• Keine Ergebnisse gefunden

Research Collection

N/A
N/A
Protected

Academic year: 2022

Aktie "Research Collection"

Copied!
4
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Research Collection

Dataset

Integration of real-time traffic management and train control for rail networks

Supplementary material

Author(s):

Corman, Francesco Publication Date:

2018

Permanent Link:

https://doi.org/10.3929/ethz-b-000256447

Rights / License:

In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use.

ETH Library

(2)

Appendix C Detailed experimental results for Part 2

Table 1 provides the objective values of the P

NLP

problem and the P

TSPO

problem, in the case of using the weighted-sum formulation.

Table 1. Objective value of the P

NLP

problem and the P

TSPO

problem with the weighted-sum formulation, corresponding to Fig. 2

Weights [delay, energy]

Objective value of the PNLPproblem considering different computation time limits

Objective value of the PTSPOproblem considering different computation time limits

Improvement in objective value (unit: %) 180 seconds 3600 seconds initial solution 180 seconds 3600 seconds 180 seconds 3600 seconds

[1,1] 89.75 89.68 84.72 79.51 77.70 11.41 13.36

[2,1] 94.12 93.75 89.63 88.05 85.16 6.45 9.17

[10,1] 132.47 132.72 128.85 125.31 126.37 5.40 4.79

[20,1] 184.43 184.38 177.87 174.02 172.82 5.64 6.27

[50,1] 344.62 343.94 324.96 318.67 317.47 7.53 7.70

[100,1] 611.63 606.10 570.06 559.52 554.79 8.52 8.47

[120,1] 723.09 710.08 668.12 655.51 646.98 9.35 8.89

[200,1] 1142.58 1111.18 1060.31 1035.79 1027.54 9.35 7.53

[500,1] 2535.81 2430.29 2531.04 2477.81 2452.05 2.29 -0.90

[1000,1] 4874.70 4749.70 4982.22 4875.38 4824.12 -0.01 -1.57

Table 2 presents the objective values of the two problems, in the case of using the ε-constraint formulation.

Table 2. Objective value (i.e., energy consumption) of the P

NLP

problem and the P

TSPO

problem with the ε-constraint formulation, corresponding to Fig. 3

Initial delays

Objective value of the PNLPproblem (unit: 108J), considering different computation time limits

Objective value of the PTSPOproblem (unit: 108J), considering different computation time limits

Improvement in objective value (unit: %) 180 seconds 600 seconds initial solution 180 seconds 300 seconds 600 seconds 180 seconds 600 seconds

Idelayinitial 80.08 79.34 79.82 76.74 76.14 75.49 4.16 4.04

I180sdelay 91.70 88.85 92.18 89.60 89.28 89.19 2.29 -0.49

I300sdelay 95.14 93.60 96.59 93.81 93.79 93.77 1.40 -0.20

I300sdelay 96.41 95.08 97.53 95.04 94.78 94.73 1.42 0.32

I3600sdelay 99.34 98.78 99.60 97.60 96.65 96.65 1.76 2.16

Table 3 provides the detailed results of the P

NLP

problem by using the weighted-sum formulation and the ε-constraint formulation respectively, in terms of train delay time and energy consumption. The unit of computation time and computation time limit is second, the unit of train delay time is 10

3

second, and the unit of energy consumption is 10

8

J.

Table 3. Detailed results of the P

NLP

problem, in terms of train delay time and energy consumption

Weights [delay, energy]

Weighted-sum formulation

Initial delays

constraint formulation

180 seconds 3600 seconds 180 seconds 600 seconds

train delay (unit: 10

3

s)

total energy (unit: 10

8

J)

train delay (unit: 10

3

s)

total energy (unit: 10

8

J)

train delay (unit: 10

3

s)

total energy (unit: 10

8

J)

train delay (unit: 10

3

s)

total energy (unit: 10

8

J)

