• Keine Ergebnisse gefunden

Sea  ice-­‐pelagic-­‐benthic  links  of  bacterial  diversity     during  the  Arc9c  summer  sea  ice  record  minimum  in  2012

N/A
N/A
Protected

Academic year: 2022

Aktie "Sea  ice-­‐pelagic-­‐benthic  links  of  bacterial  diversity     during  the  Arc9c  summer  sea  ice  record  minimum  in  2012"

Copied!
1
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Sea  ice-­‐pelagic-­‐benthic  links  of  bacterial  diversity    

during  the  Arc9c  summer  sea  ice  record  minimum  in  2012  

Josephine  Z.  Rapp

1,2*

,  Mar  Fernández-­‐Méndez

1,2

,  Chris;na  Bienhold

1,2

 and  Antje  Boe;us

1,2  

 

1Alfred  Wegener  Ins;tut  Helmholtz  Zentrum  für  Polar  und  Meeresforschung,  Bremerhaven,  Germany  

2Max  Planck  Ins;tute  for  Marine  Microbiology,  Bremen,  Germany    

HGF-­‐MPG  Group  for  Deep  Sea  Ecology  and  Technology  

*contact:  josephine.rapp@awi.de  

References  

Boe;us,  A.  et  al.  (2013).  "Export  of  algal  biomass  from  the  mel;ng  Arc;c  sea  ice."  Science  339:  1430-­‐1432.    

Quast,  C.  et  al.  (2013).  "The  SILVA  ribosomal  RNA  gene  database  project:  improved  data  processing  and   web-­‐based  tools."  Nucleic  Acids  Research  41:  D590-­‐D596.    

Schloss,   P.   D.,   Westcoe,   S.   L.,   et   al.   (2009).   "Introducing   mothur:   open-­‐source,   plaform-­‐   independent,   community-­‐supported   sogware   for   describing   and   comparing   microbial   communi;es."   Applied   and   Environmental  Microbiology  75:  7537-­‐7541.    

Acknowledgements  

We  thank  the  captain  and  crew  of  RV  Polarstern  expedi;on  ARK   XXVII-­‐3.  This  study  is  funded  by  the  European  Research  Council   Advanced  Inves;gator  grant  no.  294757  to  Antje  Boe;us.  

Materials  &  Methods  

69  samples   from  nine   Central  Arc;c  

sta;ons  

Molecular  fingerprin;ng,   i.e.  Automated  Ribosomal   Intergenic  Spacer  Analysis  

(ARISA)  

Broad-­‐scale  comparison    

of  bacterial  community  structures  

Illumina  next  genera;on   sequencing  of  the  V4-­‐V6   region  of  the  16S  rRNA  

gene                                  

In-­‐depth  insights  into  community   composi9on  and  iden9fica9on    

subset  of  9   samples  

Conclusions  

•  Central  Arc;c  sea  ice,  melt  ponds,  seawater,  sediment  and  algal  aggregates  host  dis;nct  bacterial  communi;es  

•  Strongest  differences  in  bacterial  community  structure  and  composi;on  between  surface  and  deep-­‐sea  environments  

•  For  melt  ponds,  community  descrip;on  differed  from  previous  reports,  poten;ally  indica;ng  community  shigs  

•  High  contribu;on  of  surface-­‐derived  bacterial  cells  to  community  composi;on  in  aggregate  deposits  in  the  deep  sea,  indica;ng  a  transport   of  cells  from  the  surface  to  the  deep  sea  by  the  rapidly  deposited  aggregates  

•  Increase  in  the  export  of  sub-­‐ice  algae  is  expected,  therefore  the  role  of  algal  aggregates  as  transporters  of  bacteria  to  the  deep  sea  may  be   underes;mated  

Introduc9on  

Microbial  communi;es  play  an  essen;al  role  in  carbon  and  nutrient  cycling  not  only  at  the  seafloor  but  also  in  the  sea  ice  and  in  the  water  column,   contribu;ng  significantly  to  Arc;c  ecosystem  func;oning.  Arc;c  sea-­‐ice  extent  declined  to  a  record  minimum  in  summer  2012  and  the  observed  rapid   mel;ng  resulted  in  the  sinking  and  widespread  deposi;on  of  fresh  ice  algal  aggregates  of  the  centric  diatom  Melosira  arc;ca  to  the  deep-­‐sea  floor  at   4400  m  water  depth  (Boe;us  et  al.,  2013).  Sediments  with  algal  deposits  showed  elevated  rates  of  oxygen  consump;on,  indica;ng  remineraliza;on   by  bacteria,  and  evidencing  a  response  of  the  en;re  ecosystem  down  to  the  deep  sea  to  elevated  carbon  flux  rates.  Warming  and  its  associated   physical  changes  in  the  Arc;c  will  also  affect  bacterial  communi;es,  but  to  understand  the  ecosystem  consequences  we  lack  baseline  informa;on  on   bacterial  community  composi;on  and  func;ons  in  different  Arc;c  environments.      

Figure  2:  Percentage  of  OTUs  shared  between  the  inves;gated  environments  as  detected  by   Illumina  sequencing.  Percentages  are  based  on  a  Jaccard-­‐distance-­‐matrix  of  normalized  data.    

