• Keine Ergebnisse gefunden

The Southern Ocean Decoupling Hypothesis

N/A
N/A
Protected

Academic year: 2022

Aktie "The Southern Ocean Decoupling Hypothesis"

Copied!
57
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Alfred Wegener Institute

for Polar and Marine Research Bremerhaven, Germany

Carbon cycle and the Mid Pleistocene Transition:

The Southern Ocean Decoupling Hypothesis

Peter K¨ohler

Berger Symposium on Climate Change, Louvain-la-Neuve, Belgium — May 2008

In cooperation with:

Hubertus Fischer, Climate and Environmental Physics, University of Bern, Switzerland

arbel H¨onisch, Lamont Doherty Earth Observatory of Columbia University, New York, USA Richard Bintanja, KNMI (Royal Netherlands Meteorological Institute), De Bilt, Netherlands

(2)

Outline

The data The model

The EPICA Time Window

The Southern Ocean Decoupling Hypothesis Other Theories

Take-home messages

(3)

Paleo Reconstructions — Climate

2.0 1.5 1.0 0.5 0.0

Time (Myr BP) 5

4 3

LR0418 O(o /oo)

A

MIS1357911131517192123252729313335373941434547495153555759616365

100-kyr MPT

40-kyr

101 2 5 102 2 5 103 Period (kyr)

10-1

2 5

100

2 5

101

2 5

102

2

Spectralpower(-)

40-kyr world (1.2-1.8 Myr BP)

B

18O

101 2 5 102 2 5 103 Period (kyr)

10-1

2 5

100

2 5

101

2 5

102

2

Spectralpower(-)

MPT (0.6-1.2 Myr BP)

18O

101 2 5 102 2 5 103 Period (kyr)

10-1

2 5

100

2 5

101

2 5

102

2

Spectralpower(-)

100-kyr world (0-0.6 Myr BP)

C

18O

Benthic δ18O stack LR04 (Lisiecki and Raymo, 2005)

(4)

Paleo Reconstructions — Carbon Cycle

5 4 3

LR0418 O(o /oo)

A

MIS1357911131517192123252729313335373941434547495153555759616365

180 200 220 240 260 280 300

CO 2(ppmv) 100-kyr

MPT 40-kyr

B

180 ppmv 280 ppmv

Vostok, EPICA Dome C

Petit et al., 1999

Siegenthaler et al., 2005 Luthi et al., 2008

2.0 1.5 1.0 0.5 0.0

Time (Myr BP) -1.0

-0.8 -0.6 -0.4 -0.2 0.0 0.2

13 C(o /oo)

2.0 1.5 1.0 0.5 0.0

Time (Myr BP) -1.0

-0.8 -0.6 -0.4 -0.2 0.0 0.2

13 C(o /oo)

C

(5)

Paleo Reconstructions — Carbon Cycle

5 4 3

LR0418 O(o /oo)

A

MIS1357911131517192123252729313335373941434547495153555759616365

180 200 220 240 260 280 300

CO 2(ppmv) 100-kyr

MPT 40-kyr

B

180 ppmv 280 ppmv

CO2 = f(pH) = f(11B)

(Honisch & Hemming, 2005, unpublished data)

2.0 1.5 1.0 0.5 0.0

Time (Myr BP) -1.0

-0.8 -0.6 -0.4 -0.2 0.0 0.2

13 C(o /oo)

2.0 1.5 1.0 0.5 0.0

Time (Myr BP) -1.0

-0.8 -0.6 -0.4 -0.2 0.0 0.2

13 C(o /oo)

C

(6)

Paleo Reconstructions — Carbon Cycle

5 4 3

LR0418 O(o /oo)

A

MIS1357911131517192123252729313335373941434547495153555759616365

180 200 220 240 260 280 300

CO 2(ppmv) 100-kyr

MPT 40-kyr

B

180 ppmv 280 ppmv

2.0 1.5 1.0 0.5 0.0

Time (Myr BP) -1.0

-0.8 -0.6 -0.4 -0.2 0.0 0.2

13 C(o /oo)

2.0 1.5 1.0 0.5 0.0

Time (Myr BP) -1.0

-0.8 -0.6 -0.4 -0.2 0.0 0.2

13 C(o /oo)

C

ODP846(3oS, 91oW); ODP677 (1oS, 83oW)

(Raymo et al., 1997, 2004)

(7)

