• Keine Ergebnisse gefunden

Approximation of reachable sets by direct solution methods of optimal control problems

N/A
N/A
Protected

Academic year: 2022

Aktie "Approximation of reachable sets by direct solution methods of optimal control problems"

Copied!
23
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Solution Methods of Optimal Control Problems

Robert Baier

, Christof Buskens y

, Ilyes Assa Chahma z

, Matthias Gerdts x

13th Deember 2004

Abstrat

A numerial method for the approximation of reahable sets of linear

ontrol systems is disussed. The method is based on the formulation of

suitableoptimal ontrolproblems with varying objetive funtion, whose

disretizationbyRunge-Kutta methods lead to nitedimensional onvex

optimizationproblems. Itturnsoutthattheorderofapproximationforthe

reahablesetdependsonthepartiularhoieoftheRunge-Kuttamethod

inombinationwiththeseletionstrategyusedforontrolapproximation.

For an inappropriate ombination the expeted order of onvergene an

not be ahieved in general. The method is illustrated by two examples

usingdierent Runge-Kutta methods and seletion strategies and allows

to estimatetheorder of onvergenenumerially.

Keywords: optimalontrol, approximationof reahable sets,diret solution

methods, order of onvergene

Department of Mathematis, University of Bayreuth, 95440 Bayreuth, Germany,

Robert.Baieruni-bayreuth.de

y

DepartmentofMathematis,UniversityofBremen,28344Bremen,Germany

z

Cetelem Bank GmbH, Shwanthalerstrasse 31, 80336 Munhen, Germany,

a.hahmaetelembank.de

x

Department of Mathematis, University of Bayreuth, 95440 Bayreuth, Germany,

Matthias.Gerdtsuni-bayreuth.de

(2)

Thesubjetofthispaperisthedesriptionofanalgorithmfortheapproximation

of reahable sets of linearontrolproblems. The problemof determining onvex

reahable sets an be equivalently desribed by innitely many optimal ontrol

problems, where the objetive funtion is adapted. By hoosing only nitely

many diretionsapproximationsof reahable sets anbeobtained. Theouring

optimalontrolproblems are not solved theoretially by use of the Pontryagin's

maximumprinipleasin[38℄butnumeriallybysuitabledisretizationmethods.

This allows to treat also time dependent linear problems and even nonlinear

ones. Non-polyhedral ontrol regions an be treated as nonlinear inequalities

andequalities. Results onerningthe onvergene of disretizedoptimalontrol

problems an be found in [30℄, [10℄ and the referenes stated therein.

Inthis ontext, thepartiular hoieof theseletionstrategyused forontrol

approximationturnsouttoberuialfortheorderofonvergeneanddependson

thehoieoftheRunge-Kuttashemeusedforthedisretizationoftheunderlying

dierentialequations. Inordertoillustratethis dependenyseveralRunge-Kutta

methods with dierent seletionstrategies (pieewise onstant, pieewise linear,

independent seletion) are disussedin moredetail fortwo illustrativeexamples.

By this approah umbersome set operations (like Minkowski sums, unions

of sets, ...) an be avoided and lead to known optimization methods, whih

in addition yield not only the endpoints of optimal trajetories, but the entire

trajetory inluding the orresponding optimal ontrol. Furthermore, this ap-

proah isuseful forlinear ontrolproblems with ontrolregionsformulatedwith

nonlinearrestritions(see (7))and innonlinearontrolproblemsyielding onvex

reahable sets, too. However, the lose onnetion between set-valued analysis

andoptimalontrolisshowninSetion3. Aomparisonwithset-valuedmethods

asin [12, 4,3, 41, 8℄ isbeyond the sope of this paper.

Methodsforlineardierentialinlusionsbasedonset-valuedquadraturemeth-

ods or set-valued Runge-Kutta methods are mentioned in [3℄ as well as other

methods, e.g. estimation methods for reahable sets (f. [15℄) and ellipsoidal

methods(f. [23℄ foranoverview). Newerdevelopmentsofthesemethodsahieve

inner approximations ([24℄, [26℄) and outer approximations [25℄ of the reahable

set (see also [4℄).

The problem of the approximation of reahable sets appears inseveral disi-

plines: ontrol theory, ordinary dierential equations with unertainties or with

disontinuities in the state, neessary onditions for a minimum in nonsmooth

analysis, dierential games and viability theory, f. [5℄, [1℄, [33℄, [14℄. The on-

vexity ofthese reahablesets an beguaranteed for lineardierentialinlusions,

but may alsoappear for nonlinear problems.

The paper is organized as follows. In Setion 2 basi notations and proper-

ties of reahable sets are summarized. Basi fats on the desription of onvex

sets and arithmeti set operations are introdued and form the basis for the re-

(3)

dened, whih are used to measure the speed of onvergene w.r.t. the opti-

mal value and the optimal trajetory, respetively. In Setion 3 the problem of

alulating the boundary of the reahable set is reformulated as innitely many

optimalontrolproblems whih dieronlyin theobjetivefuntion. Theseopti-

malontrolproblemsaredisretizedbyuse ofexpliitRunge-Kuttamethodsand

suitableontrolapproximationsresultinginnitedimensional (linear/nonlinear)

optimizationproblems. Herein,several approximationlassesfortheontrollead

to dierent seletion strategies in the disretization. The setion ends with a

formulationof the proposed methodfor the approximation ofreahable sets and

its implementation. Several ombinations of Runge-Kutta methods and sele-

tion strategies are disussed in Setion4 with illustrativeexamples. Tables with

onvergene resultsand visualizations ofreahable sets are inluded. Finally, an

outlinefor further researh onludes the paper.

2 Notation

In this setion,some introdutory denitions and results are olleted.

The basi underlyingproblem isthe following ontrol problem:

Problem 2.1 LetA():R n

!R nn

andB():R m

!R m n

betwoL

1

-integrable

matrix funtions.

LetU R m

beanonempty,onvexompatsetandI :=[t

0

;t

f

℄bea realinterval.

