• Keine Ergebnisse gefunden

SCI7910Y Series CMOS Negative Voltage Regulators

N/A
N/A
Protected

Academic year: 2022

Aktie "SCI7910Y Series CMOS Negative Voltage Regulators"

Copied!
18
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

DESCRIPTION

SCI7910Y series voltage regulators provide step-down and stabilization for an input voltage to a specified fixed voltage. The four devices in the series incorporate a precision, power-saving reference voltage generator, a transistorized differential amplifier and resistors for de- termining the output voltage.

The SCI7910Y series is available in 3-pin plastic SOT89s.

FEATURES

• Wide range of operating voltages

• 0.1%/V (Typ.) input stability

• On-chip reference voltage generator

• On-chip differential amplifier

APPLICATIONS

• Fixed-voltage power supplies for battery-operated equipment such as portable video cassette recorders, video cameras and radios

• Fixed-voltage power supplies for communications equipment

• High-stability reference voltage generators

SCI7910Y Series CMOS Negative Voltage Regulators

LINE-UP

BLOCK DIAGRAM

VREF

GND (2 pin)

| {

PIN CONFIGURATION

VI 1

2

GND SCI7910Y

series

3 VO

Device Voltage (V) Current consumption Operating temperature

Input Output (µA) (°C)

SCI7910YHA –1.5 4.0

SCI7910YGA –1.8 4.0

SCI7910YDA –15 –3.0 4.0 –40 to 85

SCI7910YPA –4.0 4.0

SCI7910YBA –5.0 4.0

(2)

Voltage Regulator

PIN DESCRIPTION

SPECIFICATIONS

Absolute Maximum Ratings

Electrical Characteristics SCI7910YHA

Number Name Description

1 VI Input voltage

2 GND Ground

3 VO Output voltage

Parameter Symbol Rating Unit

Input voltage VI –18 V

Output current IO 100 mA

Output voltage VO GND + 0.3 to VI – 0.3 V

Power dissipation PD 200 mW

Operating temperature range Topr –40 to 85 °C

Storage temperature range Tstg –65 to 150 °C

Soldering temperature (for 10 s). See note. Tsol 260 °C Note

Temperatures during reflow soldering must remain within the limits set out in LSI Device Precautions. Never use solder dip to mount SCI7000 series power supply devices.

(Ta = –40°C to 85°C) Parameter Symbol Conditions (GND = 0.0V) Rating

Min. Typ. Max. Unit

Input voltage VI — –15.0 — — V

Output voltage VO VI = –3.0V, IO = 10mA

–1.57 –1.50 –1.43 V Ta = 25°C

Operating current IOP VI = –1.5V to –15V — 4.0 18.0 µA

Input/output voltage

|VI – VO| VI = –1.5V, IO = 5mA — 0.25 0.60 V differential

(3)

SCI7910YGA

SCI7910YDA

(VDD = 0V, Ta = –40°C to 85°C unless otherwise noted)

Parameter Symbol Conditions Rating

Min. Typ. Max. Unit

Input voltage VI — –15.0 — — V

Output voltage VO VI = –5.0V, IO = 10mA

–3.07 –3.00 –2.93 V Ta = 25°C

Operating current IDDO VI = –3.0V to –15.0V — 4.0 18.0 µA Input/output voltage

|VI – VO| VI = –3.0V, IO = 10mA — 0.23 0.46 V differential

Input voltage stabilization |∆VO| VI = –4.0V to –15.0V,

— 0.10 — %/V

ratio |∆VI • VO| IO = 10mA, Isothermal Output voltage drift ∆VO VI = –5.0V,

— 30.0 — mV

IO = 1mA to 30mA

(VDD = 0V, Ta = –40°C to 85°C unless otherwise noted)

Parameter Symbol Conditions Rating

Min. Typ. Max. Unit

Input voltage VI — –15.0 — — V

Output voltage VO VI = –3.0V, IO = 10mA

–1.87 –1.80 –1.73 V Ta = 25°C

Operating current IDDO VI = –1.8V to –15.0V — 4.0 18.0 µA Input/output voltage

|VI – VO| VI = –1.8V, IO = 10mA — 0.35 0.70 V differential

Input voltage stabilization |∆VO| VI = –3.0V to –15.0V,

— 0.10 — %/V

ratio |∆VI • VO| IO = 10mA, Isothermal Output voltage drift ∆VO VI = –3.0V,

— 20.0 — mV

IO = 1mA to 10mA, Isothermal

(4)