Paleo Reconstructions — Carbon Cycle

101 2 5 102 2 5 103 Period (kyr)

10-1

2 5

100

2 5

101

2 5

102

2

Spectralpower(-)

40-kyr world (1.2-1.8 Myr BP)

E

13C

101 2 5 102 2 5 103 Period (kyr)

10-1

2 5

100

2 5

101

2 5

102

2

Spectralpower(-)

MPT (0.6-1.2 Myr BP)

13C

101 2 5 102 2 5 103 Period (kyr)

10-1

2 5

100

2 5

101

2 5

102

2

Spectralpower(-)

100-kyr world (0-0.6 Myr BP)

F

13C

2.0 1.5 1.0 0.5 0.0

Time (Myr BP) -1.0

-0.8 -0.6 -0.4 -0.2 0.0 0.2

13 C(o /oo)

2.0 1.5 1.0 0.5 0.0

Time (Myr BP) -1.0

-0.8 -0.6 -0.4 -0.2 0.0 0.2

13 C(o /oo)

C

(Raymo et al., 1997, 2004)

100-kyr MPT

40-kyr

(8)

Variation in Glacial/Interglacial Amplitudes

5 4 3

LR0418 O(o /oo)

A

MIS1357911131517192123252729313335373941434547495153555759616365

180 200 220 240 260 280 300

CO 2(ppmv) 100-kyr

MPT 40-kyr

B

180 ppmv 280 ppmv

2.0 1.5 1.0 0.5 0.0

Time (Myr BP) -1.0

-0.8 -0.6 -0.4 -0.2 0.0 0.2

13 C(o /oo)

2.0 1.5 1.0 0.5 0.0

Time (Myr BP) -1.0

-0.8 -0.6 -0.4 -0.2 0.0 0.2

13 C(o /oo)

C

ODP846(3oS, 91oW); ODP677 (1oS, 83oW)

(Raymo et al., 1997, 2004)

(9)

Variation in Glacial/Interglacial Amplitudes

40K MPT 100K

0 -0.5 -1 -1.5

-2

G/IG(18 O)(o / oo)

LR04 climate

0.0 0.2 0.4 0.6 0.8 1.0 1.2

fratio(-)

40K MPT 100K

0 20 40 60 80 100 120

G/IG(CO 2)(ppmv)

ice core CO2

0.0 0.2 0.4 0.6 0.8 1.0 1.2

fratio(-)

40K MPT 100K

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

G/IG(13 C)(o /oo)

deep Pacific

0.0 0.2 0.4 0.6 0.8 1.0 1.2

fratio(-)

right y-axis: fratio = 40k,MPT

100k

reduced G/IG amplitude in 40k:

climate (LR04): ∼ 50% of 100k carbon (CO2): ???

carbon (δ13C): ∼ 70% of 100k

(10)

Outline

The data The model

The EPICA Time Window

The Southern Ocean Decoupling Hypothesis Other Theories

Take-home messages

(11)

THC

THC

The global

carbon cycle

60 PgC/yr 60 PgC/yr

1 PgC/yr 10 PgC/yr

ATMOSPHERE (600 PgC)

ROCK

TERR. BIOSPHERE (2200 PgC)

0.8 PgC/yr

0.2 PgC/yr

0.2 PgC/yr

DEEP OCEAN (38000 PgC)

SEDIMENT

soft tissues | hard shells marine biosphere SURFACE OCEAN (700 PgC)

preindustrial reservoir sizes and annual fluxes

(12)

000000 000000 000000 000000 000000 000000 000000 000000 000000

111111 111111 111111 111111 111111 111111 111111 111111 111111

00000 00000 00000 00000 00000 00000 00000 00000 00000

11111 11111 11111 11111 11111 11111 11111 11111 11111 0000

0000 1111 1111

00000000 00000000 00000000 11111111 11111111 11111111

Box model of the Isotopic Carbon cYCLE BICYCLE

Rock

C3

FS SS

NW W D

C4

Atmosphere

Atlantic Indo−Pacific

Sediment SO

Biosphere

mediate inter−

surface

deep

water carbon

ohler et al. (2005, submitted), K¨ohler & Fischer (2006)

(13)