For a given ontrol funtion u : I ! R m

with u() 2 L

1 (I;R

m

) we are looking

for a solution x()2W 1;1

(I;R n

) of the dierential equation

_

x(t)=A(t)x(t)+B(t)u(t) (a.e. t2I); (1a)

x(t

0 )=x

0

; (1b)

u(t)2U (a.e. t2I). (1)

Denition 2.2 Let usstudy Problem 2.1 and let t2I. Then,

R(t;t

0

;x

0

):=fy 2R n

j9u() ontrol funtion and 9x() orresponding

solution of Problem 2.1 with x(t)=yg

is alled the reahable set of the orresponding ontrolproblem for the time t.

In 1965, Aumann disovered the onvexity of the set-valued integral in [2℄

whiheasilyleadstotheonvexityofthereahablesetforlinearontrolproblems.

Proposition 2.3 In Problem 2.1, the reahable set R(t;t

0

;x

0

) is onvex, om-

pat and nonempty for every t2I.

(4)

SomenotationsfromConvexAnalysisarerealledwhihareneessary forthe

explanation of the algorithmdesribed later.

Denition 2.4 Denote by C(R n

) the setof allnonempty onvex ompat sets in

R n

and let C 2C(R n

) and l2R n

.

Then,

Æ

(l;C):=max

2C l

>

isthe support funtion of C in diretion l and

Y(l;C):=f2Cjl

>

(l;C)g

is the set of supporting points of C in diretion l.

We need the following property of support funtions:

Lemma 2.5 Let C = C

1

C

2

2 C(R n

) with onvex sets C

i

R

n

i

, n

i 2

f1;:::;ng, i = 1;2, and n

1 +n

2

= n. Then, for given l = (l

>

1

;l

>

2 )

>

2 R n

with l

i 2R

n

i

, i=1;2, we have:

Æ

(l;C)=Æ

(l

1

;C

1 )+Æ

(l

2

;C

2 ):

Proof: see e.g. [19, xV, Disussionafter Remark 3.3.6℄

Support funtions resp. supporting points desribe fully a onvex ompat

set.

Proposition 2.6 Let C 2C(R n

). Then,

C =

\

kl k2=1

fx2R n

jl

>

(l;C)g; C = [

kl k2=1

Y(l;C);

C =o(

[

kl k

2

=1

fy(l;C)g) with arbitrary y(l;C)2Y(l;C);

where C denotes the boundary of C and o () denotes the onvex hull of a set.

Proof: see e.g. [19, xV.,Theorem 2.2.2℄and [19, xV.,Proposition 3.1.5℄.

The last equation follows easily, if one estimates the support funtion of the

right-hand side in diretion by

>

y(;C)=Æ

(;C) frombelow.

A ommon arithmeti operationson sets is the salar multipliation and the

Minkowski sum whihare realledhere.

(5)

Denition 2.7 Let C;D2C(R ), 2R and A2R . Then,

C :=fj2Cg

denes the salar multipliation,

AC :=fAj2Cg

the image of C under the linear map x7!Ax and

C+D:=f+dj2C;d2Dg

the Minkowski sum.

We needthe followingtheoretialresultwhihstates onvexity and ompat-

ness of the set operationsdened above.

Lemma 2.8 Let C;D 2 C(R n

), 2 R and A 2 R mn

. Then, C and C +D

are elements of C(R n

) and AC is an element of C(R m

). Furthermore,

Æ

(l;C)=Æ

(l;C); Y(l;C)=Y(l;C) (if 0);

Æ

(;AC)=Æ

(A

>

;C); Y(;AC)=AY(A

>

;C);

Æ

(l;C+D)=Æ

(l;C)+Æ

(l;D); Y(l;C+D)=Y(l;C)+Y(l;D)

for all l2R n

, 2R m

.

Proof: Toguarantee thatthe operationsgiveresultsinC(R n

)and theequations

on the support funtions see [19, xV, Theorem 3.3.3(i) and Proposition 3.3.4℄.

The equations on the supporting set follow immediately from alulus rules on

the subdierential in [19, xVI, Theorem 4.1.1 and equation (3.1)℄ and [32, The-

orem 23.9℄, sine [19, xVI, Proposition 2.1.5 and equation (3.1)℄ onnets the

subdierentialof the support funtion and the supporting set.

Denition 2.9 Let C;D2C(R n

). Then,

d(C;D):=max

2C min

d2D

k dk

2

;

d

H

(C;D):=maxfd(C;D);d(D;C)g

are dening the one-sided Hausdordistane resp. the Hausdordistane of the

two sets.

The Demyanov distane between two sets is dened as

d

D

(C;D):= sup

l 2T

C

\T

D

ky(l;C) y(l;D)k

2

;

whereT

C

isdenedas setof allnormed diretionsin R n

forwhih thesupporting

set Y(l;C) onsists of only one point y(l;C) (T

D

is dened analogously for the

set D). T

C

and T

D

are subsets of the unit sphere of full measure.

(6)

following result forthe Hausdor-distane:

Proposition 2.10 Let C;D2C(R n

). Then,

d

H

(C;D)= max

kl k2=1 jÆ

(l;C) Æ

(l;D)jd

D

(C;D):

Proof: see e.g. [19, xV, Theorem 3.3.8℄and [9,Lemma 4.1℄

3 New Method for the Approximation of Reah-

able Sets

3.1 Computation of the Reahable Set by Optimal Con-

trol

Sine we know from Proposition 2.3 that the reahable set for problem 2.1 is

onvex, it issuÆient toalulate merely the boundary of the reahable set.

Proposition 2.6 gives a motivation to alulate at least one support point

(whihliesautomatiallyattheboundary)ofthereahablesetindiretionl 2IR n

with klk

2

= 1. Note that even in the ase that the reahable set is not stritly

onvex and the set of supportingpointsisa (n 1)-dimensionalfae,for a xed

diretionl, one supporting point inthis diretionis suÆient to reonstrut the

reahable set.

Thus, to alulate a supporting point x(t

f

) on the boundary of the reah-

able set R(t

f

;t

0

;x

0

) in a xed diretion l we have to nd an admissible ontrol

funtion u(t) 2 U that maximizes the funtional y 7! l

>

y (resulting in the sup-

portfuntionÆ

(l;R(t

f

;t

0

;x

0

))asoptimal value). This onstitutes the following

speial optimal ontrol problemof Mayer type:

(OCP

l )

8

<

:

Maximize l

>

x(t

f )

w.r.t. u2L 1

([t

0

;t

f

℄;IR m

);x2W 1;1

([t

0

;t

f

℄;IR n

)

x() orrespondingsolution tou() for(1a){(1).

