p Vtb Vts⇤ (A + Hµ ) u` µ v` + Bµ u` µ i5 v` + O(↵2 ) h GF ↵ p Vtb Vts⇤ (Aµ + Hµ ) u` µ v` + Bµ u` µ 5 v` + O(↵2 ) M = 2⇡ 2⇡h i 2mbµq⌫ GF ↵ µ ⇤ µ µ µµ⌫ 2 A = C hM |s P b|Bi + C hM |s PL b|Bi p M = V V (A + H ) u v + B u v O(↵ ) 7 R 9 2m q µ µ 5 tb ` ` ` ` ts b ⌫ µ µ⌫ µ 2 Local: q 2 C7 hM |s PR b|Bi + C9 hM |s PL b|Bi = 2⇡ A Local: µ. q. µ. Form-factors. q10 ⌫ hM |s µµ⌫ bC B= Bµ =2m PPLb|Bi b|Bi µ = C hM |s P C hM |s b|Bi + C hM |s PL b|Bi 10 L 7 R 9 2 Local: Z q 22 X Z X 16i⇡ µ iq·x µ 16i⇡ µ µ µ= 4 4 xiq·x µ Non-Local: H C d e hM |T {J Oi|Bi (0)} |Bi B =H C10=hM |s2 2 PL b|Bi Cii d x e hM |T {Jem (x), Non-Local: Oi (0)} em (x), q q i=1..6,8 Z i=1..6,8 Aµ. 16i⇡ 2 X 4 iq·x µ Non-Local: H = C d x e hM |T {J i em (x), Oi (0)} |Bi theory issues: 2 Two Two theory issues: q i=1..6,8 1. form factors (LCSRs, symmetry relations ...) ...) 1. form factors (LCSRs,LQCD, LQCD, symmetry relations hadronic contributions Two theory issues:hadronic contribution Non-local(SCET/QCDF, 2. nonlocal OPE, LCOPE . . . ) 2. nonlocal hadronic contribution (SCET/QCDF, OPE, Page 3 . . . ) 1. form 01.06.2017 factors (LCSRs, LQCD, symmetry relations . . . LCOPE ) 01.06.2017 Page 3 2. nonlocal hadronic contribution (SCET/QCDF, OPE, LCOPE . . . ) µ. 01.06.2017. R. Silva Coutinho (UZH). Page 3. 5.

(6) The unbinned fit amplitude Theory of exclusive B ! M `+ ` (in a nutshell). [C. Bobeth, M. Chrzaszcz, D. van Dyk, and J. Virto ZU-TH 17/17 in preparation] +. Theory of exclusive B ! M ` ` (in a nutshell). h i GF ↵ µ M = p Vtb Vts⇤ (A + Hµ ) u` µ v` + Bµ u` µ i5 v` + O(↵2 ) h GF ↵ p Vtb Vts⇤ (Aµ + Hµ ) u` µ v` + Bµ u` µ 5 v` + O(↵2 ) M = 2⇡ 2⇡ 2mb q⌫ µ µ⌫ µ A = C hM |s P b|Bi + C hM |s PL b|Bi 7 R 9 2m q b ⌫ µ µ⌫ µ 2 Local: q 2 C7 hM |s PR b|Bi + C9 hM |s PL b|Bi A = Local: µ. q. µ B Bµ = = C10 hM |s P b|Bi C10 hM |s µ PLLb|Bi Z 22 X Z X 16i⇡ µ µ iq·x µ 16i⇡ 4 4 xiq·x µ Non-Local: H = C d e hM |T {J Oi|Bi (0)} |Bi Non-Local: H = Cii d x e hM |T {Jem (x), Oi (0)} em (x), 2 2 q q i=1..6,8 i=1..6,8. theory issues: Two Two theory issues: 1. form factors 1. form factors 2. nonlocal hadronic contribution 2. nonlocal hadronic contribution 01.06.2017 01.06.2017. R. Silva Coutinho (UZH). (LCSRs, symmetry relations ...) ...) (LCSRs,LQCD, LQCD, symmetry relations (SCET/QCDF, OPE, LCOPE . . . ). (SCET/QCDF, OPE, LCOPE Page 3 . . . ). Page 3. 6.

(7) Preliminary results [C. Bobeth, M. Chrzaszcz, D. van Dyk, and J. Virto ZU-TH 17/17 in preparation]. Predictions from the model for PÊ5. Global fit using information from B → K*γ, µ+µ-, J/ψ and ψ(2S). Promising result: for the firsttime, fits gain sensitivity to interresonance bin. Pull in parameter C9: 4.9σ. R. Silva Coutinho (UZH). 7.

(8) Obtaining information from high q2 In addition to the task to understand the contributions from the most pronounced charmonium resonances, it is crucial to go above this threshold. What are the non-resonant contributions from the double-charmed component? How to experimentally obtain more information on this? Theorists interest in using this information in global fits. [LHCb, PRL 111, 112003 (2013)]. Candidates / (25 MeV/c2). Above ψ(2S), there are already known contributions measured by LHCb. LHCb 150 (3770) 100. (4160). (4040). data total nonresonant interference resonances background. 50 0 3800. 4000. 4200. 4400. 4600. mµ+µ− [MeV/c2]. R. Silva Coutinho (UZH). 8.

(9) Obtaining information from high q2 In addition to the task to understand the contributions from the most pronounced charmonium resonances, it is crucial to go above this threshold. R. Silva Coutinho (UZH). 9.

(10) or new physics Lepton flavour universality. Albert Puig 6. typically with rare decays In the SM, leptons are identical copies of one another so processes involving e, corrections at up to Higgs corrections and lepton-massµ, τ mustfrom have thephysics same strength. chesdependent for new physics phase space effects SM. W. Albert Puig 6. or NP are typically with rare decays u, c , t uantum corrections µfrom physics at /Z = 1 + O(10 ) µ s b. s. +. 0. s. 3. SM. b. W. s. edµ+to predict theuexistence of new particles before , c, t + µ e sible Proton Neutron /Z µ +. 0. e µ. Measurements of LFU constitute a theoretically very clean way to access the NP effects. beenR.used to predict the existence of new particles before Silva Coutinho (UZH). 10.

(11) or new physics Lepton flavour universality. Albert Puig 6. typically with rare decays In the SM, leptons are identical copies of one another so processes involving e, corrections at up to Higgs corrections and lepton-massµ, τ mustfrom have thephysics same strength. phase space effects chesdependent for new physics. NP. g̃. Albert Puig. or NP are typically with rare decays uantum corrections µfrom physics at H = 1 + O(10 ) µ s b. s. +. +. s. 3. NP. g̃. s. edµ+to predict the existence of new particles before + µ e sible Proton Neutron H b. +. µ. +. eµ. Measurements of LFU constitute a theoretically very clean way to access the NP effects. beenR.used to predict the existence of new particles before Silva Coutinho (UZH). 11.

(12) or new physics Lepton flavour universality. Albert Puig 6. typically with rare decays In the SM, leptons are identical copies of one another so processes involving e, corrections at up to Higgs corrections and lepton-massµ, τ mustfrom have thephysics same strength. phase space effects chesdependent for new physics. NPq. q. g̃. Albert Puig. K , K ⇤ , .... or NP are typically with rare decays B , B , ... uantum corrections µfrom physics at H = 1 + O(10 ) µ s b. s. 0. +. +. s. 3. NP. g̃. q. s. K , K ⇤ , .... edµ+to predict the existence of new particles before eµ+ sible Proton Neutron H b. +. µ. +. eµ. Measurements of LFU constitute a theoretically very clean way to access the NP effects. beenR.used to predict the existence of new particles before Silva Coutinho (UZH). 12.

(13) RK. BaBar. LHCb. BaBar. 2 1. 1.5 [LHCb, PRL 113 151601 (2014)] 0.5. R. + with + In 2014, a discrepancy observed in the ratio of branching B( +of 2.6σ )the SM was + . 1 = = . ± . +µ- with + + fractions of B+ → K respect 0 B(+µ+ )K to B+ →. K+e+e0. B( = B(. +. + +. +. + +. ) = . ). + . .. RK. d in the ratio of branching fractions +µ+µ- with respect to B+→K+e+e= + O( + + + +. ) = . ). + . .. ± .. 2.6σ ten. 5. 1. 0.5. = + O( a discrepancy of 2.6σ with the SM was. +. LHCb. 2 1.5. RK. In 2014, a discrepancy of 2.6σ with the SM was observed in the ratio of branching fractions of B+→K+µ+µ- with respect to B+→K+e+eIn 2014, a discrepancy of 2.6σ with the SM was RK - Lepton flavour universality observed in the ratio of branching fractions of B+→K+µ+µ- with respect to B+→K+e+e-. [Belle, PRL 103 (2009) 171801] 2.6σ ten [BaBar, PRD 86 (2012) 032012] [LHCb, PRL0113 0 (2014) 151601] 5 1. ± . −. ). LHCb. BaBar 48. 2 − 1.5. Belle. [. LHCb ) 48. 1. SM. 0.5. o is expected to be very close to unity = + O( R. Silva Coutinho (UZH). −. ). 2.6σ tension with the SM. 0 0. 5. 10. 15. 20. q2 [GeV2/ c4] [Bobeth et al, JHEP 12 (2007) 040] 13.