000000 000000 000000 000000 000000 000000 000000 000000 000000

111111 111111 111111 111111 111111 111111 111111 111111 111111

00000 00000 00000 00000 00000 00000 00000 00000 00000

11111 11111 11111 11111 11111 11111 11111 11111 11111 0000

0000 1111 1111

00000000 00000000 00000000 11111111 11111111 11111111

Box model of the Isotopic Carbon cYCLE BICYCLE

Rock

C3

FS SS

NW W D

C4

Atmosphere

Atlantic Indo−Pacific

Sediment SO

Biosphere

water carbon

Prognostic variables:

10 oceanic boxes: DIC,

7 terrestrial boxes: C, 13C, 14C 1 atmospheric box:

14C, ALK, PO4, O2 13C,

CO2,13C, 14C

DIC + ALK −> CO2, HCO3, CO3, pH

ohler et al. (2005, submitted), K¨ohler & Fischer (2006)

(14)

Outline

The data The model

The EPICA Time Window

The Southern Ocean Decoupling Hypothesis Other Theories

Take-home messages

(15)

EPICA drilling sites:

Dome C (EDC): low accumulation rate; long time series (∼8 glacial cycles) Dronning Maud Land (EDML): high accumulation rate, high resolution

(16)

The EPICA Time Window

Carbon cycle model simulations based on results for Termination I

-450 -420 -390 -360

D(o /oo)

EDC D

Termination I

1 5

7 9

11 13

15 17

MIS

0 500 1000

dust(ppbv) 1500

EDC dust

700 600 500 400 300 200 100 0

Time (kyr BP)

160 200 240 280

pCO2(ppmv)

Vostok pCO

2

EDC pCO

2

I II

III IV

V VI

VII

EPICA, 2004; Petit et al., 1999 Siegenthaler et al., 2005

(17)

Atmospheric carbon during Termination I

Interprete the temporal evolution of atmospheric CO2, δ13C, 14C records

by carbon cycle simulations.

Smith et al., 1999; Monnin et al., 2001;

Stuiver et al., 1998; Hughen et al., 2004

-7.0 -6.8 -6.6 -6.4 -6.2

13 C[o / oo]

Interval I II III IV H1 BA YD 13

C

180 200 220 240 260 280

pCO2[ppmv]

pCO

2

20 18 16 14 12 10 GISP2 Age [kyr BP]

0 100

200 300 400 500

14 C[o /oo]

14

C

(18)

Overall objective and procedure for time-dependent simulations

Novelty:

• BICYCLE runs forward in time (no inverse studies)

• Transient simulations based on and forced with available paleo records

Three steps:

1. Which time-dependent processes were changing the carbon cycle on glacial/interglacial timescales?

2. How can we prescribe / force these processes in BICYCLE?

3. What are the impacts on CO2?

(19)

Time-dependent processes:

Which How (T I) What (ppmv) ?

Physics (without ocean circulation)

1 Temperature +(3–5) K +30 !

2 Sea level / salinity +125 m –15 !

3 Gas exchange / sea ice –50% –15 ?

Ocean circulation

4 NADW formation +6 Sv +15 !/? (off)

5 Southern Ocean ventilation +20 Sv +35 o

Biogeochemistry

6 Marine biota / iron fertilisation –2 PgC yr1 +20 ? 7 Terrestrial carbon storage +500 PgC –15 !

8 CaCO3 chemistry τ=1.5 kyr +20 ?

Sum +75

Sum (without sea ice) +90

Vostok (incl. Holocene rise) +103

(20)

000000 000000 000000 000000 000000 000000 000000 000000

111111 111111 111111 111111 111111 111111 111111 111111

00000 00000 00000 00000 00000 00000 00000 00000

11111 11111 11111 11111 11111 11111 11111 11111 0000 0000 1111 1111

00000000 00000000 00000000 11111111 11111111 11111111

Box model of the Isotopic Carbon cYCLE BICYCLE

Rock

C3

FS SS

NW W D C4

Atmosphere

Atlantic Indo−Pacific

Sediment SO

Biosphere mediate

inter−

surface

deep

water carbon

-7.0 -6.8 -6.6 -6.4 -6.2

13 CO2[o /oo]

TD 13CO2 Interval I II III IV

200 220 240 260 280

pCO2[ppmv] EDC pCO2

Termination I

-450 -440 -430 -420 -410 -400 -390 -380

D[o /oo]

EDC D

0 10 20 30 40 50

2+ nss-Ca[ppb] 60

EDC nss-Ca2+

400 500 600 700

CH4[ppbv]

