• Keine Ergebnisse gefunden

Path Integration in Statistical Field Theory: from QM to Interacting Fermion Systems

N/A
N/A
Protected

Academic year: 2021

Aktie "Path Integration in Statistical Field Theory: from QM to Interacting Fermion Systems"

Copied!
80
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Path Integration in Statistical Field Theory:

from QM to Interacting Fermion Systems

Andreas Wipf

Theoretisch-Physikalisches Institut Friedrich-Schiller-University Jena

Methhods of Path Integration in Modern Physics 25.-31. August 2019

Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory

(2)

1 Introduction

2 Path Integral Approach to Systems in Equilibrium: Finite Number of DOF Canonical approach

Path integral formulation

3 Quantized Scalar Field at Finite Temperature

Lattice regularization of quantized scalar field theories Äquivalenz to classical spin systems

4 Fermionic Systems at Finite Temperature and Density Path Integral for Fermionic systems

Thermodynamic potentials of relativistic particles

5 Interacting Fermions

Interacting fermions in condensed matter systems Massless GN-model at Finite Density in Two Dimensions Interacting fermions at finite density ind=1+1

(3)

why do we discretize quantum (field) theories? 2 / 79

weakly coupled subsystems:perturbation theory if not:strongly coupled system

properties can only be explained by strong correlations of subsystems example of strongly coupled systems:

ultra-cold atoms in optical lattices high-temperature superconductors statistical systems near phase transitions strong interaction at low energies

Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory

(4)

theoretical approaches 3 / 79

exactly soluble models(large symmetry, QFT, TFT) approximations

mean field, strong coupling expansion, . . . restiction toeffective degrees of freedom

Born-Oppenheimer approximation, Landau-theory, . . . functional methods

Schwinger-Dyson equations

functional renormalization group equation numerical simulations

lattice field theories = particular classical spin systems

⇒powerful methods of statistical physics and stochastics

(5)

Quantum mechanical system in thermal equilibrium

HamiltonianHˆ :H 7→ H

system inthermal equilibriumwith heat bath canonical %ˆβ= 1

Zβ

Kˆ(β), Kˆ(β) = e−βHˆ, β= 1 kT normalizingpartition function

Zβ =trKˆ(β) expectation value of observableOˆin ensemble

hOiˆ β=tr %ˆβ

Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory

(6)

thermodynamic potentials 5 / 79

inner and free energy

U=hHiˆ β=− ∂

∂β logZβ , Fβ=−kTlogZβ

⇒all thermodynamic potentials, entropyS=−∂TF, . . . specific heat

CV =hHˆ2iβ− hHiˆ 2β=−∂U

∂β >0 system of particles: specify Hilbert space andHˆ identical bosons: symmetric states

identical fermions: antisymmetric states traces on different Hilbert spaces

(7)

quantum statistics: canonical approach 6 / 79

Path integral for partition function in quantum mechanics

euclidean evolution operatorKˆ satisfiesdiffusiontype equation Kˆ(β) = e−βHˆ=⇒ d

Kˆ(β) =−HˆKˆ(β)

compare with time-evolution operator and Schrödinger equation U(tˆ ) = e−iH/ˆ ~=⇒ i~d

dtU(t) = ˆˆ HU(tˆ ) formally:U(tˆ =−i~β) = ˆK(β), imaginary time

~quantum fluctuations,kT thermal fluctuations

Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory

(8)

heat kernel 7 / 79

evaluate trace in position space

hq|e−βHˆ|q0i=K(β,q,q0) =⇒Zβ= Z

dq K(β,q,q)

“initial condition” for kernel: limβ→0K(β,q,q0) =δ(q,q0)

free particle in d dimensions (Brownian motion)

0=−~2

2m∆=⇒K0(β,q,q0) = m 2π~2β

d/2

e2~m2β(q0−q)2

HamiltonianHˆ = ˆH0+ ˆV bounded from below⇒ e−β( ˆH0+ ˆV) =s− lim

n→∞

e−βHˆ0/ne−βV/nˆ n

, Vˆ =V( ˆq)

(9)

derivation of path integral 8 / 79

insert for every identity1in eβnHˆ0eβnVˆ

1 eβnHˆ0eβnVˆ

1· · ·1 eβnHˆ0eβnVˆ the resolution1=R

dq|qihq| ⇒ K β,q0,q

= lim

n→∞

q0

eβnHˆ0eβnVˆn

q

= lim

n→∞

Z

dq1· · ·dqn−1 j=n−1

Y

j=0

qj+1

eβnHˆ0eβnVˆ qj

,

initial and final positionsq0=q andqn=q0 define smallε=~β/nand finally use

eβnV( ˆq) qj

= qj

eβnV(qj) qj+1

eβnHˆ0 qj

= m 2π~ε

d/2

e2~εm (qj+1−qj)2

Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory

(10)

derivation of path integral 9 / 79

discretized “path integral”