We denote the optimal solution of (OCP

l

) by x

?

(t;l) and u

?

(t;l), where the

argument l indiates the dependeny of the diretionl.

AsalreadymentionedinProposition2.6,theonvexityandompatnessofthe

reahablesetguaranteedbyProposition2.3leadstotheequivalentrepresentation

by onsidering supporting points inall diretions l 2IR n

,klk

2

=1:

R(t

f

;t

0

;x

0

)=ofx

?

(t

f

;l)jl 2IR n

;klk

2

=1g:

(7)

timal Control Problems

In general, for omplex problems neither we an ompute a solution of (OCP

l )

analytially nor for all diretions l. Hene, we suggest to approximate (OCP

l )

numeriallyandonsideronlyanitenumberofdiretionsl

i

,i=1;:::;M :=N

l .

This yieldsanapproximation

R

M (t

f

;t

0

;x

0

)R(t

f

;t

0

;x

0 )

of the reahable set whih willbespeied hereafter.

Forthe momentlet l be xed with klk

2

=1.

ForN

t

2IN;N

t

2 weintroduea grid with grid points

t

i

=t

0

+ih2[t

0

;t

f

℄;i=0;1;:::;N :=N

t

;h= t

f t

0

N

t

: (2)

The ontrol funtion u(t) is disretized on eah subinterval [t

i

;t

i+1

℄ by the ap-

proximation

u (i)

app

(t;^u); t2[t

i

;t

i+1

℄;

where ^u = (u

0

;u

1

;:::;u

P 1 )

>

2 U P

is a nite dimensional vetor parametriz-

ing the seletion strategy for the ontrol in the following expliit Runge-Kutta

sheme.

Letusrst deneexpliitRunge-Kuttashemesbeforewewilldisussparti-

ularstrategiesforthe approximationofthe ontrolinmoredetails. Eahexpliit

Runge-Kuttasheme an beharaterized by its Buther array:

1

0 0

2

21

0 0

.

.

. .

.

. .

.

. .

.

. .

.

.

s

s1

s;s 1 0

1

s 1

s

For a given ontrol approximation u (i)

app

(t;u)^ on [t

i

;t

i+1

℄ a state approximation

x

app

(t;^u) isobtained viaan expliit s-step Runge-Kutta disretizationsheme:

x

app (t

i+1

;u)^ = x

app (t

i

;u)^ +h(x

app (t

i

;u);^ ^u;h); i=0;1;:::;N

t 1;

x

app (t

0

;u)^ = x

0

(3)

and

(x

app (t

i

;^u);^u;h):=

s

X

j=1

j

A(t

i +

j h)

(j)

i+1 +B(t

i +

j h)u

(i)

app (t

i +

j h;u)^

;

(j)

i+1 :=x

app (t

i

;u)^ +h j 1

X

k=1

jk

A(t

i +

k h)

(k)

i+1 +B(t

i +

k h)u

(i)

app (t

i +

k h;u)^

:

(8)

jk j j

[7℄.

Letus now onsider examples forseletion strategies used inSetion 4.

(i) Continuous and pieewise linearapproximation:

u (i)

app

(t;u )^ :=u

i +

t t

i

h (u

i+1 u

i

) for t2[t

i

;t

i+1

℄;i=0;1;:::;N 1;

withP =N +1.

(ii) Pieewise onstant approximation:

u (i)

app

(t;^u):=u

i

for t2[t

i

;t

i+1

℄;i=0;1;:::;N 1;

withP =N.

(iii) Independent seletions atintermediate grid points t

i +

j h:

u (i)

app (t

i +

j

h;^u):=u

is+j 1

; i=0;1;:::;N 1; j =1;:::;s; (4)

with P =sN. Here, eah grid pointreates a new independent seletion

foreahsubinterval. FormodiedEuler'smethod(seeSetion4andFigure

4 in Example 4.2)

1

= 0,

2

= 1

2

so that two independent seletions u

2i

and u

2i+1

are hosen fromU for this method ineah subinterval[t

i

;t

i+1

℄.

For Heun's method (see Setion 4 and Figure 3 in Example 4.2)

1

= 0,

2

=1sothattwoindependentseletionsu

2i andu

2i+1

arealsohosenfrom

U forthismethodineahsubinterval[t

i

;t

i+1

℄,althought

i +

2 h=t

i+1 +

1 h

fori=0;:::;N 1.

Please notie, that further seletionstrategies are possible, e.g. independent se-

letions with additional ontinuity onstraints at the inner grid points t

i , i =

1;:::;N 1,oradditionalequalityonstraints atthose intermediategrid points

t

i +

j

h where dierentindies j produe the same intermediate grid point(i.e.,

pointswhere

j

=

k

with j 6=k).

Thus, by this disretization the innitedimensional optimal ontrol problem

(OCP

l

) is approximated by the nite dimensionalonvex programming problem

(CP 1

l )

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

Maximize l

>

x

app (t

Nt

;^u)

w.r.t. u^ 2U P

subjet to

x

app (t

i+1

;^u) = x

app (t

i

;^u)+h(x

app (t

i

;u);^ u;^ h);

i=0;1;:::;N

t 1

x

app (t

0

;^u) = x

0

;

^

u 2 U

P

: (?)

Notie,that^uimpliitlydenes aontrolapproximationu (i)

app

(;^u)oneahsubin-

terval [t

i

;t

i+1

℄,ompare the examples(i)-(iii).

(9)

We denote the optimalsolution of (CP

l

) by u^ .

Iftheonditions(?) anbewrittenwithanitenumberofaÆneinequalities,

(CP 1

l

) isa linearprogramming problemand alled(LP 1

l

),otherwise anonlinear

(onvex) programmingproblem.

In the sequel, we investigate the simplestase, the Euler's methodIn the se-

quel,weinvestigatethesimplestase,theEuler'smethodwithpieewiseonstant

ontrolapproximation,sine it isthen easier possible toderive expliit solutions

for the nite dimensional problems (CP 1

l

). Nevertheless, every expliit Runge-

Kutta methods with the seletion strategies (i){(iii) will give a similar (more

ompliated) representation. The expliit formulae for the solution stress the

strong onnetionto set-valued methods e.g. in [12, 4, 41℄via supportfuntions

resp. supporting points.