2.  Bacterial  community  overlap   1.  Bacterial  community  structure  

Stress:  0.18   Bray-­‐Cur;s  distance   water  under  ice   surface  seawater  

free-­‐floa9ng     aggregate  

sediment  

holothurian   gut  content   aggregate  

deposits  in   deep  sea  

Melosira  melt-­‐pond  aggregate   melt-­‐pond  aggregate  

melt-­‐pond   water   sea-­‐ice  

top   sea-­‐ice  

boNom   brown   sea-­‐ice  

Bacterial   community   structure   clearly   differs  between  sea  ice,  water  column  and   deep  sea  environments.  

 

Similar   paNerns   of   environment-­‐specific   community   structures   conserved   across   different  study  sites  

85%   of   OTUs   unique   to   individual   environments,   only   0.2%     of   OTUs   ubiquitously  shared  

 

Aggregate   deposits   in   the   deep   sea   shared   rela;vely   high   percentages   of   OTUs   with   communi;es   from   melt   ponds,   sea   ice,   as   well   as   with   deep-­‐

sea  sediment  

180°W  

0°  

100   80   60   40   20   0  

Sea-­‐ice  concentra;on  [%]  

Figure   1:   Cruise   track   of   IceArc2012   (ARK-­‐XXVII/3)   from  August  to  October,  2012.  Red  dots  indicate  the   nine   sampling   sites,   the   star   indicates   sta;on   7,   for   which  Illumina  sequences  were  obtained.  

previous   sea-­‐ice  minimum  in  

2007  

sea-­‐ice  extent   in  September  

2012  

source:  AWI/

Uni  Bremen  

Figure  1:  NMDS  plot  of  bacterial  community  fingerprints.  Each  point  represents  the  bacterial  community  of  one  sample.  The   distance  between  points  reflects  the  rela;ve  differences  in  community  structure  between  samples.  Points  within  each  group   are  connected  to  their  group  centroid  with  a  spider  diagram.  The  light  pink  ellipses  show  95%  dispersion  of  each  group.  

 

10%  

6%  

10%  

1%  

9%  

4%  

4%  

13%  

9%  

13%  

9%  

11%  

8%  

Of   175   classified   genera,   only   3   were   common   to   all   environments   (Rubritalea,   Colwellia,   Pseudomonas);  46  genera  were  unique  to  one  environment    

 

Predominance  of  Verrucomicrobia  in  melt  pond  water  is  in  contrast  to  previous  reports.  This  could   be  a  first  indica;on  for  ongoing  shigs  in  community  structure  due  to  environmental  changes  

 

Communi;es  in  aggregate  deposits  in  the  deep  sea  contained  several  surface-­‐derived  genera  also   observed  in  the  ice  environment  (e.g.  Octadecabacter,  Glaciecola),  indica;ng  a  transport  of  cells  to   the  deep  sea  

0%   20%   40%   60%   80%   100%  

holothurian  gut   surface  sediment   deep-­‐sea  aggregate  

(white)  

deep-­‐sea  aggregate   (green)  

water  under  ice  

melt-­‐pond  aggregate   melt-­‐pond  water   ice  boeom  

ice  surface   Defluviicoccus  

Leisingera  

Octadecabacter  

Candidatus_Pelagibacter  

Roseobacter_clade_NAC11-­‐7_lineage   Balneatrix  

Colwellia   Glaciecola   Halioglobus   Pseudomonas   SAR92_clade   Arcobacter   Nonlabens  

NS5_marine_group   Owenweeksia  

Psychroserpens   Winogradskyella   Aureispira  

Lewinella   Len;monas   Rubritalea  

Urania-­‐1B-­‐19_marine_sediment_group   Pir4_lineage  

others  

3.  Bacterial  community  composi9on  

Figure  3:  Bacterial  community  composi;on  based  on  rela;ve  sequence  abundances  of  the  five  most  abundant  classes  detected  over  all  environments.    

Referenzen

ÄHNLICHE DOKUMENTE

The governing factor is the present sea-ice thickness (and to a lesser degree the snow depth) at a sampling site when a platelet layer starts to form. The greater this thickness,

quantities that limit the maximum thermodynamic ice growth in austral winter to about 1 m: (a) The snow cover on top of the ice and (b) the oceanic heat flux from below.. The data

During a winter expedition in the Weddell Sea in 2013, we studied the community composition of under-ice fauna using a Surface and Under-Ice Trawl (SUIT) (in the upper image)

Airborne EM sea-ice thickness surveys Multi-Frequency EM Study. Observation of physical sea

• Arctic cod and Antarctic krill may play similar key roles in transferring carbon from sea ice into the pelagic food web. • In both Polar Regions, sea ice-associated key species

Piot and von Glasow [2008] showed that the precipitation of calcium carbonate (CaCO 3 ) in sea ice brine is a key process allowing for the rapid acidi fi cation of aerosols

During the Polarstern summer expedition TransArc 2011 to the Central Arctic, potential Net Primary Productivity rates (NPP) and Chlorophyll a were measured in

 Comparing volumes of sea ice, melt ponds and surface waters, ice algae contribute most of the NPP.  NPP is not limited to the bottom part of the ice