K(β,q0,q) = lim

n→∞

Z

dq1· · ·dqn−1

m 2π~ε

n/2

·exp

−ε

~

j=n−1

X

j=0

m 2

qj+1−qj

2

+V(qj)

 divide interval[0,~β]intonsub-intervals of lengthε=~β/n consider pathq(τ)with sampling pointsq(τ=kε) =qk

s q

0 ε =~β

q=q0

q1

q2 qn=q

(11)

interpretation as path integral 10 / 79

Riemann sum in exponent approximatesRiemann integral

SE[q] =

β

Z

0

dτm

2q˙2(τ)+V(q(τ)) SEisEuclidean action(∝action for imaginary time)

integration over all sampling pointsn→∞−→ formal path integralDq path integral with real and positive density

K(β,q0,q) =C

q(~β)=q0

Z

q(0)=q

Dq e−SE[q]/~

Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory

(12)

partition function as path integral 11 / 79

on diagonal = integration over all pathq→q

K(β,q,q) =hq|e−βHˆ|qi=C

q(~β)=q

Z

q(0)=q

Dq e−SE[q]/~

trace

tr e−βHˆ= Z

dqhq|e−βHˆ|qi=C I

q(0)=q(~β)

Dq e−SE[q]/~

partition functionZ(β) integral overall periodic pathswith period~β.

can construct well-defined Wiener-measure measure(differentable paths)=0

measure(continuous paths)=1

(13)

not only classical paths contribute 12 / 79

Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory

(14)

Mehler’s formula 13 / 79

exercise (Mehler formula)

show that the harmonic oscillator with Hamiltonian Hˆω=−~2

2m d2

dq2+mω2 2 q2 has heat kernel

Kω(β,q0,q) =

r mω

2π~sinh(~ωβ)expn

−mω 2~

(q2+q02)coth(~ωβ)− 2qq0 sinh(~ωβ)

o

equation of euclidean motionq¨=ω2qhas for givenq,q0the solution q(τ) =qcosh(ωτ) + q0−qcosh(ωβ)sinh(ωτ)

sinh(ωβ) action

S= m 2

Z β

0

( ˙q22q2) = mω 2 sinhωβ

(q2+q02)coshωβ−2qq0

(15)

second derivative

2S

∂q∂q0 =− mω sinh(ωβ) semiclassical formula exact for harmonic oscillator

K(β,q0,q) = s

− 1 2π

2S

∂q∂q0 e−S

yields above results for heat kernel diagonal elements

Kω(β,q,q) =

r mω

2π~sinh(~ωβ) exp (

−2mωq2

~

sinh2(~ωβ/2) sin(~ωβ)

)

Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory

(16)

spectrum of harmonic oscillator 15 / 79

partition function Zβ= 1

2 sinh(~ωβ/2) = e~ωβ/2

1− e~ωβ = e~ωβ/2

X

n=0

e−n~ωβ

evaluate trace withenergy eigenbasisofHˆ ⇒ Z(β) =tr e−βHˆ=hn|e−βHˆ|ni=X

n

e−βEn

comparison of two sums⇒ En=~ω

n+1

2

, n∈N

(17)

thermal correlation functions 16 / 79

position operator

q(t) =ˆ eitH/ˆ ~qˆe−itH/ˆ ~, q(0) = ˆˆ q

imaginary timet =−iτ⇒euclidean operator

E(τ) = eτH/ˆ ~ˆqe−τH/ˆ ~, qˆE(0) = ˆq

correlations at different0≤τ1≤τ2≤ · · · ≤τn≤β in ensemble qˆEn)· · ·qˆE1)

β≡ 1

Z(β) tr

e−βHˆEn)· · ·qˆE1) considerthermal two-point function(now we set~=1)

hqˆE2) ˆqE1)iβ= 1 Z(β)tr

e−(β−τ2) ˆHˆq e−(τ2−τ1) ˆHqˆ e−τ1Hˆ

Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory

(18)

thermal correlation functions 17 / 79

spectral decomposition:|niorthonormal eigenstates ofHˆ⇒ h. . .iβ= 1

Z(β) X

n

e−(β−τ2)Enhn|qˆ e−(τ2−τ1) ˆHq|niˆ e−τ1En

insert1=P

|mihm| ⇒ h. . .iβ= 1

Z(β) X

n,m

e−(β−τ21)Ene−(τ2−τ1)Emhn|ˆq|mihm|ˆq|ni

low temperatureβ→ ∞: contribution of excited states toP

n(. . .) exponentially suppressed,Z(β)→exp(−βE0)⇒

hqˆE2) ˆqE1)iβ β→∞−→ X

m≥0

e−(τ2−τ1)(Em−E0)|h0|ˆq|mi|2 likewise

hqˆE(τ)iβ−→ h0|ˆq|0i

(19)

connected correlation functions 18 / 79

connected two-point function

hqˆE2) ˆqE1)ic,β ≡ hqˆE2) ˆqE1)iβ− hˆqE2)iβhˆqE1)iβ term withm=0 inP

m(. . .)cancels⇒exponential decay withτ1−τ2:

β→∞lim hqˆE2) ˆqE1)ic,β =X

m≥1

e−(τ2−τ1)(Em−E0)|h0|ˆq|mi|2

energy gapE1−E0and matrix element|h0|q|1i|2from

hqˆE2) ˆqE1)ic,β→∞−→e−(E1−E0)(τ2−τ1)|h0|q|1i|ˆ 2, τ2−τ1→ ∞

Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory

(20)

path integral for thermal correlation function 19 / 79

for path-integral representation consider matrix elements Dq0|e−βHˆeτ2Hˆqˆe−τ2Hˆeτ1Hˆqˆe−τ1Hˆ|qE resolution of the identity andq|uiˆ =u|ui:

h. . .i= Z

dvduhq0|e−(β−τ2) ˆH|vivhv|e−(τ2−τ1) ˆH|uiuhu|e−τ1Hˆ|qi path integral representations each propagator (β > τ2> τ1):

sum over paths withq(0) =qandq(τ1) =u sum over paths withq(τ1) =uandq(τ2) =v sum over paths withq(τ2) =v andq(β) =q0 multiply with intermediate positionsq(τ1)andq(τ2)

Rdudv: path integral over all paths withq(0) =q andq(β) =q0

(21)

thermal correlation functions 20 / 79

insertion ofq(τ2)q(τ1in path integral hqˆE2) ˆqE1)iβ= 1

Z(β) I

Dqe−SE[q]q(τ2)q(τ1) similarly: thermaln−point correlation functions

hqˆEn)· · ·qˆE1)iβ= 1 Z(β)

I

Dqe−SE[q]q(τn)· · ·q(τ1)

conclusion

there exist a path integral representation for all equilibrium quantities, e.g.

thermodynamic potentials, equation of state, correlation functions

Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory

(22)

real and imaginary time 21 / 79

real time: quantum mechanics action from mechanics

S= Z

dtm

2q˙2−V(q) real time path integral

hq0|e−itH/ˆ ~|qi

=C Z q(t)=q0

q(0)=q

Dq eiS[q]/~]

correlation functions h0|Tqˆ(t1) ˆq(t2)|0i

=C Z

Dq eiS[q]/~]q(t1)q(t2) oscillatory integrals

imaginary time: quantum statistics euclidean action

SE = Z

dτm

2q˙2+V(q) imaginary time path integral

hq0|e−βH/ˆ ~|qi

=C

Z q(~β)=q0

q(0)=q

Dq e−SE[q]/~]

correlation functions hqˆE1) ˆqE2)iβ

=C Z

Dq e−SE[q]/~]q(τ1)q(τ2) exponentially damped integrals

(23)

stochastic methods are required 22 / 79 numerical simulations: discrete (euclidean) time

system on time lattice =classical spin system Zβ = lim

n→∞

Z

dq1· · ·dqn

m 2π~ε

n/2

e−SE(q1,...,qn)/~ expectation values of observables

Z

dq1. . .dqnF(q1, . . . ,qn) high-dimensional integral (sometimesn=106required)

curse of dimension: analytical and numerical approaches do not work stochastic methods, e.g. Monte-Carloimportant sampling

what can be determined?

energies, transitions amplitudes and wave functions in QM potentials, phase transitions, condensates and critical exponents bound states, masses and structure functions in particle physics . . .

Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory

(24)

harmonic and anharmonic oscillators 23 / 79

m=1, µ=1, λ=0 m=1, µ=3, λ=1

q

|ψ0(q)|2

Hˆ= pˆ2

2m +µˆq2+λqˆ4 Monte-Carlo simulation (Metropolis algorithm) square of the ground state wave function

parameters in units of lattice constantε A. Wipf, Lecture Notes Physics 864 (2013)

(25)

path integral for linear chain 24 / 79

exercise: harmonic chain

find free energy for periodic chain of coupled harmonic oscillators H= 1

2m

N

X

i=1

p2i +mω2 2

X

i

qi+1−qi2

, qi =qi+N

periodicq(τ)⇒may integrate by parts in LE = m

2 Z

dτ q˙22 qi+1−qi2 matrix notation

LE = m 2

Z

dτqT

− d22+A

q, A=ω2ij−δi,j+1−δi,j−1 hint: non-negative eigenvalues and orthonormal eigenvectors ofA:

ωk =2ωsinπk

N and ek

Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory

(26)

free energy of linear chain 25 / 79 expandq(τ) =P

ck(τ)ek

LE =X

k

m 2

Z

dτ( ˙c2k2kck2

Ndecoupled oscillatorswith frequenciesωk ⇒ hq|e−βHˆ|qi=Y

k

Kωk(β,qk,qk)

results for one-dimensional oscillator⇒ Zβ=Y

k

eβωk/2 eβωk−1 =Y

k

e−βωk/2

1−e−βωk, ωk =2ωsinπk N

free energy contains zero-point energy

Fβ= 1 2

X

k

k+kTX

k

log 1− e~ωk/kT

(27)

field theories 26 / 79

spin 0:scalar field(Higgs particle, inflaton,. . . ) spin 12:spinor field(electron, neutrinos, quarks, . . . )

spin 1:vector field(photon, W-bosons, Z-boson, gluons, . . . ) a quick way from quantum mechanics to quantized scalar field theory:

scalar fieldφ(t,x)satisfiesKlein-Gordon type equation(~=c =1) 2φ+V0(φ) =0

Lagrangian = integral of Lagrangian density over space L[φ] =

Z

space

dxL(φ, ∂µφ), L=1

2∂µφ∂µφ−V(φ)

Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory

(28)

field theories 27 / 79

momentum field, Legendre transform⇒Hamiltonian(fixed timet) π(x) = δL

δφ(˙ x) = ∂L

∂φ(˙ x)= ˙φ(x) H=

Z

dx πφ˙−L

= Z

dxH, H=1 2π2+1

2(∇φ)2+V(φ) free particle:V ∝φ2⇒Klein-Gordan2φ+m2φ=0

infinitely many dof: one at each space point

one of many possible regularizations:discretize space field theory onspace lattice:x =εnwithn∈Zd−1

φ(t,x)−→φxn(t) , Z

dx −→εd−1X

n

(29)

from field theory to point mechanics 28 / 79

N1

N2

ε

N1

N2

ε

N1

N2

ε

N1

N2

ε

N1

N2

ε

N1

N2

ε

N1

N2

ε

N1

N2

ε

N1

N2

ε

N1

N2

ε

N1

N2

ε

N1

N2

ε

N1

N2

ε

N1

N2

ε

N1

N2

ε

N1

N2

ε

N1

N2

ε

N1

N2

ε

N1

N2

ε

N1

N2

ε

N1

N2

ε

N1

N2

ε

N1

N2

ε

N1

N2

ε

N1

N2

ε

N1

N2

ε

N1

N2

ε

N1

N2

ε

N1

N2

ε

N1

N2

ε

N1

N2

ε

N1

N2

ε

N1

N2

ε

N1

N2

ε

N1

N2

ε

N1

N2

ε

e.g. periodic bc lattice constantε

# of lattice sitesN=Q Ni

linear extendsLi =εNi physical volumeV =εd−1N

finitehypercubic lattice in space x =εn with ni ∈ {1,2, . . . ,Ni} continuum fieldφ(x)→lattice fieldφx integral→Riemann sum

Z

dx −→εd−1X

n

derivative→difference quotient

∂φ(x)

∂xi

−→(∂iφ)x

example: symmetric “lattice derivative”

(∂iφ)x = φxei−φx−εei

Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory

(30)

from field theory to point mechanics 29 / 79

finite lattice→mechanical system with finite number of dof H=εd−1 X

x∈lattice

1 2πx2+1

2(∂φ)2x +V(φx) path integral quantizationknown

0x} e−iH/ˆ ~

x}

=C Z Y

x

x eiS[{φx}]/~ (formal) path integral over paths{φx(t)}in configuration space

φx(0) =φx and φx(t) =φ0x, ∀x =εn high-dimensionalquantum mechanical system with action

S[{φx}] = Z

dtεd−1X

x

1 2φ˙2x −1

2(∂φ)2x −V(φx)

(31)

quantum field theory at finite temperature 30 / 79

canonical partition function

Zβ=C I Y

x

x e−SE[{φx}]/~, φx(τ) =φx(τ+~β) real euclidean action

SE[{φx}] = Z

dτ εd−1X

x

1 2

φ˙2x +1

2(∂φ)2x +V(φx) path-integral well-defined afterdiscretization of “time”

convenient:same lattice constantεin time and spatial directions replaceτ∈[0,~β]−→τ∈ {ε,2ε, . . . ,N0ε}withN0ε=~β lattice sites(xµ) = (τ,x) = (εnµ)withnµ ∈ {1,2, . . . ,Nµ}

⇒d-dimensionalhypercubic space-time lattice

Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory

(32)

space-time lattice 31 / 79

lattice fieldφxdefined on sites ofspace-time latticeΛ

(33)

lattice regularization 32 / 79

d-dimensional Euclid’sche space-time→latticeΛ, sitesx ∈Λ continuous fieldφ(x)→lattice fieldφx,x ∈Λ

finite lattice: extend in directionµ:Lµ=εNµ

finite temperature:L1=· · ·=Ld−1L0≡β=1/(kT) scalar fieldperiodic in imaginary time direction