In the ase of Euler, (3)redues to

(x

app (t

i

;^u);^u;h)=A(t

i )x

app (t

i

;^u)+B(t

i )u

i :

The reursive evaluationin (3)for Euler's method yields

x

app (t

Nt

;u)^ = Nt 1

Y

i=0 Q

i

!

x

0 +h

Nt 1

X

k=0

Nt 1

Y

i=k+1 Q

i

!

B

k u

k

(5)

withQ

i

:=I+hA(t

i ), B

k

:=B(t

k

) and the nn-identitymatrix I. The matrix

produt Q

is dened as

j

Y

i=k Q

i :=Q

j Q

j 1 Q

k :

Introduing this expression for x

app (t

f

;^u) in(LP 1

l

) yieldsthe linear program

(LP 2

l )

8

>

<

>

:

Maximize l

>

N

t 1

X

k=0 N

t 1

Y

i=k+1 Q

i

!

B

k u

k

!

subjet to u

k

2U; k =0;1;:::;N

t 1:

Note that this linear program has the same solution u^ as (LP 1

l

), whereas the

optimalobjetivefuntionvaluesare dierent,sinewenegletedonstantterms.

To ompute the objetive funtion in(LP 2

l

)very eÆiently we introdue ad-

ditionalartiialvariables

>

Nt

:= l

>

;

>

i

:=

>

i+1 Q

i

=

>

i+1 +h

>

i+1 A

i :

These artiialvariables are alulated bakward in time and orrespond to the

disretized adjointvariable of the optimalontrol problem(OCP

l ).

(10)

Then, (LP

l

) an be replaed by

(LP 3

l )

8

>

<

>

:

Maximize Nt 1

X

k=0

>

k+1 B

k u

k

subjet to u

k

2U; k =0;1;:::;N

t 1:

Lemma 2.8gives us

Nt 1

X

k=0 Æ

(

k+1

;B

k U)=

Nt 1

X

k=0 Æ

(B

>

k

k+1

;U)

as optimal value of (LP 3

l

) and hene, (u

0

;u

1

;:::;u

N

t 1

) with the supporting

pointsu

k

2Y(B

>

k

k+1

;U) as one solution.

In the speial of box onstraints, that is U = fu 2 IR m

j u u ug, we

deneS

>

k

:=(S 1

k

;:::;S m

k

):=

>

k+1 B

k 2IR

m

. Sine the objetive funtion

Nt 1

X

k=0 S

k u

k

= Nt 1

X

k=0 m

X

j=1 S

j

k u

j

k

ismaximized,if eahtermS j

k u

j

k

ismaximized,the solutionof (LP 3

l

)isgiven by

u j

k

= 8

>

>

>

<

>

>

>

: u

j

; if S

j

k

<0;

u j

; if S

j

k

>0;

arbitrary; else:

forj =1;:::;m; k=0;:::;N

t 1.

3.3 Disrete reahable sets

Disrete reahable sets are the reahable sets of the disretized equations and

ouldbedened asendpoints ofdisrete solutionsof the following problem.

Given thedata inProblem2.1,the disretizedproblemdependsonthe hoie

ofthesetU

app

ofalldisretizedontrolfuntionsandontheRunge-Kuttasheme.

Problem 3.1 For a time disretization (2) with step-size h= t

f t

0

Nt

and a given

disretized ontrol funtion u

app

(;u)^ we are looking for a solution x

app

(;^u) at

the grid-points t

i

, i=0;1;:::;N

t , with

x

app (t

i+1

;^u)=x

app (t

i

;^u)+h(x

app (t

i

;^u);u;^ h) (6a)

for i=0;1;:::;N

t 1;

x

app (t

0

;^u)=x

0

; (6b)

u

i

2U; i=0;1;:::;N

t

; (6)

u

app

(;^u)2U

app :

(11)

f0;1;:::;N

t

g. Then,

R

N (t

i

;t

0

;x

0

):=fy2R n

j9u

app

(;u)^ disretized ontrol funtion and

9x

app

(;u)^ orresponding solution of Problem 3.1

with x

app (t

i

;^u)=yg

isalledthe disretereahablesetoftheorrespondingdisretizedontrolproblem

for the time t

i .

Thedenitionaboveshowsthateahoptimizerofproblem(CP 1

l

)(resp.therefor-

mulation(LP 3

l

)) isasupporting pointof thedisretereahableset R

N (t

f

;t

0

;x

0 )

in diretion l. The optimal value of problem (CP 1

l

) oinides with the support

funtionÆ

(l;R

N (t

f

;t

0

;x

0

)). Proposition 2.6shows that

R

N (t

f

;t

0

;x

0 )=

\

kl k

2

=1

fx2R n

jl

>

xl

>

x

app (t

f

;u^

?

)g;

R

N (t

f

;t

0

;x

0

)=o(

[

kl k2=1 fx

app (t

f

;^u

?

)g):

In pratie, onlya nite number of dierent normeddiretions l i

, i=1;:::;M,

are hosen.

Proposition 3.3 ConsiderProblem3.1withatimedisretization (2)andleti2

f0;1;:::;N

t

g. Then, the orresponding disrete reahable set is onvex, ompat

and nonempty.

Proof: For a hosen disretized ontrolfuntion u

app

(;^u), the disrete solution

isdened by (5). The disretereahable set oinides with the union of allsuh

disretesolutionsforallfeasibledisretizedontrolfuntions. IntheaseofEuler

and linear approximation of the ontrols, this orresponds to the union over all

vetors u^2R m (N+1)

. Denition 2.7shows that the disrete reahable set

R

N (t

f

;t

0

;x

0 )=

N

t 1

Y

i=0 Q

i

!

x

0 +h

N

t 1

X

k=0 (

N

t 1

Y

i=k+1 Q

i

!

B

k )U

is a saled Minkowski sum of linearly transformed onvex sets U. Lemma 2.8

proves the wanted properties of the disrete reahable set.

3.4 Implementation

In the sequel, we briey disusssome numerialmethods, whih are suitablefor

solving the disretized optimal ontrol problem (CP 1

l

). Of ourse, the hoie

(12)

region U. Hene, we restrit the disussion to onvex ontrol regions U dened

by

U =fu2X jg

i

(u)0; i=1;:::;rg; (7)

where X := fu 2 IR m

j e

Au = b; u 0g with a matrix e

A 2 R pm

and the

funtionsg

i

(),i=1;:::;r, ould be eitherlinear or nonlinear.