(14) old RK*: a new intriguing piece THE RK* MEASUREMENT [LHCb, LHCB-PAPER-2017-013]. Similar to the RK measurement we use the double ratio of the rare to the J/ψ channel to reduce systematic uncertainties: • In LHCb we use the double ratio of the rare to the J/ψ channel to reduce systematic uncertainities:. • Theof measurement boils down to determining: The concept the measurement is precisely rather simple and depends on the precise - yields for each channel determination of for each channel - efficiencies • All other factors (luminosity, cross section) cancel in the ratio. Yields for each channel (both signal and resonant mode) • Most of difficulties arechannel on the electron channel side Efficiencies for each (data-driven) Francesco Polci. LHCP, Shanghai, 15-21 May 2017. All other factors (luminosity, cross section) cancel in the ratio. 6. Extremely challenging due to significant differences in the way µ and e „interact‰ with the detector R. Silva Coutinho (UZH). 14.

(15) Muon reconstruction. MUON RECONSTRUCTION MUON RECONSTRUCTION 50. 60. σµ+µ− [MeV/c2]. σµ+µ− [MeV/c2]. • Extremely performant in LHCb: • Extremely performant in LHCb: Extremely good performance of LHCb: - dedicated muon chambers - dedicated muon chambers -- very efficient tracking system. dedicated muon chambers - very efficient tracking system.. 60. Phys. Rev. Lett. (2013) Phys. Rev.11 Lett. 11 (2013). very efficient tracking system. • A- muon is a clear trigger signature: • A muon is a clear trigger signature: 30 fortrigger di-muon channels 30 ε(L0+HLT)= ~90% for di-muon channels A ε(L0+HLT)= muon has~90% a clear signature: ε(L0+HLT)= ~30%~30% for multibody hadronic statesstates ε(L0+HLT)= for multibody hadronic 20 - ε(L0+HLT)= ~90% for di-muon channels 20 . ψ(2s) . ψ(2s) . .J/ψ • Very good good di-muon resolution J/ψ Very di-muon - • ε(L0+HLT)= ~30% for resolution hadronic states 10 10 40. 0 2 0 -2. LHCb LHCb 400. 10. 400s) ψ(2s) ψ(2. 300. 300. 200. 200. 100. 100. 5. 0 2 0 -2 3050. 0 2 0 -2 3100 3150 3600 3050 3100 3150 2] mµ+µ− [MeV/ c mµ+µ− [MeV/c2]. Francesco Polci Polci Francesco. R. Silva Coutinho (UZH). ×103. 3. 0 2 0 -2 3650 3600. LHCb LHCb 400 300 200 100. Candidates / (20 MeV/c2). 3. 500 ×10 500 ×10. 6 15 ×10. Candidates / (20 MeV/c2). 5. Candidates / (10 MeV/c2). Candidates / (10 MeV/c2). 10. 6. 0 2 0 -2 3700 3750 3650 3700 37509000 2] mµ+µ− [MeV/ c mµ+µ− [MeV/c2]. Υ(1s). 40. 4000. 15 ×10. . Υ(3s) . Υ(3s) . . Υ(2s). .Υ(2s). LHCb LHCb. 50. 6000 4000. 8000 6000. ×103. 400. Υ(1s) Υ(1s). Υ(1s). 10000 12000 12000 8000 10000 2 mµ+µ− [MeV/ mµ+cµ− ][MeV/c2]. LHCb LHCb. 300. Υ(2s) Υ(2s) Υ(3s) Υ(3s). 200 100 0 2 0 -2 9000 9500. \. 950010000. LHCP,LHCP, Shanghai, 15-21 May Shanghai, 15-212017 May 2017. 1000010500 1050011000 11000 2 mµ+µ− [MeV/ m +c − ][MeV/c2] µ µ. 7. 7 15.

(16) ELECTRON RECONSTRUCTION Electron reconstruction. • Identified through the electromagnetic calorimeter: sstrahlung −I. [LHCb, LHCB-PAPER-2017-013] σE 10% (Int. J. Mod. Phys. A 30 (2015) 1530022) ~ 1% ⊗ E(GeV ) degraded by energy lossE frominbremsstrahlung: mount Resolution of bremsstrahlung that results. ECAL :. mass resolutions • Resolution by energyphotons loss from Recoverydegraded of bremsstrahlung canbremsstrahlung: not be 100% efficient Significantofdegradation of the photons B mass resolution with a tail on the left - recovery bremsstrahlung can not be 100% efficient Large contribution from of partially reconstructed backgrounds ng - significant degradation the B mass resolution with a tail on the left - large contribution from partially reconstructed backgrounds. me on ed. 0.002 < q2 <1.120 GeV2/c4. Upstream brem. ent n ter. Downstream brem. JHEP 04 (2015) 064 Air. • Study in exclusive bremsstrahlung categories: Novel techniques to mass resolution - different resolutions, different⁄purities. Francesco Polci. R. Silva Coutinho (UZH). LHCP, Shanghai, 15-21 May 2017. [LHCb, PRL 113 151601 (2014)] 8 16.

(17) Electron reconstruction [LHCb, LHCB-PAPER-2017-013]. Resolution degraded by energy loss from bremsstrahlung:. 16 LHCb 10−3. 14 12. ln(χ2VD). ln(χ2VD). Recovery of bremsstrahlung photons can not be 100% efficient Significant degradation of the B mass resolution with a tail on the left Large contribution from partially reconstructed backgrounds 16 10−3. LHCb 14 12. 10−4. 10. 10−4. 8. 8 10−5. 6 4 2000. 10. 4000. mcorr. 6000. (K +π −e+e−). 8000. [MeV/ c2]. 10−5. 6 4 2000. 4000. mcorr. 6000. (K +π −e+e−). 8000. [MeV/ c2]. Novel techniques to mass resolution ⁄ R. Silva Coutinho (UZH). 17.

(18) The B0 → K*0[K+π-]l+l- signal J/ J/ (1S) (1S). Measurement performed in two regions of the q2:. (2S) (2S). (). d dq 2. C7. (). (). C7 C9. low-q2 [0.045, 1.1] GeV2/c4 central-q2 [1.1, 6] GeV2/c4. !"#$%&$%$"'$(. (). C9. +,"-(*!.#)"'$( ',"#%!/01,".(&%,2(cc̄ )/,3$(,4$"('5)%2( #5%$.5,6*((. 4. 10. 103 102 10. 5000. R. Silva Coutinho (UZH). 5500. 6000. m(K +π −µ +µ −) [MeV/ c2]. 1. q2 [GeV2/ c4]. q2 [GeV2/ c4]. 4 [m(µ)]2. 20 LHCb 18 16 14 12 10 8 6 4 2 0 4500. 20 LHCb 18 16 14 12 10 8 6 4 2 0 4500. ( ). )"*( C 10. q2. 102. 10. 5000. 5500. 6000. 1. m(K +π −e+e−) [MeV/ c2]. 18.

(19) The B0 → K*0[K+π-]l+l- signal J/ J/ (1S) (1S). Measurement performed in two regions of the q2:. (2S) (2S). (). d dq 2. C7. (). (). C7 C9. low-q2 [0.045, 1.1] GeV2/c4 central-q2 [1.1, 6] GeV2/c4. !"#$%&$%$"'$(. (). C9. +,"-(*!.#)"'$( ',"#%!/01,".(&%,2(cc̄ )/,3$(,4$"('5)%2( #5%$.5,6*((. 4. 10. 103 102 10. 5000. R. Silva Coutinho (UZH). 5500. 6000. m(K +π −µ +µ −) [MeV/ c2]. 1. q2 [GeV2/ c4]. q2 [GeV2/ c4]. 4 [m(µ)]2. 20 LHCb 18 16 14 12 10 8 6 4 2 0 4500. 20 LHCb 18 16 14 12 10 8 6 4 2 0 4500. ( ). )"*( C 10. q2. 102. 10. 5000. 5500. 6000. 1. m(K +π −e+e−) [MeV/ c2]. 19.