φx=(x0+εN0,x)x=(x0,x)=⇒temperature-dependence typically: also periodic in spatial directions

⇒identificationxµ∼xµ+Lµ(torus) space-time volumeV=εdN1N2· · ·Nd

some freedom inchoice of lattice derivative(use symmetries)

Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory

(34)

space-time lattice 33 / 79

dimensionless fields and couplings (~=c=1)

natural units~=c=1⇒all units in powers of lengthL dimensionless action (unitL0)

SE = Z

ddx1

2(∂φ)2+X

a

λpha φa

Rddx(∂φ)2dimensionless⇒[∂φ] =L−d/2⇒[φ] =L1−d/2 λpha R

ddadimensionless⇒[λpha] =L−d−a+ad/2 in particularλph2 ∝m2⇒[m] =L−1

4 space-time dimensions⇒λph4 dimensionless

dimensionless lattice field and lattice constants (x =εn) φx1−d/2φn, λpha−d−a+ad/2λa

(35)

dimensions 34 / 79

lattice action with dimensionful quantities SLphdX

x

1 2

φx+εeµ−φx−εeµ

2

+X

a

λphaφax

!

⇒lattice action with dimensionless quantities SL=X

n

1

2 φn+eµ−φx−eµ2

+X

a

λaφan

partition function

Zβ =C

Z N0N1···

Y

n=1

ne−SL[{φn}]

finite-dimensional well-defined integral(lattice regularization) lattice formulation without any dimensionful quantity

processor knows numbers, not units!

Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory

(36)

renormalization 35 / 79

merely lettingε→0: no meaningful continuum limit λamust be changed asε→0

condition:dimensionful observables approach well-defined finite limits existence of suchcontinuum limitnot guaranteed

example: consider correlation length in hφ(n)φ(m)ic ∝ e−|n−m|/ξ, 1

ξ =m=dimnsionless mass ξdepends on dimensionless couplingsξ=ξ(λa)

relates to (given) dimensionful massmph =1/(εξ)⇒ε mph from experiment,ξ(λa)measured on lattice

renormalization:keepmph (and further observables) fixed⇒λa

(37)

renormalizable field theories 36 / 79

extend of physical objectsseparation of lattice points extend of physical objectsbox size

conditions(scaling window) small discretization effectsξ1 small finite size effectsξNµ

strict continuum limit:ξ→ ∞

2’nd order phase transition required in system withNspatial → ∞ theory renormalizable:only a small number ofλamust be tuned relevantrenormalizable field theories

non-Abelian gauge theories ind ≤4 scalar field theories ind<4 four-Fermi theories ind≤3 non-linear sigma-models ind≤3 Einstein-gravity ind≤4 (???)

Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory

(38)

simulation 37 / 79

input in simulations:only a few observables (masses) simulate with stochastic algorithms in scaling window repeat simulations with same observables but decreasingε output:many (dimensionful) observables

extrapolate toε→0

if theoryrenormalizable: converge to a continuum limit asε→0 finite temperature:N0given,εfrom matching to observable⇒β=εN0.

⇒temperature dependence of free energy

condensates pressure, densities

free energy of two static charges (confinement) phase diagram

screening effects

correlations in heat bath, . . .

(39)

lattice field theory as spin model 38 / 79

path integral for finite temperature QFT= classical spin model

no non-commutative operators, instead: path or functional integration over fields scalar field:

assignφn∈Rto each lattice site sigma models:

φn∈Sphere

discretespin models:

φn∈ discrete group example: Potts-model:

φn∈Zq

figures: 3−state Potts-type model

Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory

(40)

relativistic fermions 39 / 79

electron, muon, quarks, . . . are described by 4-component spinor fieldψα(x) metric tensor in Minkowski space-time

µν) =diag(1,−1,−1,−1) 4×4 gamma-matrices

γ0, . . . , γ3, {γµ, γν}=2ηµν1 covariantDirac equation for free massive fermions

i∂/−m

ψ(x) =0, ∂/=γµµ

Euler-Lagrange equation of invariant action S=

Z

d4xψ(i¯ ∂/−m)ψ, ψ¯=ψγ0=⇒πψ=−iψ

(41)

quantization of Dirac field 40 / 79

quantization:ψ(x)→ψ(xˆ )

satisfiesanti-commutation relation

{ψˆα(t,x),ψˆβ(t,y)}=δαβδ(x −y) Hamilton operator:β=γ0, α=γ0γ:

Hˆ = Z

dx ψˆ(x)(ˆhψ)(ˆ x), ˆh=iα· ∇+mβ derive path integral representation ofpartition function