Remark 3.4 In the ase, that the support funtion or the supporting points of

theonvexontrolsetU areknown,generalontrolregionsU anbeapproximated

in another way. Proposition2.6 suggests to use the approximation

U

\

i=1;:::;M

fx2R m

j i

>

( i

;U)g

resp.

U o(

[

i=1;:::;M fy(

i

;U)g) with arbitrary y(

i

;U)2Y( i

;U) :

Herein, theM dierentnormeddiretions i

2R m

shouldbe hosen inan appro-

priateway inorder toapproximatetheunit sphere. Onemethod istoparametrize

them byspherialoordinates and useequidistant partitionson the parameter in-

tervals for the angles (see [3, Subsetion 3.1.2℄).

If the funtions g

i

in (7) are aÆne linear, then problem (CP 1

l

) is a linear

optimization problem and an be solved by the well-known simplex method or

some interior point method, f. [42℄, suitable for linear programs. In the speial

ase of an Euler approximation and U dened by box onstraints only, a very

eÆientmethodis desribed inSetion 3.2.

If the funtions g

i

are onvex and smooth, i.e. atleast ontinuously dieren-

tiable,thenthe resultingproblem(CP 1

l

)isaonvexbut nonlinear programming

problem and the sequential quadrati programming (SQP) method is appropri-

ate provided the funtions g

i

are dened for infeasible points, f. [34℄, [35℄, [18℄.

Alternatively, the method of feasible diretions is appliable, espeially, if the

funtionsg

i

are only dened for admissiblepoints, f. [43℄.

Ifthefuntionsg

i

are onvexbut nonsmooth,the bundlemethodrespetively

the bundletrust region method (BT-method)is suitable,f. [28℄, [31℄, [21℄, [22℄,

[36℄. Inaddition,Kelly'suttingplanemethodisalsoappliable,f. [20℄. Notie,

that the BT-method and the utting plane method are losely related, f. [21℄,

[36℄.

(13)

In the sequel we refer to the optimal ontrol problem (OCP

1

), the dierential

equation (1a)-(1b), the ontrol onstraint (1), and the ontrol approximations

disussed in(i)-(iii) inSetion 3.2.

The following Runge-Kuttamethods are used forthe numerialomputation

of reahable sets:

0 0

1

Euler's method

0 0 0

1 1 0

1=2 1=2

Heun's method

0 0 0

1=2 1=2 0

0 1

Modied Euler'smethod

For all numerial experiments the number of diretions M in Remark 3.4 is

hosenas1200???. Forsimpliity,the methodswithdierentseletionstrategies

are tested for time-independent two-dimensional problems (in whih one ould

even alulate a theoretial solution for referene purposes). Nevertheless, the

framework presented before is still valid and the methods ould be used also

in more ompliated problems (time dependent and higher dimensional) met in

pratie.

From Denition 2.9 of the Hausdor distane, it is lear that the approxi-

mationof thereahable set orresponds toa uniformonvergene of the optimal

value funtions, whereas the approximation of trajetories orresponds to the

uniformonvergene of the maximizersand the Demyanov distane.

Example 4.1 (see [39, Example in setion 4℄) Letusonsiderthefollowing

example with n=2, m =1, x

0

=(0;0)

>

, I =[0;1℄, U =[0;1℄, and

A(t)=

0 1

0 0

; B(t)=

0

1

:

In Figure 1 approximations to the reahable set R(1;0;x

0

) are shown, in the

leftpitureapproximationswith Euler'smethodwithpieewiseonstantseletions

are shown (rst order of onvergene), in the right one the orresponding ones

for Heun's method with ontinuous and pieewise linear ontrol approximation

(seondorder ofonvergene)aredepited. Inbothasesthesetwiththesolidline

showsthe referene set (alulatedwith theorresponding method forN =1280).

The dashed lines show the approximations for N =10;20;40for Euler's method

on the left piture (please note the halfening of the distane of the upper right

orner of the sets when the number of subintervals is doubled). At the right one,

the dashed lines show the approximations for N = 1;2;4 for Heun's method (a

smaller number of subintervals are hosen so that one ould still see in Figure 1

a dierene of the orresponding approximations). Please notie the more rapid

(14)

Euler's method.

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

0 0.1 0.2 0.3 0.4 0.5

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

0 0.1 0.2 0.3 0.4 0.5

Figure 1: First order ontra seond order approximations to the reahable set

(left: Euler's method with error O(h), right: Heun's methodwith error O(h 2

))

As Veliov explains in [39℄, the onvergene of the trajetory ould not be bet-

ter than O(h) in this example. In Figure 2 the rst order approximations to the

ontrolandtothestate omponents(oordinates x

1 andx

2

) areshownforHeun's

method with ontinuous, pieewiselinear seletions. Again, the referene isom-

puted by the method itself with N = 1280 (solid line) and in dashed lines the

approximations forN =10;20;40. As it islearly seen, theorder of onvergene

is only1.

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1 0

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0 0.2 0.4 0.6 0.8 1 0

0.1 0.2 0.3 0.4 0.5

0 0.2 0.4 0.6 0.8 1

Figure 2: First order approximations to the ontrol (left) and the state ompo-

nents (middle,right)by Heun's method

Here, the ombination method of set-valued iterated trapezoidal rule together

withHeun'smethodintroduedin [3,4℄ withN =1000000servesas the referene

(15)

set R

ref (0;x

0

;). By omparing the dierent values based on the optimal value

funtion resp. the maximizers, the order of onvergene is estimated. The angle

'for the diretion l 2R 2

, in whih the maximum in (8) resp. (9) is attained, is

shown in the most right olumn.

Hausdor estim.

N distane order angle

10 0.05000000 NaN 0.00500

20 0.02500000 1.00000 0.00500

40 0.01250000 1.00000 0.00500

80 0.00625000 1.00000 0.00500

160 0.00312500 1.00000 0.00500

320 0.00156250 1.00000 0.00500

640 0.00078125 1.00000 0.00500

Demyanov estim.