Voltage Regulator SCI7910YPA

(VDD = 0V, Ta = –40°C to 85°C unless otherwise noted)

Parameter Symbol Conditions Rating

Min. Typ. Max. Unit

Input voltage VI — –15.0 — — V

Output voltage VO VI = –6.0V, IO = 10mA

–4.10 –4.00 –3.90 V Ta = 25°C

Operating current IDDO VI = –4.0V to –15.0V — 4.0 18.0 µA Input/output voltage

|VI – VO| VI = –4.0V, IO = 10mA — 0.19 0.38 V differential

Input voltage stabilization |∆VO| VI = –5.0V to –15V,

— 0.10 — %/V

ratio |∆VI • VO| IO = 10mA, Isothermal Output voltage drift ∆VO VI = –7V,

— 40.0 — mV

IO = 1mA to 30mA

SCI7910YBA

(VDD = 0V, Ta = –40°C to 85°C unless otherwise noted)

Parameter Symbol Conditions Rating

Min. Typ. Max. Unit

Input voltage VI — –15.0 — — V

Output voltage VO VI = –7.0V, IO = 10mA

–5.10 –5.00 –4.90 V Ta = 25°C

Operating current IDDO VI = –5.0V to –15.0V — 4.0 18.0 µA Input/output voltage

|VI – VO| VI = –5.0V, IO = 10mA — 0.17 0.34 V differential

Input voltage stabilization |∆VO| VI = –6.0V to –15.0V,

— 0.10 — %/V

ratio |∆VI • VO| IO = 10mA, Isothermal Output voltage drift ∆VO VI = –7.0V,

— 50.0 — mV

IO = 1mA to 50mA

(5)

Typical Performance Characteristics SCI7910YBA

7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0

–40 –20 0 20 40 60 80 100 Ta [˚C]

IOP [µA]

VI = 7V

6.0 5.0 4.0 3.0 2.0 1.0 0.0

0 –5 –10 –15

VI [V]

IOP [µA]

Ta = 25˚C IO = 0mA

IOP – Ta IOP – VI

1.2 1.0 0.8 0.6 0.4 0.2 0.0

–40 –20 0 20 40 60 80 100 Ta [˚C]

|VO–VI| [V]

VI = 4.9V

IO = 50mA

IO = 10mA

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

0 10 20 30 40 50

IO [mA]

|VI–VO| [V]

Ta = 25˚C VI = –4.9V

|VO – VI| – Ta |VI – VO| – IO

(6)

Voltage Regulator –5.5

–5.0

–4.5

–40 –20 0 20 40 60 80 100 Ta [˚C]

VO [V]

VI = –7V IO = 10mA

–6.0 –5.0 –4.0 –3.0 –2.0 –1.0 0.0

0 –5 –10 –15

VI [V]

VO [V]

IO = 10mA

IO = 50mA

Ta = 25˚C

VO – Ta VO – VI

40

30

20

10

0

–40 –20 0 20 40 60 80 100 Ta [˚C]

VO [mV]

VI = –7V 1mA ≤ IO ≤ 50mA

–5.5

–5.0

–4.5

0 10 20 30 40 50

IO [mA]

VO [V]

Ta = 25˚C VI = –7V

VO – Ta VO – IO

(7)

SCI7910YPA

7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0

–40 –20 0 20 40 60 80 100

Ta [˚C]

IOP [µA]

VI = –7V

6.0 5.0 4.0 3.0 2.0 1.0 0.0

0 –5 –10 –15

VI [V]

IOP [µA]

Ta = 25˚C IO = 0mA

IOP – Ta IOP – VI

1.2 1.0 0.8 0.6 0.4 0.2 0.0

–40 –20 0 20 40 60 80 100 Ta [˚C]

|VO–VI| [V]

VI = –3.9V

IO = 30mA

IO = 10mA

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

0 8 16 24 32 40

IO [mA]

|VI–VO| [V]

Ta = 25˚C VI = –3.9V

|VO – VI| – Ta |VI – VO| – IO

(8)

Voltage Regulator –4.5

–4.0

–3.5

–40 –20 0 20 40 60 80 100 Ta [˚C]

VO [V]

VI = –7V IO = 10mA

–6.0 –5.0 –4.0 –3.0 –2.0 –1.0 0.0

0 –5 –10 –15

VI [V]

VO [V]

IO = 10mA

IO = 50mA

IO = 30mA Ta = 25˚C

VO – Ta VO – VI

40

30

20

10

0

–40 –20 0 20 40 60 80 100

Ta [˚C]