(20) RK* yields [LHCb, LHCB-PAPER-2017-013]. 5 0 −5. 5200. 5200. 5400 5400 5400. Low. q2. 5400. π µ µ 5600. 5. 5800. m(K π µ µ ) [MeV/c ]. LHCb. 700 B. + −. →*0Kµ +µµ− µ B →K Combinatorial Combinatorial. 60. −5 5600 5200 5600 20. 50. 5800 5400 5800. −) [MeV/ m(K c2] c2] m+(π K−+µπ+−µµ−+)µ[MeV/. 10. 5600 5800 5600 + − + − 5800 2 5m+(K π+µ µ −)µ[MeV/ ) [MeV/ −µ 2] c ] 5200 m(K π c5400. ± 18 : 285 ± 18 Low q : 285Central ±±Central 21 0 Low q : 353 285 18 58005800 −5600 5 5600 m(K π µ µ ) [MeV/c ]. m(K +π −µ +µ −). [MeV/c2]. 50. 3. K µ µ B →KB → J /ψ →2K *0µ +µ − arXiv:1705.05802 B0→K *0J / ψ 2 450 20 arXiv:1705.05802 1.1< q <6.0 [GeV / c ] Combinatorial Combinatorial Combinatorial 40 ×103 3Combinatorial 40 ×50 40 0 10 + 50 0 80 Λ → K p J / ψ 60 Λ →K +p J / ψ b 103 60 40 × 300b LHCb LHCb *0 10 0 40 30 30 LHCb LHCb Bs →K 0 J / ψ*0 + − 70 B →K *0J / ψ 80 60 *0 0 − 0 +µ + *0 K µ µ 50s 0B →*K 0 B → µ 30 − LHCb LHCb 2 30 2 50 4 → µ2[GeV µ B→ ψ / c4] 200 2B 0.045< q2K <1.1 q2K<6.0J /[GeV 60q2<6.0 20 1.1< 201.1< *0 2/ c4] *0 1.1< q70 <6.0 [GeV / c4] / c ] 0 [GeV 50 Combinatorial Combinatorial5 B 20B →K µ +µ − 20 Combinatorial Combinatorial 40 →K J / ψ 60 50 40 5200 5400 5600 58000 5200 Combinatorial 5400 10 10 10Combinatorial + 10 10 40 Λ →K p J / ψ 0 50 40 m(K +π −µ +µ −) [MeV/0bc2] *0 300→K +p J / ψ Λ 30 → K J / ψ5800 5400 5 50b 5200 5 5200 5 5600 5 Bs5200 −5800 5 *0 5600 40 5600 58005800 5400 5600 5200 5400 58005400 5600 5800 5400 30 3056005200 B 22 4 2 +2+ +− − [GeV 0s → + −q + −q2+<6.0 + −K + J− / ψ 020 0m(K +5600 −µ−+µ[GeV 0Km 0K +µ −)c2 20 2/]c4] c2]5200 −µ +µ −) [MeV/ c2] 2−) 5400 5200 5800 5400 0.045< <1.1 / c ] 1.1< 2 4 ( K π [MeV/ c ] m ( K π µ [MeV/ m ( π µ µ ) [MeV/ c ] m ( π µ µ ) [MeV/ π m ( K π µ µ ) [MeV/ c2] 1.1<30 q <6.0 [GeV / c ]. 5200 5400 5 5200 5800 5400 0 5 5800 2 m(K0+π −5200 µ +µ −) [MeV/ c2]5400 2 0−5 5600+ − + − −5 m5200 (K π µ µ ) [MeV/ c2] 5400 5600 5800 5200 5400 −5 5600 5800 + − 5200 + − 25400 5600. ×10 60. 10 MeV/per c2 10 MeV/c2 Pulls Candidates Candidates Pulls per. 5200. 5400. Pulls Candidates per 10 MeV/c2. 405 5200 300 −5 20 5200 10. 70 *0 + − 0 70 60 60 50 90 8050 4040 80 10 70 30LHCb 70 30 2 4 0 2<1.1*0[GeV q /c ] + − 600.045< 2020 60 B →K µ µ 5 5800 50 Combinatorial 50 2 1010 0 m(K ) [MeV/ 4040c ] 5 5 5200 −5800 5 5200 5400 5600 5400 30 0 m(K +π −µ +µ −) [MeV/ c2] 0 30 − 5 −20 50.045< 2 4 205200 + − 5800 q2<1.1 [GeV /c ] + −5400 25200 5600 5800 5600 5200 5400 5400 1010 m(K +π −µ +µ −) [MeV/c2] m(K +20 π −µ +µ −) [MeV/c2] 10 5. 3. 60 B. 0. 52 −5 −20 2 4 +[GeV 1.1< q <6.0 / c+5800 ] 5400 − 5400 − 5600 5200 5200 10 10 + − + − 2 5. + − + −) [MeV/ 5200 54002 m(m K(+Kπ −πµ +µµ −µ ) [MeV/c2]c ]. *0. − 205. 2 56005200 5600. m(K π µ µ ) [MeV/ c] + − ++ − −. m(K π µ µ ) [MeV/c ]. q2 0: −5. 0. 5. 5200 5200 05600. + −. 58005400 5800. 50. −5 5600 10 5200. 5800 5400. +µ −) [MeV/ m(K10 πm(µK µπ ) µ[MeV/ c2] c2] m(K +π −µ +µ −) [MeV/c2]. 5400 5400 5800. 5600 5600. 5800 5800. −556005600. 58005800. 5. 5200. 5400. −µ +µ −) [MeV/ 2 +m(−K + 5200 5600 K353 π µ +πµ −J/ c2] c ] ψ region :05274K region 353 21 −5 + J/ − + − + − J/5800ψ2 Central q2:05m:(274K ±) [MeV/ 215400 −± +ψ − 2. m(K π µ µ ) [MeV/5400 c] 52005200 5400 5600 5800. m(K +π −µ +µ −). [MeV/c2]. + − + − 5400 2 +5200 −µ + πµ −µ) [MeV/ µ ) [MeV/ m(K m π(K c2] c ]. Candidates perper3434MeV/ MeV/cc2 2 Pulls Candidates. 5400. 30 B2/ c4]→ µµ B →K K µ µ 0.045< q <1.1 [GeV Combinatorial B → K µµ 20. 3. 10 MeV/c2per 10 MeV/c2 Pulls Candidates PullsperCandidates. 70 60 50 90 40 80 30 70 60 520020 10 50. 2 Candidates Pulls per 10 MeV/per c2 10 MeV/c Pulls Candidates Candidates 10 MeV/per c2 10 MeV/c2 Pulls per Pulls Candidates. B → K µµ. 90 800 *0 + − 0B70 →K µ2 µ*0 Combinatorial 60 50 LHCb 90 40 0 B →K *0µ +µ − 30 0.045<80q2<1.1 [GeV2/ c4] Combinatorial 70 20 5600 60 10 + − + − 50 5 5200 5600 5800 5400 −µ +µ −) [MeV/ 2 4c2] m(40 K0q+2π<1.1 0.045< [GeV /c ] −30 5. LHCb. 10 MeV/c2per 10 MeV/c2 PullsperCandidates Pulls Candidates. *0. B 0 → K µµ. Candidates perper3434MeV/ MeV/cc2 2 Pulls Candidates. 90. 0 80. 80. B0→K *0J / ψ 60 Combinatorial Combinatorial arXiv:1705.0580240arXiv:1705.05802 arXiv:1705.05802 → K *0 µµ 50 R YIELDS R YIELDS K* Λb0→K +p J / ψ ×10 K* × 10 × 10 RK* YIELDS 80 *0 60 40 30 8090 80 60 60LHCb LHCb LHCb Bs0→K J / ψ LHCb LHCb LHCb LHCb 80 70 0LHCb *0 *0 *0 *0 0 arXiv:1705.05802 0 0. B Combinatorial *0 B0 Candidates Pulls per 10 MeV/per c2 10 MeV/c2 2 Pulls Candidates Candidates Pulls per 10 MeV/per c2 10 MeV/c Pulls Candidates. B 0 → K *0 µµ. LHCb RK* YIELDS RK* YIELDS 70 RK* YIELDS *0 + − 0 B →K µ µ Pulls Candidates per 10 MeV/c2. →K *0µ +µ −. 0. Pulls perCandidates 10 MeV/c2per 10 MeV/c2 Pulls Candidates. 5 0 −5. LHCb. 10 MeV/per c2 10 MeV/c2 Pulls Candidates Candidates Pulls per. 90 80 70 60 50 40 30 20 10. B →K J / ψ Combinatorial Λb0→K +p J / ψ LHCb B0s0→K**00J / ψ B →K J / ψ Combinatorial + 5600 5800 Λb0→ K+ pJ /ψ 0m(K*0π −µ +µ −) [MeV/ c2] Bs →K J / ψ 5600. 5800. + − + − m(K5600 π µ µ ) [MeV/ c2] − 5600 + − + 5800. 5800. m(K π µ µ ) [MeV/c2]. m(K +π −µ +µ −) [MeV/c2] 5600. 5800. π µ µ ) [MeV/ c ] regionm5600 :(K 274K m(K π5200 µ µ ) [MeV/ c ]5400 5800 5600. 5800. m(K +π −µ +µ −) [MeV/c2]. + − + −. 2. m(K +π −µ +µ −) [MeV/c2]. B →K e e 10 Combinatorial B→ →Xe→e 10 B→ →K J / ψ →10. Candidates perCandidates per 3434MeV/ MeV/ c34 c2 234MeV/ Pulls Candidates Candidates perper MeV/cc2 2 Pulls. 2 Candidates perper34 34MeV/ MeV/ cc2per Pulls Candidates Candidates Candidates per 3434MeV/ MeV/cc2 2 Pulls. 25 →K e e 35LHCb 25 LHCb LHCb LHCb 100 B Signal 10 0 *0 + − 10 0 30 B →K *0*0 e+e− 25 B → K e e Combinatorial 20 Signal 0Signal *0 20. Candidates Candidates percper MeV/cc2 2 2 34MeV/ Pulls Candidates perper 3434MeV/ MeV/ c234 Pulls Candidates Candidates perper MeV/cc2 2 Candidates perCandidates per 3434MeV/ MeV/ c34 c2 234MeV/ Pulls Pulls Candidates. 2 34MeV/ Candidates Candidates per MeV/ccc2c222 Pulls Candidates per per 34 MeV/ MeV/ cper c2c234 Pulls Candidates 234MeV/ Candidates per per MeV/ Pulls Candidates perCandidates per 3434 34MeV/ MeV/ c34 Pulls Candidates. 25. 10. 23434MeV/ Candidates Candidates per MeV/cc2 2 Pulls Candidates perper34 34MeV/ MeV/ cc2per Pulls Candidates. 20. 23434MeV/ Candidates Candidates per MeV/cc2 2 Candidates perper34 34MeV/ MeV/ cc2per Pulls Pulls Candidates. 0 *0 0 *0 0 *0 35 8000 B → K ee B → K ee 2 : 353 ± 21 2 B → K ee q2 : 285 LHCb : 274K LHCb LHCb Low ± 18 Central q LHCb 3 J/ ψ region 274K Low q : 285 ± 18 Low Central 353 21 2 2 10 J/ψ region : 274K J/ψ regionLHCb q − : 285 ± 181030 Central q : 353 ±0 21 *0 + − 10 LHCb 7000 *0 + 0 0 Signal. 25. 2 Candidates perper 3434MeV/ MeV/ c234 Pulls Candidates Candidates Candidates percper 34MeV/ MeV/cc2 2 Pulls. Candidates perper3434MeV/ MeV/cc2 2 Pulls Candidates. Pulls Candidates per 10 MeV/c2. 3. 