N distane order angle

10 0.13702925 NaN 5.55500

20 0.06806368 1.00953 5.55500

40 0.03392323 1.00461 5.51500

80 0.01731662 0.97012 5.53500

160 0.00861479 1.00727 5.53500

320 0.00426388 1.01465 5.53500

640 0.00209303 1.02657 5.62500

Table I: order of onvergene for Euler's method (left table: approximation of

the reahable set, righttable: approximation of the trajetories).

Table I shows the expeted order of onvergene 1 for reahable set and the

trajetories. As remarked above the Hausdor distane is attained at the upper

right orner. This table shows the approximated values

max

i=1;:::;M jÆ

(l

i

;R(1;0;x

0 )) Æ

(l

i

; b

R

ref (0;x

0

;))j (8)

resp.

max

i=1;:::;M kY(l

i

;R(1;0;x

0

)) Y(l

i

; b

R

ref (0;x

0

;))k

2

(9)

at the hosen diretions l

i

, i=1;:::;M, for the two distanes

d

H

(R(1;0;x

0 );R

N

(1;0;x

0

)) resp. d

D

(R(1;0;x

0 );R

N

(1;0;x

0 )):

Hausdor estim.

N distane order angle

10 0.00124700 NaN 3.09500

20 0.00031111 2.00295 3.12000

40 0.00007788 1.99805 6.27500

80 0.00001947 1.99990 3.14000

160 0.00000488 1.99688 6.26000

320 0.00000122 1.99929 3.14500

640 0.00000030 2.00266 6.22500

Demyanov estim.

N distane order angle

10 0.06636590 NaN 5.55500

20 0.03273184 1.01975 5.55500

40 0.01668369 0.97226 2.40000

80 0.00848003 0.97630 5.53500

160 0.00419649 1.01488 5.53500

320 0.00205473 1.03024 5.53500

640 0.00099208 1.05042 5.62500

Table II: order of onvergene for Heun's method (left table: approximation of

the reahable set, righttable: approximation of the trajetories)

For Heun's method with ontinuous, pieewise linear ontrol approximation,

Table II shows order of onvergene 2 for the reahable set and only order 1 for

the trajetories.

(16)

with n=2, m =2, x

0

=(0;0)

>

, I =[0;2℄, U =fx2IR 2

jkxk

2

1g, and

A(t)=

0 1

2 3

; B(t)=

1 0

0 1

:

This example introdues the nonlinear onstraint

u 2

1 +u

2

2 1

for the ontrol variableu=(u

1

;u

2 )

>

.

The seond order approximations to the reahable set R(2;0;x

0

) alulated

byHeun'smethodwith pieewiseonstant ontrols resp. with independentontrol

seletion in t

i and t

i+1

(see (4)) are shown in Figure 3.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1.5 -1 -0.5 0 0.5 1 1.5

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1.5 -1 -0.5 0 0.5 1 1.5

Figure 3: seond order approximations to the reahable set for Heun's method

with pieewise onstant ontrol approximation (left) resp. independent ontrol

seletion(right).

The set with the solid line shows the referene set (alulated with the orre-

sponding methodfor N =160)and thedashedlines representthe approximations

for N =5;10;20. At the left piture the onvergene order O(h 2

) an be seen by

studying the boundary of the sets near by y=1.

Both seletion strategies seems to onverge with order 2 whih is assured by

Tables IIIand IV.

Nevertheless, Figure 4 showsthat the hoieof the seletionstrategies forthe

ontrol should depend on the Runge-Kutta method. In Figure 4 the pieewise

onstantseletion strategy isompared with the independent ontrol seletions in

t

i and t

i +

h

2

for modied Euler's method (see (4)). The latter seletion strategy

(17)

distane

5 0.10328935 NaN 1.37000

10 0.02307167 2.16250 1.53000

20 0.00521186 2.14625 1.57500

40 0.00123195 2.08086 4.73500

80 0.00029922 2.04164 1.60000

160 0.00007372 2.02105 4.74500

distane trajetory

5 0.37223126 NaN 0.90500

10 0.07159599 2.37825 0.88500

20 0.01535558 2.22112 4.02500

40 0.00355544 2.11066 4.02500

80 0.00085565 2.05493 4.02500

160 0.00020992 2.02719 4.02500

TableIII: Orderof Convergene for Heun's methodwith pieewise onstanton-

trolapproximation.

N Hausdor Order angle

distane

5 0.04517018 NaN 1.72000

10 0.00772443 2.54787 4.23500

20 0.00203009 1.92789 4.30000

40 0.00051385 1.98211 4.33500

80 0.00012897 1.99429 1.21000

160 0.00003229 1.99784 1.22000

N Demyanov Order angle

distane trajetory

5 0.16781544 NaN 1.18500

10 0.04611042 1.86371 0.87500

20 0.01077148 2.09788 4.01500

40 0.00257389 2.06520 0.87500

80 0.00062808 2.03492 0.87500

160 0.00015506 2.01802 4.01500

Table IV: Order of Convergene for Heun's method with independent seletion

strategy(iii).

destroys order of onvergene 2 of the Runge-Kutta method. This is veried in

the Tables V (order O(h 2

)) and VI (only order O(h)) for the onvergene to the

reahable set and the trajetories.

N Hausdor Order angle

distane

5 0.10328935 NaN 1.37000

10 0.02307167 2.16250 1.53000

20 0.00521186 2.14625 1.57500

40 0.00123195 2.08086 4.73500

80 0.00029922 2.04164 1.60000

N Demyanov Order angle

distane trajetory

5 0.37223121 NaN 0.90500

10 0.07159599 2.37825 0.88500

20 0.01535559 2.22112 4.02500

40 0.00355571 2.11056 4.02500

80 0.00085566 2.05503 0.88500

Table V: Order of Convergene for the modied Euler's method with pieewise

onstantontrolapproximation.

(18)

distane

5 0.83583108 NaN 4.03000

10 0.33319435 1.32685 0.85500

20 0.15333206 1.11970 5.34000

40 0.07575471 1.01725 5.36000

80 0.03762644 1.00959 2.22500

distane trajetory

5 1.03202096 NaN 0.73000

10 0.36562913 1.49702 3.85000

20 0.16060144 1.18690 3.76000

40 0.07933801 1.01740 4.72000

80 0.03952243 1.00534 4.72000

Table VI: Orderof Convergene for the modiedEuler's method with freesele-

tion.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1.5 -1 -0.5 0 0.5 1 1.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 4: approximations to the reahable set for N = 160 (solid) and N =

5;10;20(dashed) omputedby modied Euler'smethodwithpieewise onstant

(left)resp. independent seletionstrategy (iii)(right).