GISP2 EDC CH4

-42-41 -40-39 -37-38-36-35 -34

18 O[o /oo]

GISP2 18O

-120 -100 -80 -60 -40 -20 0

sealevel[m]

sea level

20 18 16 14 12 10 GISP2 Age [kyr BP]

0 5 10 15 20

Flux[106 m3 /s]

SO mixing NADW

H1 YD

-7.0 -6.8 -6.6 -6.4 -6.2

13 C[o /oo]

Interval I II III IV

13

C

180 200 220 240 260 280

pCO2[ppmv]

pCO

2

20 18 16 14 12 10 GISP2 Age [kyr BP]

0 100

200 300 400 500

14 C[o /oo]

20 18 16 14 12 10 GISP2 Age [kyr BP]

0 100

200 300 400 500

14 C[o /oo]

14

C

Assumptions on changes in

- Fe fertilization in SO - Ocean circulation

(NADW, SO mixing) - Climate ( T,

sealevel, sea ice) - CaCO3 chemistry - terrestrial biosphere

Forcing ⇒ Model ⇒ Results

K¨ohler et al. (2005) Global Biogeochemical Cycles

(21)

The EPICA Time Window

Working hypothesis:

Our findings for Termination I are of general nature.

Approach:

Use same assumptions and extend forcing data set back in time.

-450 -420 -390 -360

D(o /oo)

EDC D

1 5

7 9

11 13

15 17

MIS

0 500 1000

dust(ppbv) 1500

EDC dust

700 600 500 400 300 200 100 0

Time (kyr BP)

160 200 240 280

pCO2(ppmv)

Vostok pCO2 EDC pCO2

I II

III IV

V VI

VII

(22)

0 20 40 60 80 100

IRD(%) (a)

5 10 15

SST(o C)

(b)

5 4 3 2

18 O(o /oo)

(c)

0 -1 -2

18 O(o /oo)

(d)

-15 -10 -5 0

T(K)

(e)

1.0 0.5 0.0

18 O(o /oo)

(f)

-100 -50 0

sealevel(m)

(g)

-450 -420 -390 -360

D(o /oo)

(h)

1 5

7 9

11 13

15 17

500 400 300 200 100 0

Feflux(gm-2 yr-1 )

(i)

700 600 500 400 300 200 100 0

Time (kyr BP)

180 200 220 240 260 280

CO2(ppmv)

700 600 500 400 300 200 100 0

Time (kyr BP)

180 200 220 240 260 280 300

CO2(ppmv)

(j)

S6.0k S1.5k S0.0k

I II

III IV

V VI

VII VIII

a: Heinrich b: N-SST c: NADW d: EQ-SST

e: NH ∆T

f: deep sea ∆T g: sea level

h: SO SST i: Fe fert.

j: CO2

ohler and Fischer, 2006, Climate of the Past

(23)

Terminations I-VIII

combined simulation vs. ice core data

∼20 ppmv per Termination are missing

VIII VII VI V IV III II I Number of Termination

0 10 20 30 40 50 60 70 80 90 100 110 120 130

CO 2rise(ppmv)

Vostok and EDC data scenario S1.5K

sum of one-at-a-time sum of all-but-one

Vostok pre-Vostok

ohler and Fischer, 2006, Climate of the Past

(24)

Outline

The data The model

The EPICA Time Window

The Southern Ocean Decoupling Hypothesis Other Theories

Take-home messages

(25)

Beyond EPICA — Forcings

OLD EPICA 740kyr

ohler & Fischer (2006)

5 10 15

SST(oC)

5 4 3 2

18O(o/oo)

0 -1 -2

18O(o/oo)

-15 -10 -5 0

T(K)

1.0 0.5 0.0

18O(o/oo)

-100 -50 0

sealevel(m)

-450 -420 -390 -360

D(o/oo) 1 5 7 9 11 13 15 17

700 600 500 400 300 200 100 0

Time (kyr BP) 500

400 300 200 100 0

Feflux(gm-2yr-1)

000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000

111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111

000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000

111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 0000000

0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000

1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111

0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000

1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111

CO2, δ13C

740 kyr 2 Myr

NEW MPT 2 Myr

this study

LR04-based

5 10 15

SST(oC)

5 4 3 2

18O(o/oo)

0 -1 -2

18O(o/oo)

-15 -10 -5 0

T(K)

1.0 0.5 0.0

18O(o/oo)

-100 -50 0

sealevel(m)