8000 8000 8000 LHCb 35 LHCb 3LHCb LHCb 3 LHCb 3 LHCb LHCb 7000 6000 LHCb 7000 *0 + − 0 *0 0 7000 Signal B00→K **00J / ψ B → K e e * 0 0 B → K J / ψ Combinatorial 30 0 B *→ 0 K e+e− Signal B →K J / ψ 6000 B →K J / ψ 6000 2Combinatorial 2 Combinatorial Combinatorial 6000 Combinatorial Combinatorial 25 Combinatorial + − + − *05000 5000 2 0 25 0 Combinatorial Combinatorial Combinatorial Combinatorial + − + *0 ( Combinatorial 0 + − X Combinatorial + − 5000 + * 0 Combinatorial 0 B YK ) ee + 0 − 15 Λ 20 B→ →Xe X(→eYK )ee B→Xe e Λb0→B K0+p J / ψ + −)ee 5000 B Xe eYK Combinatorial → X(→ + − *0 20→ b0→K +p J / ψ 2015 B→Xe e B → Xe e → Xe e → X ( → YK ) ee 8000 * 0 0 * 0 0b→K*0p J / ψ 4000 Λ 8000 20 35B0 →K*000 J / ψ *0 0 25 B0→ Xe+e− 0b→K*0p J / ψ 4000 0 4000 Λ +0− *0*0 35 + 0 B → K − 8000 LHCb BLHCb →K00*0J / ψ → ee)J/ ψ ( LHCb B →0KK J/ Jψ/+(ψ LHCb LHCb 35→ LHCb 3 s0 25→ Xe e 4000 B →− ee) LHCb *0J / ψ *0*0 LHCbB10 3LHCb LHCb 15 LHCbB → K B J/ ψ(2K ee) 15 B → LHCb LHCb B LHCb 3Bs0→ B 0→ K/Kψ*J0/ Jψ+/(ψ → ee) 7000 3000 B → K J /ψ *0e + − LHCb 0→ Xe 7000 15 *0 + − 2 4 * 0 3000 K J 02 0 * 0 15 2 s 0 − 30 2 4 2 4 s LHCb + − 7000 30 2 Signal B Ke e/ c4e] 2B 10 *0 + /−c ] 0 B K/ ψe 3000 e2 4 Signal 0.045< q0→ <1.1 Bq→ K [GeV e e /c ] B 0→ K→ 1.1<qB <6.0 →→ K 3000 30 0.045< <1.1 1.1<q10 <6.0 [GeV *0J Signal K *0[GeV e+e− / c ] B00→K **00J / ψ Signal →2K[GeV ee 2<6.0 2 1020 2 6000 6000 0.045< q2<1.1 [GeV2/ c4] 2000 2000 B → K J / ψ 20 1.1< q [GeV / c ] −Signal 1 6000 2 4 B 4 Signal − 1 2 B → K J /ψ 2 − 1 10 25 Combinatorial Combinatorial Combinatorial 5 Combinatorial Combinatorial Combinatorial 2 Combinatorial 2000 −251 Combinatorial 25 Combinatorial Combinatorial Combinatorial 10 50Combinatorial 1000 5000 515 *0 5 Combinatorial Combinatorial + − 5000 − 1 0 −*0 Combinatorial 0 0 + + − 2000 + + 1000 − − 1 Combinatorial + 5000 + * 0 0 + B → Xe e − B→ −1 205B→ B15→Xe e Λb0→ K →Xe Xp(J→/eψ YK )ee − B→ →Xe X(→eYK )ee 20 B→Xe e 1000 →Xe X(→eYK )ee 20 0 0 *0 + −Λ10b0→K*+0p J / ψ 0p*0J*0/ ψ 0K*+ 4000 4000 Λs0b→ → *0 − 5000 50→ Xe+e− 5B 0K 5 0B 40004500 Λsb→ →K p J /6000 ψ 5 5500B00→K*0*0J5000 5 5500B0→ Xe+e−5000 6000 5 5000 5500 B → K J / ψ 4500 6000 J / ψ → Xe e(ψ B → K J / B → K J / ψ ( → ee) 5500B4500 6000 5000 4500 5500 6000 4500 5500 6000 B → K J / ψ → ee) B 0 / ψ * 0 B → K J / ψ ( → ee) 15 154500 1000 0 5 m(K +π −e+e−) [MeV/ 50K +πK−e*+0eJ−)/ ψ 5m(K +π −e+e−) [MeV/ 15 +→ − −m 20(K −5500 2(0K +π −e+e−) [MeV/ −eK 5000 c2] 6000 2 +e−) J 2] 4500 5000c2] 5500 6000 m (4500 [MeV/5000 c2] 2] 3000 −3000 20 −2010 B / ψ 10 m−2 (5K2+π −e+e−) [MeV/ π [MeV/ c m c 2 2 2 4c ] s 3000 B → K J / ψ 2 2 4 2 4 2 4 2 4 −4500 51.1<q −q 5m 26000 −e+e[GeV −[GeV 0.045< −)/ c −) [MeV/ / c ] c2] 0.045< q <1.1 [GeV /5000 c5000 ] −4500 51.1< 1.1< <6.0 ] / c c]2] −− 50.045< 6000 5500 6000 205500 −20s 4500 5000 5500 −10 20q2<6.0 [GeV (Kq+<1.1 π[GeV [MeV/ m(<6.0 K +π 6000 e+e5000 q2<1.1 [GeV /c ] / c4] 55004500 6000 5000 5500 4500 5000 5500 6000 10 4500 5500 6000 4500 5000 5500 6000 4500 5000 5500 6000 10 5500 6000 4500 5000 5500 6000 4500 5000 5500 6000 2000 2000 −−4500 51 + − + − −4500 5− + − + 2000 −5500 15π +−e+−e+−)−[MeV/ −1− + − −1−(4500 5000 60002 5000 6000 −π1+−e+−e+−)−[MeV/ + +−)−[MeV/ c6000 2 +e −e+ )−[MeV/5000 5 π +e −e+ )−[MeV/ m K cc22]] m(Km+(5500 m(Km+(π cc22]] m(Km4500 cc22]] m(6000 4500 50004500 5500 6000 5000 +5e −e+ )−[MeV/ c22] m(Km+(π Km+(π cc2]] 2 1000 K4500 π e e ) [MeV/ (5K π e e ) [MeV/ 6000 5000 5500 50005000 K5500 π e e ) [MeV/c ] K +5500 πe +−e e e+− )+[MeV/ c2]] 4500 K+5 π +−e +e −) [MeV/ 5 m(K π e e ) [MeV/ −)−[MeV/ 2] 1000 1000 m ( K π e − e ) [MeV/ c ] m ( K π e − e c + − 2 + 2 − 1 − 1 + − + − + − + − −1 m(K m(K π e e ) [MeV/c ] 2 2 π e e ) [MeV/c ] 35 LHCb LHCb LHCb LHCb 300→ 0K *0e*+0e−+ − Signal B B →K e e Signal 25 Combinatorial Combinatorial. B →K *0J / ψ LHCb0 Combinatorial B 0→K **00J / ψ B→ K0 J / ψ + Combinatorial Combinatorial Λ K +p J / ψ b0→ Combinatorial + 0 Λb0→ K p JK / ψ*0p J / ψ 0 + Λ → *0p JK LHCb Λs0b→ →K K /ψ J / ψ b→ B s B J / ψ 0 LHCb *0 0 **00 BB00s→ K J / ψ → K J / ψ * 0 BKs → B→ J /K ψ J /ψ LHCb B0→K *0J / ψ. 10 10 10 2 10 10 10 115 25115 1 10 1 10 1010 1010 10 10 10 10 10 10 10 20 1 Combinatorial /c ] c 1] 100.045<q <1.1 [GeV 10−15 10 101 10101.1<q <6.0 [GeV /10 10 Combinatorial + 0 10 1 −1 Λ 15 − 1 b0→K +p J / ψ 1 1 10 10 1 1 * 1 10 5 0 Λ → K 1 10 5 Bs0b→K *00pJ J/ ψ/ ψ 1010 10 4500 5000 10 0 10 5500 Bs →K J / ψ6000 2 −1 10 10 10 10−−4500 10 10 5 m(K +π −e+e−) [MeV/ c2] 5000 10 10 10 4500 5000 10 1 1 1 5500 6000 5 10−15 5 5 10 5500 6000 10 10 10 4500 5000 5500 10 + −e+ −)−[MeV/ c22] 6000 + m ( K π − e + m(K m π (eKe+)π[MeV/ −e+e−c)] [MeV/ c2] 20 −20 −20 10 5 10 5 5 m(K π e e ) 10 m(K π e e ) [MeV/ c] [MeV/ c ] 55500 5 5 4500 5 5 5500 10−−4500 10 10 5 2 2 5000 5500 6000 4500 5000 5500 6000 4500 5000 5500 4500 6000 5000 4500 5000 5500 6000 4500 5000 6000 4500 5000 5500 6000 5 − 5 − 5 6000 4500 5000 5500 6000 4500 5000 5500 6000 2 2 J/e−ψ region 5000 5000 6000 4500 5000 5500 6000 Low q6000 :2−0289 11 4500 q −2:0 −111 ±e e14 + 11 + − + 0 m(K± +− Central ψ region Low q : 10 89m−−5500 Central −) [MeV/ −+)e[MeV/ −m2:(0K58K 205500 2(0K± −m 20(m π −e+e−) [MeV/ c2] 6000 Km π(Ke+πe−−)e+[MeV/ c24500 ] c2] πe+−14 m(K +π −e+e−) [MeV/ c2] 6000 K(+Kπ± e5000 c2]c2] ) [MeV/ 450010−−205 5000 5500 4500 5500 5500 π e e ) [MeV/ cq ] 2: 111 π e e )5000 [MeV/ c ] 2−−205::m(58K m(K π J/ ) [MeV/ c ] 6000 1010 10 10−−4500 10 10 10 −4500 55500 5−4500 5 2 −4500 5 −4500 5 + Central J/ ψ region : 5 + − 6000 −4500 5 ± 116000 Low q : 89 q 111 ± 14 +58K 4500 5000 55004500 5000 5500 6000 5000 5500 − − 5000 5500 6000 5000 5500 6000 5000 5500 6000 5000 5500 6000 4500 5000 5500 6000 + − + − 2 + − 2 5000 6000 4500 5000 5500 6000 4500 5000 5500 6000 4500 5000 5500 6000 4500 5000 5500 6000 4500 5000 5500 6000 6000 5500 6000 4500 5000 5500 6000 5000 m(K4500 c2]]+−e+−e+−)−[MeV/ m5500 (4500 Km+−e(+−π e[MeV/ −6000 ee5000 )−2[MeV/ cc+eπ2+−]e]+−+−e)+−−e[MeV/ m(Kπ +−(eπ e −ee+e)−c[MeV/ +e + 5500 +4500 +− −+ +− − −e+ − −e+ −)−[MeV/ 2 − 2 m (eeπ K+−e)+−[MeV/ πe −e e+5000 e)−2 [MeV/ ) [MeV/ Ke+−+e)−π ) [MeV/ K+e++−eπ )2[MeV/cc2]] + m(Km+(π − cc22]] cc22]]m(Km+(π (Km e+−πeee+−ee)+−[MeV/ cc22]c]c22]] m(Km+(π (K [MeV/ m(Km+(m )−[MeV/ m(Kmc+(π −e K +π ) [MeV/cc2]] m((π KKm π(Ke πe e)+[MeV/ (mπ K(+π )e)−[MeV/ K π e e ) [MeV/cc2]] mm K +π e+e)−[MeV/ ) [MeV/cc2]] K π e ) [MeV/cc2]] m(Km Kπ ) [MeV/ K π −e ) [MeV/c2]] e ) [MeV/ 12 LHCP, Shanghai, 12 Francesco Polci Francesco PolciLHCP, Shanghai, 15-21 May 2017 15-21 May 2017 12 Francesco Polci 22 2 2LHCP, Shanghai, 215-21 May 2017 2. B 0 → K *0 ee 20. 10. B →BCombinatorial KXeeee B → K ee → 1 1 11 10 B → Xe e. + − + −. 2. + − + −. 2. + − + −. 2. ψ region : 58K J/ψ region : 58K J/14 ψ region 58K±J/14 11Low qq ::111 q : 111 ±Central Low q : 89 ± 11 Low q : 89 ±Central 14 89 ±±Central 11 q : :111. Francesco Polci. Francesco PolciLHCP, LHCP,May Shanghai, 15-21 May 2017 15-21 May 12 2017 Shanghai, 2017 LHCP, Francesco Polci 15-21 Shanghai,. R. Silva Coutinho (UZH). 12. 12. 20.