(19)

It is known that set valued quadrature methods in [4℄ ould lead to a order of

onvergene greaterthantwo,ifthe problemsatisesadditionalsmoothnesson-

ditions,f. [3℄. In this ase, seletion strategies with pieewise onstant ontrols

are no longer appropriate. Preliminary omputer experiments with the lassial

Runge-Kuttamethod showthat orderof onvergene greaterthan two is attain-

able. But for these Runge-Kutta methods suitable seletion strategies have to

be studied in more detail. In this ontext, additional diÆulties arise if state

onstraints are present, beause these onstraints should be fullled also at the

intermediatestages ofthe Runge-Kuttasheme (as in[8℄).

FurtherresearhanbeondutedtowardsthestudyofRunge-Kuttashemes

asin[29℄, [13℄, [27℄,wherethe seletionstrategyismotivatedby multipleontrol

integrals. Inthe speialase oftwoseletionsperRunge-Kuttastep thisleads to

alternativeseletionsets oftype

u (i)

app (t

i +

1

h;^u);u (i)

app (t

i +

2 h;^u)

2

^

U U

U, whereUU orrespondstoase(iii)ofindependentseletionsinSetion3.2.

Thisset

^

U anbedesribedbynitelymanynonlinearinequalitiesandequalities,

whih an be easilyimposed as additionalonstraintsin the disretized optimal

ontrol problems.

Theproposedmethoditselfanbeeasilyadaptedtothe alulationof onvex

reahable sets for nonlinear dierentialinlusions. Forthe numerialsolution of

disretized optimal ontrol problems eÆient algorithms are available, f., e.g.,

[6℄, [16, 17℄. Inthe more generalase of nononvex reahable sets suitablemodi-

ationsofour approahhave tobestudied. Theoretialresultsinthis diretion

an be found in [12℄, [41℄, [40℄ for Runge-Kutta methods of order one and two.

A survey of other methods isgiven in[11℄ and [8℄.

However, those Runge-Kutta methods with appropriate seletion strategies,

whih show higher order of onvergene in the linear ase, are worth being in-

vestigated also in the nonlinear ase. In addition, these methods have to be

omparedwithset-valuedRunge-Kuttamethodsbasedonset arithmetis,f.[8℄,

whih work also on the general nonlinear ase. First steps in this diretion an

be found in[8, Example 5.3.1℄.

Referenes

[1℄ J.-P. Aubin and A. Cellina. Dierential Inlusions, volume 264 of

Grundlehren der mathematishen Wissenshaften. Springer Verlag, Berlin{

Heidelberg{New York{Tokyo, 1984.

[2℄ R. J. Aumann. Integrals of Set-Valued Funtions. J. Math. Anal. Appl.,

12(1):1{12, 1965.

(20)

ihbarer Mengen. Bayreuth. Math. Shr.,50:xxii + 248 S., 1995.

[4℄ R.Baierand F. Lempio. ComputingAumann's integral. In A.B. Kurzhan-

ski and V. M. Veliov, editors, Modeling Tehniques for Unertain Systems,

Proeedingsof a Conferenes heldin Sopron, Hungary,July6-10, 1992,vol-

ume18ofProgressinSystemsandControlTheory,pages71{92,Basel,1994.

Birkhauser.

[5℄ V. I. Blagodatskikh and A. F. Filippov. Dierentialinlusionsand optimal

ontrol. In Pro. Steklov Inst. Math., 4, pages 199{259. North-Holland,

Amsterdam, 1986.

[6℄ C. Buskens. Optimierungsmethoden und Sensitivitatsanalyse f ur optimale

Steuerprozesse mitSteuer- und Zustandsbeshrankungen. PhD thesis,Fah-

bereihMathematik,Westfalishe Wilhems-UniversitatMunster,1998.

[7℄ J.C. Buther. TheNumerialAnalysisof OrdinaryDierentialEquations|

Runge-Kutta and General Linear Methods. John Wiley and Sons,

Chihester{New York{Brisbane{Toronto{Singapore, 1987.

[8℄ I. A. Chahma. Set-valued disrete approximation of state-onstrained dif-

ferentialinlusions. Bayreuth. Math. Shr., 67:3{162, 2003.

[9℄ P. Diamond, P. Kloeden, A. Rubinov, and A. Vladimirov. Comparative

Properties of Three Metris in the Spae of Compat Convex Sets. Set-

Valued Anal., 5(3):267{289,1997.

[10℄ A.L.Donthev,W.W.Hager,andV.M.Veliov.Seond-OrderRunge-Kutta

ApproximationsinControlConstrainedOptimalControl. SIAM Journalon

NumerialAnalysis,38(1):202{226,2000.

[11℄ A.L.DonthevandF.Lempio.Dierenemethodsfordierentialinlusions:

A survey. SIAM Rev., 34(2):263{294,1992.

[12℄ A.L.DonthevandE.M.Farkhi.ErrorEstimatesforDisretizedDierential

Inlusions. Computing, 41:349{358, 1989.

[13℄ R. Ferretti. High-Order Approximations of Linear Control Systems via

Runge-KuttaShemes. Computing, 58(4):351{364,1997.

[14℄ A. F. Filippov. Dierential Equations with Disontinuous Righthand Sides.

Mathematis and Its Appliations (Soviet Series). Kluwer Aademi Pub-

lishers,Dordreht{Boston{London, 1988.

[15℄ J. E. Gayek. Approximating reahable sets for a lass of linear ontrolsys-

tems. Internat. J. Control, 43(2):441{453, 1986.

(21)

algebraishen Gleihungssystemen hoheren Indexes und ihre Anwendungen

in der Kraftfahrzeugsimulation und Mehanik. volume 61 of Bayreuther

Mathematishe Shriften, Bayreuth,2001.

[17℄ M. Gerdts. Diret Shooting Method for the Numerial Solution of Higher

IndexDAEOptimalControlProblems.Journal ofOptimizationTheoryand

Appliations, 117(2):267{294,2003.