[1,1] 46.37 43.38 49.83 39.85

Iinitialdelay

4.90 80.08 4.90 79.34

[2,1] 16.51 61.10 16.66 60.44

I180delay

4.69 91.70 4.69 88.85

[10,1] 5.24 80.05 5.26 80.08

I300delay

4.60 95.14 4.60 93.60

[20,1] 5.20 80.38 5.20 80.31

I600delay

4.58 96.41 4.58 95.08

[50,1] 5.29 80.04 5.29 79.20

I3600delay

4.54 99.34 4.54 98.78

[100,1] 5.31 80.29 5.27 79.27

[120,1] 5.35 80.53 5.26 78.41

[200,1] 5.31 81.28 5.16 79.09

[500,1] 4.90 87.74 4.70 82.11

[1000,1] 4.78 92.20 4.67 84.28

Tables 4 - 5 provide the detailed results of the P

TSPO

problem, considering the weighted-sum formulation and the ε-constraint formulation respectively, in terms of train delay time and energy consumption, as discussed in Section 4.2.

1

(3)

Table 4. Results of the P

TSPO

problem, minimizing both train delay and energy consumption in the objective function, corresponding to Fig. 4

Analysis of train delays

Weights [delay, energy]

Initial solution Secondary solution, train delay (unit: 103s) considering different computation time limits

Improvement in solution quality (unit: %), i.e., (initial sol. - secondary sol.)/initial sol.

comp. time (unit: s)

train delay

(unit: 103s) 180s 300s 600s 1200s 1800s 2400s 3000s 3600s 180s 300s 600s 1200s 1800s 2400s 3000s 3600s [1,1] 2.82 4.90 26.05 26.83 26.20 26.20 26.23 26.23 26.02 26.00 -688.65 -725.81 -703.40 -703.35 -704.99 -704.99 -701.54 -701.22 [2,1] 2.98 4.90 14.48 14.13 14.97 14.90 14.84 14.65 14.54 14.53 -253.45 -249.77 -278.02 -276.08 -277.04 -274.47 -270.67 -270.63

[10,1] 2.41 4.90 5.28 5.62 5.59 5.70 5.70 5.84 5.89 5.87 -13.27 -21.63 -20.52 -21.69 -21.42 -22.28 -24.22 -23.56

[20,1] 2.60 4.90 4.96 4.96 4.96 5.00 5.00 4.98 5.02 5.02 -1.72 -1.95 -1.79 -2.76 -2.77 -2.40 -4.32 -4.19

[50,1] 2.65 4.90 4.83 4.83 4.83 4.84 4.84 4.86 4.87 4.86 2.07 2.03 2.15 1.74 1.61 1.33 1.27 1.63

[100,1] 2.91 4.90 4.82 4.82 4.82 4.81 4.80 4.81 4.81 4.79 3.00 2.99 2.91 3.12 3.47 3.70 3.57 4.04

[120,1] 2.54 4.90 4.81 4.81 4.82 4.79 4.79 4.79 4.79 4.74 3.07 3.07 3.04 4.43 4.39 4.42 4.50 5.09

[200,1] 3.07 4.90 4.79 4.79 4.79 4.79 4.76 4.75 4.75 4.74 3.73 3.73 3.84 3.84 5.39 5.87 5.88 5.92

[500,1] 2.75 4.90 4.80 4.80 4.80 4.80 4.80 4.78 4.78 4.75 3.30 3.30 3.30 3.30 3.31 3.90 3.90 4.77

[1000,1] 2.73 4.90 4.80 4.79 4.78 4.77 4.77 4.77 4.75 4.75 3.28 3.36 3.73 4.14 4.17 4.39 4.95 5.08

Analysis of energy consumption

Weights [delay, energy]

Initial solution Secondary solution, energy consumption (unit: 108J) considering different computation time limits

Improvement in solution quality (unit: %), i.e., (initial sol. - secondary sol.)/initial sol.

comp. time (unit: s)

total energy

(unit: 108J) 180s 300s 600s 1200s 1800s 2400s 3000s 3600s 180s 300s 600s 1200s 1800s 2400s 3000s 3600s

[1,1] 2.82 79.82 53.46 51.73 51.72 51.72 51.69 51.69 51.72 51.71 33.02 35.19 35.20 35.21 35.25 35.25 35.21 35.22