(21) RK* cross-checks RK* R CROSSCHECKS CROSSCHECKS. •. [LHCb, LHCB-PAPER-2017-013]. K*1 and flat as function of kinematics and event RJ/ψ ratio: compatible with arXiv:1705.05802 arXiv:1705.05802 rmultiplicity ratio : compatible with 1 and flat as function of kinematics and very stringent test! a function double ratio) J/•ψ rJ/ψ ratio :- compatible with 1 and(not flat as of kinematics and. event multiplicity => => very stringent event multiplicity very stringenttest! test!(not (notaadouble double ratio) ratio) ==. R. and R ratios: consistent with expectations. • Rψ(2s) and : consistent with expectations γrγ ratios • Rψ(2s) rγ ratios : consistent with expectations ψ(2s) and. BR(B → K(*)µµ µ+)µ:-):inin agreement with published result [arXiv:1606.04731] • BR(B->K* agreement with published LHCbLHCb result [arXiv:1606.04731].. • BR(B->K*µµ) : in agreement with published LHCb result [arXiv:1606.04731].. No totoMC: than5% 5%variation variation • corrections No corrections MC : less less than onon RK*R . K*. • No corrections to MC : less than 5% variation on RK*.. Population ofofbremsstrahlung categories: consistent between data • Population bremsstrahlung categories : consistent between data andand MC. MC. • Population of bremsstrahlung categories : consistent between data and MC.. Kinematic distributions: consistent among MC/background subtracted data. • Kinematic distributions : consistent among MC/background subtracted data.. • Kinematic distributions : consistent among subtracted data. 13 Francesco Polci LHCP, Shanghai, 15-21MC/background May 2017 R. Silva Coutinho (UZH) Francesco Polci. LHCP, Shanghai, 15-21 May 2017. 13. 21.