Zβ=tr e−βHˆ leads to imaginary time path integral replacet→ −iτ and

γ0E0 and γiE=iγi

Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory

(42)

path integral for partition function 41 / 79 ACR with euclidean metric

µE, γEν}=2δµν1, γEµhermitean lattice regularization(drop index E)

space-timeR4→finite (hypercubic) latticeΛ continuum fieldψ(x)onR4→lattice fieldψx expected path integral

Zβ=trrege−βHˆ=C I Y

α,x∈Λ

α,xα,x e−SL[ψ,ψ]

integration overanti-periodic fields(ACR forψ, see below) ψx(τ+β) =−ψx(τ), also on time lattice SLsome lattice regularization of

SE= Z

dd(i∂/+im)ψ

(43)

Grassmann variables 42 / 79

quantized scalar field obey equal-time CR φ(t,ˆ x),φ(tˆ ,y)

=0, x 6=y

⇒commuting fields in path integral

[φ(x), φ(y)] =0, ∀x,y quantized fermion field obey equal-time ACR

ψˆα(t,x),ψˆβ(t,y) =0, x 6=y ,

⇒anti-commuting fields in path integral

ψα(x), ψβ(y) =0, ∀x,y

variables{ψα,n, ψα,n}in fermion path integral:Grassmann variables

Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory

(44)

Graussian integrals 43 / 79

free theories have quadratic action

Gaussian integralswithA=AT positive matrix;exercise⇒ Z N

Y

n=1

n exp

−1 2

nAnmφm

= (2π)n/2

√detA what do we get for fermions?

simplify notation:ψα,n≡ηi andψα,n ≡η¯i withi =1, . . . ,m objects{ηi,η¯i}form complex Grassmann algebra:

i, ηj}={η¯i,η¯j}={ηi,η¯j}=0=⇒η2i = ¯ηi2=0

Grassmann integration defined by (a, b ∈ C )

Z

linear, Z

i(a+bηi) =b, Z

dη¯i(a+bη¯i) =b

(45)

Gaussian integrals with Grassmann variables 44 / 79

Grassmann integrals with

D¯ηDη ≡

m

Y

i=1

dη¯ii

free fermions⇒Gaussian Grassmann integral Z =

Z

D¯ηDη e−¯ηAη, ηAη¯ =X

i,j

¯ ηiAijηj

expand exponential function:R

D¯ηDη ηAη¯ k

=0 fork 6=m remaining contribution (useη¯i2=0)

1 n!

Z

DηDη¯ (¯ηAη)m = Z

D¯ηDη X

i1,...,im

(¯η1A1i1ηi1)· · ·(¯ηmAmimηim)

= Z

D¯ηDηY

i

(¯ηiηi) X

i1,...,im

εi1...imA1i1· · ·Amim

= (−1)m Z

Y

i

(d¯ηiη¯iiηi)detA= (−1)mdetA

Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory

(46)

generating function 45 / 79

simple formula

Z

D¯ηDη e−¯ηAη=detA

generalization:generating function Z( ¯α, α) =

Z

D¯ηDη e−¯ηAη+ ¯αη+ ¯ηα= eαA¯ −1α detA expand in powers ofα,¯ α⇒

h¯ηiηji ≡ 1 Z

Z

D¯ηDη e−¯ηAηη¯iηj = (A−1)ij application to Dirac fields: abovepartition function

Zβ= I

DψDψ¯ e−SL, DψDψ¯ =Y

α,n

α,nα,n

(47)

Graussian integrals for fermions and bosons 46 / 79

dimensionless field and couplings SL=X

n∈Λ

ψn(i∂/nm+imδnmn=X

n

ψ¯nDnmψm

lattice partition function

Zβ=CdetD expectation value in canonical ensemble

hAiˆ β= 1 Zβ

I

DψDψ¯ A( ¯ψ, ψ)e−SL(ψ,ψ)¯ formula forcomplex scalar field

Zβ= I

DφDφ¯exp

−Xφ¯mCmnφn

∝ 1

detC boson fields: periodic in imaginary time

fermion fields: anti-periodic in imaginary time

Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory

(48)

Thermodynamic potentials for Gas or relativistic particles 47 / 79

neutral scalars (+: periodic bc) SE = 1

2 Z

φ(−∆+m2)φ=⇒Fβ=kT

2 log det+(−∆+m2) +. . . Dirac fermions (−: anti-periodic bc)

SE = Z

ψ(i∂/+im)ψ=⇒Fβ=−2kTlog det(−∆+m2) +. . .

exercise

Try to prove the results for fermions (including sign and overall factor)

zeta-function for second order operator A > 0

ζA(s) =X

n

λ−sn , eigenvaluesλn

(49)