[18℄ P. E. Gill,W.Murray, M. A.Saunders, and M.H. Wright. User's guide for

NPSOL 5.0: A FORTRAN pakage for nonlinear programming. Tehnial

Report NA 98-2,Department of Mathematis, Universityof California, San

Diego,California,1998.

[19℄ J.-B. Hiriart-Urruty and C. Lemarehal. Convex Analysis and Minimiza-

tion Algorithms I. Fundamentals, volume305 of Grundlehren der mathema-

tishen Wissenshaften. Springer, Berlin{Heidelberg{New York{London{

Paris{Tokyo{Hong Kong{Barelona{Budapest, 1993.

[20℄ J.E.Kelley. Theutting-planemethodforsolvingonvexprograms. J.So.

Ind. Appl. Math., 8:703{712,1960.

[21℄ K.C.Kiwiel.MethodsofDesentforNondierentiableOptimization,volume

1133ofLetureNotesinMath.Springer,Berlin-Heidelberg-NewYork.Tokyo,

1985.

[22℄ K.C. Kiwiel.A ConstraintLinearizationMethodforNondierentiableCon-

vex Minimization. Numer. Math.,51:395{414, 1987.

[23℄ A.B. KurzhanskiandI.Valyi. EllipsoidalCalulusforEstimationand Con-

trol. Systems & Control: Foundations& Appliations. Birkhauser, Boston{

Basel{Berline,1997.

[24℄ A. B. Kurzhanski and P. Varaiya. Ellipsoidal tehniques for reahability

analysis: internalapproximation. Systems Control Lett., 41:201{211, 2000.

[25℄ A. B. Kurzhanski and P. Varaiya. On Ellipsoidal Tehniques for Reaha-

bility Analysis. part I: External Approximations. Optim. Methods Softw.,

17(2):177{206,2002.

[26℄ A.B.KurzhanskiandP.Varaiya.OnEllipsoidalTehniquesforReahability

Analysis. part II: Internal Approximations Box-valued Constraints. Optim.

Methods Softw., 17(2):207{237,2002.

[27℄ P. E. Kloeden L. Grune. Higher order numerial shemes for aÆnely on-

trollednonlinear systems. Numer. Math., 89:669{690,2001.

(22)

Nonsmooth Optimization. In O. L. Mangasarian, R. R. Meyer, and S. M.

Robinson, editors, Nonlinear Programming 4, pages 245{282, New York,

1981.Aademi Press.

[29℄ F.LempioandV.Veliov.DisreteApproximationsofDierentialInlusions.

Bayreuth. Math. Shr., 54:149{232,1998.

[30℄ K.Malanowski,C. Buskens, and H.Maurer. Neessary ConditionsforOpti-

malControlProblemsInvolvingNonlinearDierentialAlgebraiEquations.

In Anthony Fiao, editor, Mathematial programming with data perturba-

tions, volume 195, pages 253{284. Dekker. Let. Notes Pure Appl. Math.,

1997.

[31℄ R. Miin. A modiation and an extension of Lemarehal's algorithm for

nonsmooth minimization. Math. Program. Study, 17:77{90, 1982.

[32℄ R. T. Rokafellar. Convex Analysis, volume 28 of Prineton Mathematial

Series.PrinetonUniversityPress,Prineton,NewYersey,2 nd

edition,1972.

[33℄ P. Saint-Pierre. Approximation of the viability kernel. Appl. Math. Optim.,

29:187{209,1994.

[34℄ K. Shittkowski. On the Convergene of a Sequential Quadrati Program-

ming Method with anAugmented Lagrangian Line Searh Funtion. Math.

Operationsforsh. Stat., Ser. Optimization,14(2):197{216,1983.

[35℄ K.Shittkowski. NLPQL:AFortransubroutineforsolvingonstrainednon-

linearprogramming problems. Ann. Oper. Res., 5:484{500,1985.

[36℄ H. Shramm. Eine Kombination von Bundle- und Trust-Region-Verfahren

zur Losung nihtdierenzierbarer Optimierungsprobleme. Bayreuth. Math.

Shr.,30,1989.

[37℄ L. M. Sonneborn and F. S. van Vlek. The bang-bang priniple for linear

ontrolproblems. SIAM J. Control, Ser. A, 2(2):151{159,1965.

[38℄ P. Varaiya. Reah set omputation using optimal ontrol. In M. K. Inan

and R. P. Kurshan, editors, Veriation of digital and hybrid systems. Pro-

eedings of the NATO ASI, Antalya, Turkey, May 26{June 6, 1997, volume

170of NATO ASI Ser,Ser. F,Comput. Syst.Si.,pages323{331.Springer,

2000.

[39℄ V.M.Veliov.Approximationstodierentialinlusionsbydisreteinlusions.

Working PaperWP-89-017, IIASA, Laxenburg, Austria, 1989.

(23)

ferentialinlusions. Systems Control Lett., 13:263{269,1989.

[41℄ V. M. Veliov. Seond Order Disrete Approximation to Linear Dierential

Inlusions. SIAM J. Numer. Anal., 29(2):439{451,1992.

[42℄ S.E.Wright.Primal-DualInterior-PointMethods.SIAM,Philadelphia,PA,

1997.

[43℄ G.Zoutendijk.MethodsofFeasibleDiretions.ElsevierPublishingCompany,

Amsterdam, Netherlands, 1960.

Referenzen

ÄHNLICHE DOKUMENTE

Grid approximation schemes for constructing value functions and optimal feedbacks in problems of guaranteed control are proposed via theory of generalized (minimax, viscos-

The author studies High order necessary conditions for optimality for an optimal control problem via properties of contingent cones to reachable sets along the

That is the final step in the formulation of model (1); screening experiments can be carried out now. 1) Input variables can be separated into groups with the help of

In the DFOG method the popular direct discretization of optimal control problems is combined with an approximation strategy for sets based on distance functions and best

In a recent paper [4] we have shown that for linear control problems with an optimal control of bang-bang structure the discrete and continuous controls coincide except on a set

• The adjoint ODE approach, see [6], is advantageous compared to the sensitivity ODE approach if the number of nonlinear constraints is less than the number of variables in

Abstract Higher order numerical schemes for affine nonlinear control systems devel- oped elsewhere by the authors are adapted to switching systems with prescribed switching times..

Problem (8) might be solved through a process similar to the Dantzig- Wolfe decomposition method, i.e., by coordinating via pricing mecha- nism solutions of the