(22) RK* systematics [LHCb, LHCB-PAPER-2017-013]. -. The double ratio cancels a lot of systematics The measurement is statistically dominated (15%). Trigger category Corrections to simulation Trigger PID Kinematic selection Residual background Mass fits Bin migration rJ/ ratio Total. R. Silva Coutinho (UZH). RK ⇤0 /RK ⇤0 [%] low- q 2 central- q 2 L0E L0H L0I L0E L0H L0I 2.5 4.8 3.9 2.2 4.2 3.4 0.1 1.2 0.1 0.2 0.8 0.2 0.2 0.4 0.3 0.2 1.0 0.5 2.1 2.1 2.1 2.1 2.1 2.1 – – – 5.0 5.0 5.0 1.4 2.1 2.5 2.0 0.9 1.0 1.0 1.0 1.0 1.6 1.6 1.6 1.6 1.4 1.7 0.7 2.1 0.7 4.0 6.1 5.5 6.4 7.5 6.7. 22.

(23) RK* results low- q RK* RESULTS + 0.11 2. 2. central- q 0.69 + 0.11 0.07 ± 0.05 [0.53, 0.94] [0.46, 1.10]. RK ⇤0 0.66RESULTS RK* 0.07 ± 0.03 95.4% CL [0.52, 0.89] [0.45, 1.04] ompatibility with the 99.7% SM:theCL Compatibility with SM:. 0.4 0.2 LHCb. LHCb. 0.0. 0. 0.0. 0. 2. 3. 22. 1. LHCb BIP CDHMV EOS flav.io JC. LHCb 1. 1. 2. 3. 4 5 Polci6 Francesco 2. q [GeV (UZH) /c ] R. Silva Coutinho 2. 1.5. 4. 3 1.0. 4. 0.5. 3. arXiv:1705.05802. 1.5. RK ⇤0. 1.5. 1.0. LHCb BIP 1.5 1.0 LHCb CDHMV arXiv:1705.05802 BIP 0.5 CDHMV EOS EOS 1.0 0.5 flav.io flav.io LHCb BaBar: PRD 86 (2012) 032012 LHCb JC JC. LHCb BIP 0.0 CDHMV 4 5 6 4 5 6 0 0.5 2 2 4 EOS q [GeV 2 /c ] 2 4 q [GeV /c ] flav.io LHCb JC. 5. 2LHCb. 0.0. 6 0 BaBar: PRD 86 (2012) 032012. 2Belle:4 PRL 103 (2009) 171801 q [GeV /c ] 0.0 0. arXiv:1705.05802. 2.0. 2.0. RK ⇤0. 0.2. 0. 2.0. RK ⇤0. 0.8 1.0 lity with the SM: 0.8 standard 0.6 deviations (low-q2) standard deviations (central-q2) 0.6 0.4. RK ⇤0. RK ⇤0. RK ⇤0. 2) 2) - 2.1-2.3 deviations standard deviations (low-q 2.1-2.3 standard (low-q 2) 2.4-2.5 standard deviations (central-q 2 2.4-2.5 standard deviations (central-q ) 1.0 RK* RESULTS 2.0. [LHCb, LHCB-PAPER-2017-013]. 0.0. Belle: PRL 103 (2009) 171801. 05. LHCb BaBar Belle. 2. 5. 15 2. LHCb BaBar Belle. 10 2. 20 4. q [GeV /c ] BaBar: PRD 86 (2012) 032012 Belle: PRL 103 (2009) 171801. 5. 5 10 15 May 2017 20 LHCP, Shanghai, 15-21 2. 10. LHCb BaBar Belle. 4. q [GeV /c ]. 15. LHCb 2 BaBarq Belle. 20. [GeV2/c4]. 15talk 20 See10 G. Andreassi’s (Heavy Flavors q 2III) [GeV2/c4] 16. 23.

(24) LFU global combination. µ Re C10. 1.0. 0.5. 0.0. 0.5. LFU observables b ! sµµ global fit all all, fivefold non-FF hadr. uncert.. 1.0 flavio 3 fb-1 RK* Seminar: proliferation of papers with at least 6 on global analysis fits including our data + previous measurements 2.0 1.5 1.0 0.5Re C µ0.0 0.5 1.0 1.5 v0.21. 9. �. 1.5. �� �. �. 1.0. 0.5. ����. �. Re C9e. ���� �. �. -�. arXiv:1704.05435. 0.5. -�. 1.0. arXiv:1704.05340. -� -�. 0.0. -�. -�. �. �. �. flavio v0.21 2.0. �. ���� μ 2. LFU observables b ! sµµ global fit all. 1.5. 1.0. 0.5. 0.0 µ Re C9. 0.5. 1.0. 1.5. RK ⇤ RK. R. Silva Coutinho (UZH). Re C90µ. Combinations confirm previous pattern, e.g. NP hypothesis Capdevila et al at LFU observables b ! sµµ global fit ~5σ (3.3σ) or Altmannshofer et al at 4.4σ 1 0. 24.

(25) LFU global combination. Results − III 3 fb-1 RK* Seminar: proliferation papers with at least 6 on global analysis fits › Whatofabout NP? including our data + previous measurements 1.2. RK ∗0. �. 1.0. �� �. �. 0.8. ���� �. � ����. �. 0.6. -�. 0.4. LHCb NP CDHMV : C9µ = −1.1. NP NP CDHMV : C9µ = −C10µ = −0.65 NP CDHMV : C9µ = −C9N′ µP = −1.07. NP NP NP CDHMV : C9µ = −C9N′ µP = −1.18 and C10µ = C10 ′ µ = 0.38. -�. NP EOS: benchmark point C9µ = −1.0. 0.2. NP EOS: data driven C9µ from P5′ and RK NP flav.io: C9µ = −1.1. arXiv:1704.05340. -� -�. -�. -�. � ���� μ. �. �. �. 0.0. NP NP flav.io: C9µ = −C10µ = −0.65. 0. 1. 2. 3. 4. 5. 6 2. q 2 [GeV /c4]. Combinations confirm previous pattern, e.g. NP hypothesis Capdevila et al at Simone CERN Seminar ~5σ (3.3σ) or Altmannshofer et Bifani al at 4.4σ R. Silva Coutinho (UZH). 25.

(26) RK? Run-I + 2015/16. *from H. Thibaud R. Silva Coutinho (UZH). 26.

(27) RK? Run-I + 2015/16. *from H. Thibaud R. Silva Coutinho (UZH). 27.

(28) RK? Run-I + 2015/16. *from H. Thibaud R. Silva Coutinho (UZH). 28.

(29) RK* Belle (Moriond). *from M. Prim R. Silva Coutinho (UZH). 29.

(30) RK* Belle (Moriond). *from M. Prim R. Silva Coutinho (UZH). 30.

(31) ATLAS update (Moriond). *from O. Igonkina R. Silva Coutinho (UZH). 31.

(32) ATLAS update (Moriond). *from O. Igonkina R. Silva Coutinho (UZH). 32.

(33) B0s → µ+µ- (after Moriond). *from D. Straub R. Silva Coutinho (UZH). 33.

(34) Global fits. R. Silva Coutinho (UZH). 34.

(35) Global fits. *from D. Straub R. Silva Coutinho (UZH). 35.

(36) Global fits. *from D. Straub R. Silva Coutinho (UZH). 36.

(37) LFU prospects - what to do next? RK, RK*, Rφ and similar ratios need to be measured using the full Run-I and Run-II statistics, and in all the q2 bins Perform LFU angular tests, e.g. recent Belle result: [Belle, PRL 118 (2017) no.11, 111801]. [JHEP 10 (2016) 075, Phys. Rev. D 95, 035029 (2017)]. R. Silva Coutinho (UZH). 37.