ζ−function regularization 48 / 79

absolute convergent series in half-plane<(s)>d/2

meromorphic analytic continuation, analytic in neighborhood ofs=0 definesζ−function regularized determinant Dowker, Hawking

log detA=trlogA=X

logλn=−dζA(s) ds

s=0

correct for matrices Mellin transformations

Z

0

dt ts−1e−tλ= Γ(s)λ−s

⇒relation to heat kernel ζA(s) =X

n

1 Γ(s)

Z

0

dt ts−1e−tλn = 1 Γ(s)

Z

0

dt ts−1tr e−tA

Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory

(50)

heat kernel 49 / 79

coordinate representation ζA(s) = 1

Γ(s) Z

0

dt ts−1Z

dx K(t;x,x), K(t) = e−tA

heat kernel ofA=−∆+m2oncylinder[0, β]×Rd−1 K±(t;x,x0) = e−m2t

(4πt)d/2 X

n∈Z

(±1)ne{(τ−τ0+nβ)2+(xx0)2}/4t

integrate over diagonal elements ζA±(s) = βV

(4π)d/2Γ(s) Z

dt ts−1−d/2e−m2t

X

n=−∞

(±)ne−n2β2/4t

Jacobitheta function

(51)

integral representation ofKelvin functions Z

0

dt tae−bt−c/t =2c b

(a+1)/2

Ka+1

2√

bc

⇒series representation; ind=4 ζA±(s) = βV

16π2 m4−2s

Γ(s) Γ(s−2) +4

X

1

(±)n nmβ

2 s−2

K2−s(nmβ)

!

identities

Γ(s−2)

Γ(s) = 1

(s−1)(s−2) and 1

Γ(s) =s+O(s2)

Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory

(52)

derivative ats=0⇒ Fβ±=−m4VC±

128π2

3−2 logm2

µ2 +64 X

n=1,2...

(±)nK2(nmβ) (nmβ)2

real scalarsC+=1, complex fermionsC=−4 well-known results for massless particlesK2(x)∼2/x2

m→0lim f+(β) =−π2

90T4 , lim

m→0f(β) =− 2 45π2T4

questions

Why is there a relative factor of 4? What is the free energies of complex scalars, Majorana fermions and photons. What is free energy of complex fermions ind dimensions?

(53)

Interacting relativistic fermions 52 / 79

condensed matter systems ind =2+1 tight binding approximation for small excitation energies

honeycomb lattice for graphen (GN):

2 atoms in every cell, 2 Dirac points

⇒4-component spinor field

interaction-driven transition metal↔insolator long rang order: AF, CDW, . . .

interacting fermions(symmetries!) condensed matter systems ind =1+1

conducting polymers (Trans- and

Cis-polyacetylen) Su, Schrieffer, Heeger

quasi-one-dimensional inhomogeneous superconductor Mertsching, Fischbeck

relativistic dispersion-relationsfor electronic excitations on

honeycomb lattice

from Castro Neto et al.

Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory

(54)

interacting fermions in 1+1 and 2+1 dimensions 53 / 79

irreducible spinor in two and three dimensions has 2 components Nf species (flavours) of spinors,Ψ = (ψ1, . . . , ψNf)

relativistic fermions

LGN= ¯Ψi∂Ψ +/ imΨΨ +¯ LInt(Ψ,Ψ),¯ e.g.ΨΨ =¯ Xψ¯iψi

parity invariant models LInt=gGN2

2Nf( ¯ΨΨ)( ¯ΨΨ) scalar-scalar,Gross-Neveu LInt=−g2Th

2Nf( ¯ΨγµΨ)( ¯ΨγµΨ) vector-vector,Thirring LInt= gPS2

2Nf( ¯ΨγΨ)( ¯ΨγΨ) pseudoscalar-pseudoscalar in even dimensionsγ∝Q

γµ

Hubbard-Stratonovich trickwith scalar, vector and pseudscalar field

(55)

Relativistic four-Fermi Theories 54 / 79

combinations thereof ind =4

non-renormalizableFermi theoryof weak interaction

effective models for chiral phase transition in QCD (Jona Lasino) 2 spacetime dimensions:[g] =L0

massless ThM:soluble Thirring

massless ThM incurved space withµ:soluble Sachs+AW, . . .

GNM:asymptotically free, integrable Gross-Neveu, Coleman, . . .