∆VO [mV]

VI = –7V 1mA IO 30mA

–4.5

–4.0

–3.5

0 8 16 24 32 40

IO [mA]

VO [V]

Ta = 25˚C VI = –7V

VO – Ta VO – IO

(9)

SCI7910YDA

7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0

–40 –20 0 20 40 60 80 100 Ta [˚C]

IOP [µA]

VI = –5V

6.0 5.0 4.0 3.0 2.0 1.0 0.0

0 –5 –10 –15

VI [V]

IOP [µA]

Ta = 25˚C IO = 0mA

IOP – Ta IOP – VI

1.2 1.0 0.8 0.6 0.4 0.2 0.0

–40 –20 0 20 40 60 80 100 Ta [˚C]

|VO–VI| [V]

VI = –2.93V

IO = 30mA

IO = 10mA

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

0 6 12 18 24 30

IO [mA]

|VI–VO| [V]

Ta = 25˚C VI = –2.93V

|VO – VI| – Ta |VI – VO| – IO

(10)

Voltage Regulator –3.5

–3.0

–2.5

–40 –20 0 20 40 60 80 100 Ta [˚C]

VO [V]

VI = –5V IO = 10mA

–6.0 –5.0 –4.0 –3.0 –2.0 –1.0 0.0

0 –5 –10 –15

VI [V]

VO [V] IO = 10mA

IO = 30mA Ta = 25˚C

VO – Ta VO – VI

40

30

20

10

0

–40 –20 0 20 40 60 80 100 Ta [˚C]

VO [mV]

VI = –5V 1mA ≤ IO≤ 30mA

–3.5

–3.0

–2.5

0 6 12 18 24 30

IO [mA]

VO [V]

Ta = 25˚C VI = –5V

VO – Ta VO – IO

(11)

SCI7910YGA

7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0

–40 –20 0 20 40 60 80 100

Ta [˚C]

IOP [µA]

VI = –3V

6.0 5.0 4.0 3.0 2.0 1.0 0.0

0 –5 –10 –15

VI [V]

IOP [µA]

Ta = 25˚C IO = 0mA

IOP – Ta IOP – VI

1.2 1.0 0.8 0.6 0.4 0.2 0.0

–40 –20 0 20 40 60 80 100

Ta [˚C]

|VO–VI| [V]

VI = –1.75V

IO = 5mA IO = 1mA

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

0 2 4 6 8 10

IO [mA]

|VI–VO| [V]

Ta = 25˚C VI = –1.75V

|VO – VI| – Ta |VI – VO| – IO

(12)

Voltage Regulator –2.5

–2.0

–1.5

–40 –20 0 20 40 60 80 100 Ta [˚C]

VO [V]

VI = –3V IO = 1mA

–6.0 –5.0 –4.0 –3.0 –2.0 –1.0 0.0

0 –5 –10 –15

VI [V]

VO [V]

IO = 10mA IO = 50mA

IO = 30mA Ta = 25˚C

VO – Ta VO – VI

40

30

20

10

0–40 –20 0 20 40 60 80 100 Ta [˚C]

∆VO [mV]

VI = –3V 1mA ≤ IO≤ 10mA

–2.5

–2.0

–1.50 2 4 6 8 10

IO [mA]

VO [V]

Ta = 25˚C VI = –3V

VO – Ta VO – IO

(13)

SCI7910YHA

7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0

–40 –20 0 20 40 60 80 100 Ta [˚C]

IOP [µA]

VI = –3V

6.0 5.0 4.0 3.0 2.0 1.0 0.0

0 –5 –10 –15

VI [V]

IOP [µA]

Ta = 25˚C IO = 0mA

IOP – Ta IOP – VI

1.2 1.0 0.8 0.6 0.4 0.2 0.0

–40 –20 0 20 40 60 80 100

Ta [˚C]

|VO–VI| [V]

VI = –1.45V

IO = 5mA

IO = 1mA

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

0 2 4 6 8 10

IO [mA]

|VI–VO| [V]

Ta = 25˚C VI = –1.45V

|VO – VI| – Ta |VI – VO| – IO

(14)

Voltage Regulator –2.0

–1.5

–1.0

–40 –20 0 20 40 60 80 100 Ta [˚C]

VO [V]

VI = –3V IO = 1mA

–6.0 –5.0 –4.0 –3.0 –2.0 –1.0 0.0

0 –5 –10 –15

VI [V]

VO [V]

IO = 1mA IO = 30mA

IO = 10mA Ta = 25˚C

VO – Ta VO – VI

40

30

20

10

0

–40 –20 0 20 40 60 80 100 Ta [˚C]

∆VO [mV]

VI = –3V 1mA ≤ IO≤ 10mA

–2.0

–1.5

–1.0

0 2 4 6 8 10

IO [mA]

VO [V]

Ta = 25˚C VI = –3V

VO – Ta VO – IO

(15)

PACKAGE MARKINGS

The markings on SCI7910Y series device packages use the following abbreviations.