[2,1] 2.98 79.82 59.10 59.05 57.44 57.42 56.06 56.12 56.09 56.09 25.96 26.02 28.04 28.06 29.76 29.69 29.73 29.73

[10,1] 2.41 79.82 72.55 70.35 70.41 69.71 69.65 68.25 67.64 67.64 9.11 11.87 11.79 12.66 12.74 14.50 15.26 15.26

[20,1] 2.60 79.82 74.91 74.72 74.67 73.38 73.29 73.33 72.45 72.46 6.15 6.40 6.45 8.07 8.19 8.13 9.23 9.21

[50,1] 2.65 79.82 76.98 76.40 76.05 75.68 75.60 74.56 74.41 74.49 3.56 4.28 4.72 5.18 5.28 6.59 6.78 6.68

[100,1] 2.91 79.82 77.54 77.28 77.11 76.70 76.62 75.78 75.28 75.35 2.86 3.19 3.40 3.91 4.00 5.06 5.69 5.59

[120,1] 2.54 79.82 77.77 77.73 77.59 77.92 77.60 77.67 77.72 77.85 2.57 2.61 2.79 2.38 2.78 2.70 2.63 2.47

[200,1] 3.07 79.82 77.80 77.80 77.88 77.74 78.73 78.72 78.64 78.68 2.53 2.53 2.43 2.60 1.37 1.38 1.48 1.43

[500,1] 2.75 79.82 77.86 77.86 77.82 77.64 77.55 77.54 77.55 78.55 2.45 2.45 2.51 2.73 2.84 2.86 2.85 1.59

[1000,1] 2.73 79.82 78.03 78.05 78.38 78.34 78.16 78.43 78.72 78.71 2.24 2.22 1.80 1.86 2.08 1.74 1.38 1.38

Table 5. Results of the P

TSPO

problem, minimizing energy consumption in the objective function with respect to an upper bound for the train delay, corresponding to the analysis of Fig. 5

Analysis of the train delays

Initial delays

Initial solution Secondary solution, train delay (unit: 103s) considering different computation time limits

Improvement in solution quality (unit: %), i.e., (initial sol. - secondary sol.)/initial sol.

comp. time (unit: s)

train delay

(unit: 103s) 180 seconds 300 seconds 600 seconds 180 seconds 300 seconds 600 seconds

Iinitialdelay 0.90 4.90 4.90 4.90 4.90 0.00 0.00 0.00

I180sdelay 0.85 4.69 4.69 4.69 4.69 0.00 0.00 0.00

I300sdelay 0.81 4.60 4.60 4.60 4.60 0.00 0.00 0.00

I600sdelay 0.80 4.58 4.58 4.58 4.58 0.00 0.00 0.00

Idelay3600s 0.82 4.54 4.54 4.54 4.54 0.00 0.00 0.00

Analysis of the total energy consumption

Initial delays

Initial solution Secondary solution, energy consumption (unit: 108J) considering different computation time limits

Improvement in solution quality (unit: %), i.e., (initial sol. - secondary sol.)/initial sol.

comp. time (unit: s)

total energy

(unit: 108J) 180 seconds 300 seconds 600 seconds 180 seconds 300 seconds 600 seconds

Iinitialdelay 0.90 79.82 76.74 76.14 75.49 3.85 4.61 5.43

I180sdelay 0.85 92.18 89.60 89.28 89.19 2.72 3.08 3.20

I300sdelay 0.81 96.59 93.81 93.79 93.77 2.47 2.75 2.80

I600sdelay 0.80 97.53 95.04 94.78 94.73 2.86 2.86 2.88

Idelay3600s 0.82 99.60 97.60 96.65 96.65 2.00 2.99 2.99

2

(4)

Table 6 presents the results of applying regenerative braking, in terms of train delay and energy con- sumption. These results are obtained by using the P

TSPO

approach with the weighted-sum formulation.