3 spacetime dimensions:[g] =Ls not renormalizable in PT

renormalizable in large-Nexpansion Gawedzki, Kupiainen; Park, Rosenstein, Warr

interacting UV fixed point→asymptotically safe de Veiga; da Calen; Gies, Janssen

can exhibit parity breaking at lowT lattice theories:

generically: sign problem even forµ=0

partial solution of sign problem Schmidt, Wellegehausen, Lenz, AW

Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory

(56)

Masselss GN-model at finite density in two dimensions 55 / 79

with J. Lenz, L. Panullo, M. Wagner and B. Wellegehausen

GN shows breaking of discrete chiral symmetry order parameteriΣ =hΨΨi¯

ψa→iγψa, ψ¯a→iψ¯aγ=⇒iΣ =hΨΨi → −h¯ ΨΨi¯ equivalent formulation with auxiliary scalar fieldHubbard-Stratonovich transformation

LGN=Lσ= ¯Ψ iD⊗1Nf

Ψ +Nf 2g( ¯ΨΨ)2 Lσ= ¯Ψ iD⊗1Nf

Ψ +λNfσ2, D=∂/−σ6=D

(57)

chemical potential for fermion number charge 56 / 79

conservedfermion charge Q= Z

spacedxj0= Z

spacedxψψ partition function ofgrand canonical ensemble

Zβ,µ=tr e−β( ˆH−µQ)ˆ, functional integral with aboveLσwherein

D=∂/+σ+µγ0

expectation values

hOi= 1 Zβ,µ

Z

DψDψDσ¯ e−SσO

Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory

(58)

chemical potential for fermion charge 57 / 79

fermion integral in Zβ,µ=

Z

DψDψDσ¯ e−Sσ[σ,ψ,ψ]¯ = Z

Dσe−NfSeff[σ]

Nf fermion species couple identically to auxiliary field⇒ det iD⊗1

= (detiD)Nf ψanti-periodic in imaginary time,σperiodic effective action after fermion integral

Seff=λ Z

d22−log(detiD)

Ward identity(lattice regularization) 1

Zβ,µ

Z

DψDψ¯Dσ d dσ(x)

e−S[σ,ψ,ψ]

=−D dS dσ(x)

E

=0

(59)

homogeneous phases 58 / 79

exact relation

Σ≡ −ihψ(x¯ )ψ(x)i= Nf

g2hσ(x)i forNf→ ∞saddle point (steepest descend) approximation

Zβ,µ= Z

DσeNfSeff][σ]N−→f→∞ eNfminSeff[σ]

translation invariance⇒minimizingσconstant:Seff= (NfβL)Ueff Ueff= σ2

logσ2 σ0 −1

−1 π

Z

0

dp p2 εp

1

1+ eβ(εp+µ) + 1 1+eβ(εp−µ)

one-particle energiesp=p p22 IR-scaleσ0=hσiT=µ=0

Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory

(60)

condensate in the(µ,T)-plane 59 / 79

'data.dat' u 1:2:3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

µ/σ0 0

0.1 0.2 0.3 0.4 0.5 0.6 0.7

T/σ0

0 0.2 0.4 0.6 0.8 1

symmetric phase for largeT, µ

homogeneously broken phase for smallT, µ Wolff, Barducci

special points:(Tc, µ) = (eγ/π,0),(T,µc) = (0,1/√ 2) Lifschitz-Punkt bei(T, µ0)≈(0.608,0.318)

(61)

is homogeneity assumption really justified? 60 / 79

possible QCD-phase diagram

crystalline LOFF phase (color superconductive phase)?

problem:µ6=0⇒complex fermion determinant/ largeµbeyond reach in simulations

are there inhomogeneouscrystallic phasesin model systems?

Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory

(62)

space-dependent condensate in GN model 61 / 79

discreteεnenergies of Dirac Hamiltonian on[0,L]

hσ0γ1x0σ(x)

hidden supersymmetry h2σ=−d2

dx22(x)−γ1σ0(x) = AA 0 0 AA

!

, A=−d dx +σ renormalization: fix (constant) condensateσ0atµ=T =0

introduce constantcompanion field

¯ σ2= 1

L Z

dxσ2(x) constantσ⇒¯σ=σ

Referenzen

ÄHNLICHE DOKUMENTE

Now we are on the level to prove the main Theorem 5.29, which gives a sufficient condition for phase transitions for systems of unbounded continuous spins on infinite graphs.. We

On the other hand, the introduction of finite particle density is hindered by the problems of defining the chemical potential on the lattice in a satisfactory way

This may explain the discrepancy between Langevin simulations and mean field, as the latter misses the influence of space dependent field configurations. We thus

From the analysis of the free fermion model and the Gross-Neveu model we see that the finite density formulation of lattice field theories works well and is

Monte Carlo algorithms based on the MDP representation of the strong-coupling partition function turn out to be able to handle the remaining oscillations in the

The comparison with the corresponding exact results demonstrates that the temperature dependence of the kinetic energy of the infinite Hubbard chain with electron density n = 0.8

We focus our study on two different shaking regimes that are of experimental relevance: for driving frequencies that are larger than the band- width of the lowest band but still

For simulating with charge chemical potential directly, we used the Linear Logarith- mic Relaxation method in combination with the Hybrid-Monte-Carlo algorithm as update-mechanism