(38) N. q2. `. as well as At . The latter is not relevant to the discussions at hand. Note that our convention for the normalization constant N s p 2 q N ⌘ GF ↵e Vtb Vts⇤ , (6) 3 · 210 ⇡ 5 MB3. LFU tests in angular observables. where ⌧B is the lifetime of the B mesons, and the indicate an unsuppressed expression linear in the local contributions h9,0 (q 2 ) and h9,k (q 2 ). Moreover introduce h il h il (k) (e) (µ) k k ⌘ e C9 , µ C9 9l. [Possible LFU observables]. [6] di↵ers from, e.g., the normalization N as used in p [6] reference [6]: N = N . experimental Our choice ensures that the `an First step towards direct normalization is universal for all lepton flavours.. Run-I. dB dq 2. Run-II. k e. [50 fb. k µ. 1. .. ]. [300 fb. 1. ]. 12. Statistical significance [ ]. Di (q 2 ) ⌘. (e). ⌘. We find that eq. (8) holds up to corrections of o 3 3 2 2 e µ (for D4 ) and e µ (for D5,6s ). Note. connection, i.e. combining angular and We propose to measure weighted di↵erences of angular branching ratio information. observables,. (k). 11 10. D4 is free of hadronic contributions in the term / (3) but not free of them in the linear term 9 . the full results, see eqs. (A1)–(A3). The express eq. (8) hold in the entire q 2 spectrum, since no exp (µ) dB (e) (µ) 2 expression for the hadronic two-point correlation f Si (q 2 ) S (7) i (q ) . 2 dq e↵,(`) 2 (`) tions, h9, (q 2 ) ⌘ C9, Belle (qII )50 abC-19 , have been used. emphasize that this also holds in between the two ve [PRD 95, angular 035029 (2017)] LFU asymmetries 9 8 7 6 5 4 3 2 1. 0.01. 0.03. 0.1. 0. 2. 0.3. B !K Nsig. 0⇤ +. e e. 1.0. 4. 3.0. [104 ]. µ Note hD that the definition of the angular observables does not acParameter in prior unit source ⌅ Interestingly, discrepancies RK ,K ⇤ explainable by reduced C9,10 4 i1,6 count for purely QED-induced modifications to the overall an- CKM Wolfenstein parameters ⇤ would explain pattern of 3deviations observed in b ! sµµ transitions 5 i1,6 gular hD distribution; see [12, 13] for recent discussions. Note± that NP e↵ects are not precluded he 0.2253 0.0006lepton-universal — [23]. too, including P50. 0.806 ± 0.020 — [23] 0.132 ±0 0.049 — [23] ⌅ ⇤ 1 10 100 1,000 0.369 ± 5 0.050 —K [23] |Di | [10 10 ] Quark masses mc (mc ) 1.275 ± 0.025 GeV [24] 0 ⇤ Qi = Pi (µµ) P (ee), in particular Q = P (µµ) 2 i 5 5 FIG. 3. Comparison of the q -integrated observables Di in mb (mb ) 4.18 ± 0.03 GeV [24] =) arXiv:1605.03156 the SM (blue circles) with their values in the benchmark point B ! K ⇤ power correction parameters 2 2 2 (red squares) for the bin 1 GeV  q  6 GeV . The smaller ’ r0,?,k 1.00 ± 0.45 — this work (red) error marks correspond to the pure form factor uncerhD6s i1,6. A ⇢¯ ⌘¯. Best way to connect directly P and R LFU angular asymmetries. Set of independent observables, e.g. related to P 5 and AFB. tainties, while the larger (red) error marks correspond to the uncertainties as obtained for the data driven scenario; see the text for more information. The experimental measurement of branching ratio B(B ! K ⇤ µ+ µ ), including the experimenR.talSilva Coutinho uncertainty, is (UZH) shown for comparison as the grey band.. would be to measure P50 (ee). TABLE I. Numerical inputs for the calculations of the electron and muons components of the observables Di . The power corrections r , = 0, ?, k are scaling factors to the dipole form factors T as introduced in [18]. prior distributions [JHEPThe 10 (2016) 075, PRD 95, 035029 (2017)] for all listed parameters are Gaussian, and the given intervals. 38.

(39) Lepton flavour universality at tree level. Other hints of lepton universality violatio Other hints of lepton universality violation Remember, there is another of decays, b→clν, Remember, there is class another (tree level – not a FCNC!) class of decays, b→clν, where there is a stubborn (tree level – not a FCNC!) longstanding tension between where there is a stubborn and the SM expectation. longstanding tensiondata between data and the SM expectation. R(D(*)) ≡ R(D(*)) ≡ BR(B→D(*)τν)/BR(B→D(*)μν) BR(B→D(*)τν)/BR(B→D(*)μν) 3.9σ of tension decays,. LHCb. 3.9σ tension. Note that there is another class b → clν, (tree level – not a FCNC!) where there is a stubborn longstanding tension between data and the SM expectation. Most measurements are from B-factories, but LHCb result with B→D*τν, τ→μν LHCb also have the to investigate thisresult in other channels,τ→μνν such Most measurements arepossibility from B-factories, but LHCb with B→D*τν, [PRL 115 (2015) 111803] is a very important (if unexpected) pieceasof the picture. Lambda_b and Bisc modes [PRL 115 (2015) 111803] a very important (if unexpected) piece of the picture. LHCb will have more to say on this very soon (measurements underway with LHCb will have morehadronic to say on this verysimultaneous soon (measurements underway τ decays, fits of B→Dτν, D*τν with and Bc→J/ψτν). hadronic τ decays, simultaneous fits of B→Dτν, D*τν and Bc→J/ψτν). R. Silva Coutinho (UZH). 15/5/17. 15/5/17. LHCb highlights and perspectives LHCb highlights and perspectives Guy Wilkinson, LHCP 2017 Guy Wilkinson, LHCP 2017. 39 31.

(40) Lepton flavour universality at tree level. LHCb performs template fits to e.g. m2miss, q2, E*l relying on -. Excellent vertexing to approximate the B-momentum Powerful particle identification and tracking to suppress backgrounds. LHCb has performed analyses of. R. Silva Coutinho (UZH). 40.

(41) Lepton flavour universality at tree level. R. Silva Coutinho (UZH). 41.

(42) News from Belle [Moriond] New measurement using a semileptonic tagging. R. Silva Coutinho (UZH). 42.

(43) News from Belle [Moriond] New measurement using a semileptonic tagging. R. Silva Coutinho (UZH). 43.

(44) New Physics?. cs?or hadronic effects?. Leptoquarks. 0 ! K ⇤0 `+ ` decay for the (top left) electroweak Figure 1: Feynman diagrams in the SM of the B dependent penguin and (top right) box diagram. Possible NP contributions violating LU: (bottom left) a lysestree-level diagram mediated by a new gauge boson Z 0 and (bottom right) a tree-level diagram involving a leptoquark LQ.. The measurement is performed as a double ratio of the branching fractions of the 50 0 B ! K ⇤0 `+ ` and B 0 ! K ⇤0 J/ (! `+ ` ) decays R. Silva Coutinho (UZH). 0. ⇤0 +. 0. ⇤0 +. 44.

(45) w physics?or hadronic effects? New Physics?. Leptoquarks Z’ models Model independent analyses. Figure 1: Feynman diagrams in the SM of the B 0 ! K ⇤0 `+ ` penguin and (top right) box diagram. Possible NP contrib tree-level diagram mediated by a new gauge boson Z 0 and involving a leptoquark LQ.. 50. The measurement is performed as a double ratio B 0 ! K ⇤0 `+ ` and B 0 ! K ⇤0 J/ (! `+ ` ) decays R. Silva Coutinho (UZH). RK ⇤0 =. B(B 0 ! K ⇤0 µ+ µ ) 0. ⇤0. +. 45 B(B 0.

(46) New Physics?. New physics?or hadronic effects?. Two sets of orthogonal anomalies (global Wilson Leptoquarks coefficient fits and lepton flavor universality) have been observed. MSSM can’t explain them easily, Z’ models while leptoquark Model independentor Z’ models can analyses. 50. R. Silva Coutinho (UZH). 46.