Marking locations

Voltage regulator code

Output volta code

FUNCTIONAL DESCRIPTION

Basic Operation

The SCI7910Y series uses a 3-pin series regulator feed- back loop. An operational amplifier compares VREG

from the voltage divider formed by R1 and R2, with VREF. The amplifier output adjusts the output transistor gate bias to equalize the voltages and compensate for fluctuations in VI.

VREF

GND

VO

R1

VREG

R2

VI

| {

Parameter Code Description Output voltage code B 5 V

D 3 V

Voltage regulator code P Positive N Negative Note

The reflow furnace temperature profile requirements must be satisfied during package reflow. Avoid solder- ing on surface mount package (including SOT89) as it causes a quick temperature change of package and a device damage.

Internal Circuits

Reference voltage generator

The offset structure used in all three transistors results in a high breakdown voltage that ensures a stable refer- ence voltage output over a wide range of input voltages.

VREF

VSS

Enhancement mode

Depletion mode

Depletion mode

(16)

Voltage Regulator Differential amplifier

The built-in differential amplifier generates a potential at point X that adjusts the gate bias of the output transis- tor if there is any difference betweeen VREF and VREG.

VREG

To output transistor VSS

VREF

VI

N1 N2

P1 P2

X

Output transistor

The output side of the p-channel MOS transistors in the output transistor circuit is connected to the voltage di- vider resistors in the feedback loop.

R1

VREG

VREF

{

|

V1

VO

VSS

R2

TYPICAL APPLICATIONS

Current Booster

At the cost of a small increase in current consumption, the voltage is regulated while maintaining high current output.

GND VO VI

VO

VSS

VI

SCI7910Y

External Voltage Converter

The following circuit raises the output voltage of a SCI7910Y series IC.

V

The following equation shows the relationship between the old and new voltages.

R1 + R2

VO = ————— VR

R2

Note that the application must supply a bias current, IB, high enough to offset the increase in voltage across R1

due to Iopr.

An alternative circuit for raising the output voltage is shown in the following figure.

VO

VI

R1 CO

CI

GND VI

ISS

VO

VSS

SCI7910Y

(17)

R1 helps reduce the affect of ISS on VF. It is also re- quired when ISS is lower than the diode bias current.

For certain input voltages, a Zener diode with the re- verse polarity can be used.

High Input Voltages

A preliminary regulator circuit is required to bring the input voltage within the SCI7910Y series rated range.

GND

VO

VI VI VO

VSS

SCI7910Y

Switching output

SCI7910Y series devices are designed for continuous operation. An external switching circuit allows the regulated output to be switched ON and OFF.

GND ON/OFF

control signal

VO

VI VI VO

VSS

SCI7910Y

Note) Temperatures during reflow soldering must re- main within the limits set out under LSI Device Precautions in this catalog. Do not immerse QFP and SOT89 packages during soldering, as the rapid temperature gradient during dipping can cause damage.

(18)

4.

DC/DC Switching Regulators

Referenzen

ÄHNLICHE DOKUMENTE

The true differential input, with a wide input voltage range and outstanding common-mode rejection, provides maximum flexibility and performance in high-noise environments and

The devices feature high slew rates, low input bias and offset currents, and low offset voltage temperature coefficient.. Offset adjustment and external

High voltage monolithic active pixel sensors - Ivan Perić. • Use a high voltage commercial process

The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz

Perić: A novel monolithic pixelated particle detector implemented in high-voltage CMOS

By setting the real injection amplitude to a value just above the threshold, increasing the tune values caused the counts to drop and the distribution of the time delays to get

Here, we present flexible low-voltage organic TFTs with record static and dynamic perfor- mance, including contact resistance as small as 10 Ω·cm, on/off current ratios as large as

After the mode is canceled, the line data, which has been sent in the horizontal display period, is written in the display RAM at the time of the next trailing edge of the LP signal.