Table 6. Results of the P

TSPO

approach with the weighted-sum formulation, when applying regenerative braking, corresponding to Fig. 6 and Fig. 7

Weights [delay, energy]

Train delay time (unit: 10

3

second) Total energy consumption without regenerative braking (unit: 10

8

J)

Energy used for acceleration (unit: 10

8

J) initial

solution

180 seconds

3600 seconds

initial solution

180 seconds

3600 seconds

initial solution

180 seconds

3600 seconds

[1,1] 4.94 7.98 8.53 79.82 69.38 65.84 76.31 66.10 62.69

[2,1] 4.93 6.69 6.98 79.82 70.69 69.13 76.31 67.34 65.85

[10,1] 4.93 5.40 5.61 79.82 72.30 68.87 76.31 68.92 65.65

[20,1] 4.93 5.05 5.00 79.82 75.24 74.26 76.31 71.77 70.84

[50,1] 4.93 4.89 4.73 79.82 76.93 77.26 76.31 73.45 73.78

[100,1] 4.93 4.84 4.74 79.82 77.73 78.15 76.31 74.24 74.66

[120,1] 4.93 4.82 4.74 79.82 78.86 77.43 76.31 75.35 73.96

[200,1] 4.93 4.84 4.71 79.82 78.42 77.83 76.31 74.92 74.34

[500,1] 4.93 4.84 4.71 79.82 77.95 77.89 76.31 74.46 74.90

[1000,1] 4.93 4.84 4.70 79.82 78.22 81.24 76.31 74.72 77.69

Weights [delay, energy]

Total energy consumption with regenerative braking (unit: 10

8

J)

Energy regenerated and stored in storage devices (unit: 10

8

J)

Energy loss due to system efficiency (unit: 10

8

J) initial

solution

180 seconds

3600 seconds

initial solution

180 seconds

3600 seconds

initial solution

180 seconds

3600 seconds

[1,1] 68.91 56.09 50.78 30.70 31.56 32.35 3.63 3.83 4.36

[2,1] 68.91 58.70 55.33 30.70 28.76 31.26 3.63 3.70 4.11

[10,1] 68.91 60.44 54.61 30.70 29.23 32.50 3.63 3.68 4.27

[20,1] 68.91 64.59 62.76 30.70 27.84 29.15 3.63 3.46 3.62

[50,1] 68.91 66.40 66.17 30.70 29.30 29.68 3.63 3.38 3.46

[100,1] 68.91 67.19 66.39 30.70 29.88 31.13 3.63 3.38 3.61

[120,1] 68.91 67.53 65.94 30.70 31.06 30.92 3.63 3.59 3.59

[200,1] 68.91 67.49 66.94 30.70 30.60 30.47 3.63 3.47 3.41

[500,1] 68.91 67.38 67.16 30.70 30.12 30.73 3.63 3.40 3.51

[1000,1] 68.91 67.65 70.59 30.70 30.35 32.53 3.63 3.41 3.35

3

Abbildung

Table 2 presents the objective values of the two problems, in the case of using the ε-constraint formulation.
Table 4. Results of the P TSPO problem, minimizing both train delay and energy consumption in the objective function, corresponding to Fig
Table 6 presents the results of applying regenerative braking, in terms of train delay and energy con- con-sumption

Referenzen

ÄHNLICHE DOKUMENTE

Concerning lexical access, several communities are concerned: engineers from the natural language generation community (NLG), psychologists 28 , user to provide with the input

Econometric studies of the substitutability of energy and other factors of production, based on international cross-section data, generally presuppose that energy is

It was calculated the level of relative entropy (HR = H/HM), a measure that is greater than 0 and smaller than 1 and indicates the relationship of the value of entropy in each

Relative unit labor cost (RULC) is the key relative price in the Ricardian model. A rise in RULC is interpreted as a decrease in the competitiveness of Turkey and a decrease of

Таким образом, в результате интегрирования уравнений движения получается технологическая траектория для j - го базового продукта,

A further characteristic of the countries belonging to this cathegory is that the relationship between economic develop- ment level and specific consumption is considerably

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any

Scheinberg, is another illustration of the use of (discrete) optimization for machine learning problems: it formulates a mixed-integer programming model to design optimal decision