(47) whereeffective a is the electromagnetic fine structur weak Hamiltonian describing b !structure s transition whereone a finds is the electromagnetic fine 3 |Vts | =one(40.0 finds ± 2.7) ⇥ 10 3 and |Vtb | = 1. p 10 µ µ 2.7) ⇥ |Vts | =DC(40.0 ± and |V | = 1.0 are typically with rare decays tb = DC = C , bsµ p 9 µ µ10 CKMDC matrix elements aVtbVts⇤C[29]. = DC = ( bsµ , 9 10 ⇤ CKM matrix elements [29]. aVtbVts From “precision” to direct searches m corrections from physics at The recent Ref.constant [18] wr where a is the combined electromagneticfit fineof structure The recent fit of Ref. [18] re 3 and where a(40.0 is the±combined electromagnetic fine structure constant wh |V | = 2.7) ⇥ 10 |V | = 1.009 ± 0.031 ts and 1s preferred tb value range 3 Prologue: Newfit physics in b → s μ μ |V =matrix (40.0 ± 2.7) ⇥ 10 andrange |Vtb | = 1.009 ± 0.031 a ts | and fit value 1s preferred CKM elements [29]. Prologue: New physics inmatrix b →elements s μ μ [29]. CKM The recent combined fit of Ref. [18] reported the b Standard µ NewThe µ Physics SM Model: In the SM recent fitrange of [18].reported the be DC9µ New = DC =preferred 0.61 ±Ref. 0.12 Physics In the SM fit value andµ 1scombined W 10 DC 0.61 ± 0.12 . s DC9 = fit value and101s= preferred range b Left-handed currents. µ µ currents Left-handed DC = DC ( µ µ10 = 0.61 ± 0.12 . 9 DC10 =and 0.61Eq. ± 0.12 . one can estim (1 UsingDCthis (9), u, c , t 9 = result thisthis result and Eq. (9), one can estim µ+ UsingUsing result and Eq. (9), one can estimate the scale the relevant physics by defining C Using thisnew result and Eq. (9), one can estimate the scale bsµ2 ,= 2 /Z 0 the relevant new by defining the relevant new physics physics by defining Cbsµ = g2⇤C v22bsµ /L +4 by defining Cbsµ = g⇤ v /L 2 , o the relevant new physics +4 µ taining L /g TeV. Depending on +4 taining L /g ⇡ 32 32+4 TeV. Depending on the value of ⇤ ⇤⇡ • Loop, CKM, and GIM 3 3 taining L /g ⇡ 32 TeV. Depending on taining L /g TeV. Depending on the value of tg ⇤ ⇤ ⇡ 32 3 3 • Loop, CKM, and GIM i.e. from the particular UVUV originorigin of the operator, theop sc suppression i.e. from the particular of the i.e. from the particular UV origin of the operator, the sca Loop, CKM and GIM suppression i.e. from the particular UV origin of reach the of ope of new physics L can be within or out of the L of new physics L can be within or out of the reach of LH of new physics L can be within or out of th suppression direct searches. We show that even in the latter case, un of new physics be within orlatter outcase, of und th Loop-generated (g* = 1/4π) Tree-level, unsuppressed (g*~1) direct searches.LWecan show that even in the Loop-generated (g* = 1/4π) Tree-level, unsuppressed (g*~1) some assumptions it show can be possible to observe an eff direct searches. We that even in the la some assumptions it show can be possible to observe an effe direct searches. We that even in the la ~ 2.5 TeV ~~ 30 in the dimuon high energy tail. When comparing low ~ 2.5 TeV 30 TeV TeV in the dimuon high energy tail.be When comparing to lowoa some assumptions it can possible high-energy measurements, the renormalisation group assumptions it can be possible to ob Loop-generated, MFVthe Tree-level, MFV (g*22 = Vts)some high-energy Proton Neutron measurements, renormalisation group e Loop-generated, MFV Tree-level, MFV (g* = Vts) fects should inhigh principle be takentail. into account. Since th in the dimuon energy When com fects should in principle be taken into account. Since the ~~ 66 TeV ~small 0.5 TeV in theeffects dimuon high energy com are in this case, wetail. neglectWhen it in what follo TeV ~ 0.5 TeV effects are small in this case, we neglect it in what follow high-energy measurements, the renormalis renormali (see for example [25]). high-energy measurements, the (see for example [25]). New or beyond beyond the LHC LHC New physics physics within within or the We concentrate concentrate on UV UV models models inwhich which newacco partic fects should in principle be taken into We on in new particl New Physics within or beyond LHC threshold production fectsthe should in principle be taken intoataccou threshold production threshold production are above the scale of threshold production theLH LH are above the scale of threshold production at the 23 effects arethatsmall small inapproach this case, case, we neglect neglect iti 23 such the EFT is applicable in the most effects are in this we it such that the EFT approach is applicable in the most e 47 R. Silva Coutinho (UZH) ergetic dilepton events. events. We stress stress however however that thateven evenf (see for example [25]).We ergetic dilepton. used to predict the existence of new particles before ossible. (see for example [25])..

(48) Results CMS ches for new mediators: [CMS-PAS-EXO-17-029]. Direct searches LQ search summary production with a ⌧. Z’ searches. LQLQ ! ⌧ ⌧ b. -1. tate. 103. 2016, 35.9 fb (13TeV). λ. Events. CMS Preliminary. Observed Scalar LQ 700 GeV (λ = 1, β = 1) tt Single top Z’ searches Electroweak Jet →τh fakes. τhτh. 102. Results. 10. Excluded by. 1.5. pp → LQsLQs. 102 10. 2. 500. 1000. Data tt DY + jets Diboson Fake lepton CMS top 50 Single Preliminary LQ 1.1 TeV. 40. m(Z') = 70 GeV, gµ=0.5. Data / MC. q. µ. 0.5. p Z. q q̄R. Silva Coutinho (UZH) µ+. 500. µ+ β (LQ1 → eq). l. Pag. 1000 m min 10 LQ [GeV]. 0.7 0.6 0.5. CMS y al ed m o ow l - an al +µ n sµ atio n → LQ → τbb xpla e Expected Observed CMS: Z→Z'µµ→4µ (obs.). 0.8 0.7. 10. LQ → tντCMS: Z→Z'µµ→4µ (exp.) EPJC 73(2013)2677 Altmannshofer, et. al. Expected JHEP12(2016) 106 Observed Neutrino Trident. 10−2. 0.3. fromeo@cern.ch (Vanderbilt University) 0.2. ATLAS 13 TeV, 3.2 fb-1 ≠. 45. 50. 77.3 fb-1 (13 TeV). 19.7 fb-1 (8 TeV). 1. 0.4. 55. µ. 0.8. CMS Preliminary. 0.5. 1 0.9. 1. 35 / 38 0.6. 20. 0. ZÕ. 30 1000. 800 1000 1200 1400. 0.9. Background syst. uncer.. 500. 600. fromeo@cern.ch (Vanderbilt University) −1. 10 ≠. Data. m(Z') = 50 GeV, gµ=0.1. 400. Leptoquark mass (GeV). 77.3 fb-1 (13 TeV) Zγ *→4µ. Scalar LQ β=1. 0.0 200. 1500 2000 Scalar sum pT (GeV). m(Z') = 60 GeV, gµ=0.2. −1. 0 1.5 1.0. 0.5. Scalar sum pT (GeV). gµ. ATLAS 13 TeV, 3.2 fb-1 eejj, SR. 103. 1. fromeo@cern.ch (Vanderbilt University). LQ. Preferred by B-anomaly ± 1 σ. B(LQ → τb). ate Nj final states. (`j)i }i=1,2. Expected ± 1 σ. 2.0. 1.0. Ratio. LQ. b. 10−1 2.0 1.5 1.0 0.5 0.0. Events / bin. Events / 100 GeV. 0 µµZ. [NJP18(2016)093016]. with N. 35.9 fb-1 (13TeV). Observed. 1. for new [CMS-PAS-EXO-18-008] mediators: ATLAS. ecay Z !. 2.5. CMS Preliminary. 13. auge boson. search. Results. All limits at fromeo@cern.ch 95% CL (Vanderbilt University). 60. 65. 700.1. mZ1 [GeV]0. 200. Bs mixing BR(Z→ 4µ), s = 7 and 8 TeV. 103. 102. 10. m(Z')[GeV] 400. 600. 800. 1000 Pag. M LQ (GeV). 37 / 38. 48. Figure 5: The expected (dashed black) and observed (green solid) 95% CL upper limits on the branching fraction for the leptoquark decay to a tau lepton and a bottom quark, as a function.

(49) Leptoquarks searches. [by Admir Greljo]. R. Silva Coutinho (UZH). 49.

Referenzen

ÄHNLICHE DOKUMENTE

If the minimum wage were at 50 percent of the production worker wage in 2012 (again, using CBO projections to produce a full-year 2012 estimate), the federal minimum would be

The plot is told from male perspective, an important theme of both books is fatherly love.. In the summary of the thesis we discuss whether these novels

The protective effect of KI may be due to its dual Potential. On the one hand, it would destroy HbCh formed during autoxidation of haemoglobin, and on the other hand stabilize

It will be argued here that neither the supposedly immediate dissolution of the partnership upon the death of one of the partners nor the multitude of heirs caused by the Islamic

Second, secessionists are increasingly aware of the international community’s preferences that they not violate the laws of war, and, unlike center-seeking or resource

According to Alejandro Quiroz Flores, the modern state holds two comparative advantages over other forms of political organization — it is far better at directing large and

In North Korea, Beijing should give up its “non-intervention policy” and develop a system of “limited intervention” that could better serve its national interest... 11 a sign

Together, these two conditions – the advance of technology due to international anarchy and the Hegelian struggle towards symmetrical recognition – make a world state