-450 -420 -390 -360

D(o/oo) 1 5 7 9 11 13 15 17

700 600 500 400 300 200 100 0

Time (kyr BP) 500

400 300 200 100 0

Feflux(gm-2yr-1)

2.0 1.5 1.0 0.5 0.0

Time (Myr BP) 5

4 3

LR0418O(o/oo) A MIS1357911131517192123252729313335373941434547495153555759616365

100-kyr MPT

40-kyr

5 4 3

18(o/oo) LR04 A

-100 -50 0

sealevel(m)

S_NHICE S_LR04, r2= 93%

Bintanja 1 Myr

B

-15 -10 -5 0 5

T(K) S_NHICE

S_LR04 r2= 78%

Bintanja 1 Myr

C

1.0 0.5 0.0

18O(o/oo) S_NHICE

S_LR04, r2= 90%

Bintanja 1 Myr

D

40 35 30 25 20 15

Area(1012m2) S_NHICE S_LR04

E

-5 0 5 10

Siweath(1012mol/yr) S_REGOLITH

S_LR04

F

0 -1 -2 18O(o/oo)

correl. to LR04, r2= 42%, not taken ODP677

G

-440 -400 -360

D(o/oo) S_LR04, r2= 73%

EPICA Dome C

H

2.0 1.5 1.0 0.5 0.0

Time (Myr BP) 0

200 -2-1Feflux(gmyr) 400

S_IRON S_LR04, r2= 53%

EPICA Dome C

I

EDC period pre-EDC period

000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000

111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111

000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000

111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 0000000

0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000

1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111

0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000

1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111

CO2, δ13C

⇒ LR04-based forcing is a Null Hypothesis

(26)

Regressions between LR04 and other Records

1000 800 600 400 200 0 Time [kyr BP]

6 5 4 3

benthic18 O[o /oo] A

-120 -100 -80 -60 -40 -20 0 20 40

sea level benthic18O

3 4 5

benthic 18O [o/oo] -120

-100 -80 -60 -40 -20 0 20 40

sealevel[m]

3 4 5

-120 -100 -80 -60 -40 -20 0 20

40 B

y = 234.508 - 71.4076*x r2= 93%

1000 800 600 400 200 0 Time [kyr BP]

6 5 4 3

benthic18O[o/oo] A

-15 -10 -5 0 5 10 15

NH T benthic18O

3 4 5

benthic 18O [o/oo] -15

-10 -5 0 5 10 15

NHT[K]

3 4 5

-15 -10 -5 0 5 10 15

B

y = 22.7445 - 7.75426*x, r2= 78%

1000 800 600 400 200 0 Time [kyr BP]

3 4 5 6

benthic18 O[o /oo]

A -1 0 1

deepseatemperaturepart

deep sea T part of18O [o/oo] benthic18O

3 4 5

benthic 18O [o/oo] -1

0 1

ofbenthic18 O[o /oo]

3 4 5

-1 0 1

B

y = -1.12196 + 0.375151*x r2= 90%

800 600 400 200 0 Time [kyr BP]

6 5 4 3

benthic18 O[o /oo] A

-440 -420 -400 -380

EDC D -360

benthic18O

3 4 5

benthic 18O [o/oo] -440

-420 -400 -380 -360

EDCD[o/oo]

3 4 5

-440 -420 -400 -380

-360 B

y = -298 - 30.0981*x r2= 73%

600 400 200 0

Time [kyr BP]

2 3 4 5

benthic18O[o/oo] A

0 100 200 300 400 500 600

EDC Fe flux benthic18O

3 4 5

benthic 18O [o/oo] 0

100 200 300 400 500 600

EDCFeflux[gm-2 yr-1 ]

3 4 5

0 100 200 300 400 500 600

y = 10(-1.36087+0.737415*x) B

, r2=53%

y = -279.337+98.1174*x, r2=13%

2.0 1.5 1.0 0.5 0 Time [Myr BP]

2 3 4 5

benthic18 O[o /oo] A

-3 -2 -1 0 1 2

planktic18O ODP 667 benthic18O

3 4 5

benthic 18O [o/oo] -3

-2 -1 0 1 2

planktic18OODP667[o/oo]

3 4 5

-3 -2 -1 0 1 2

B

y = -3.84387+0.625415*x r2= 42%

3 4 5

benthic 18O [o/oo] 0

100 200 300 400 500 600

EDCFeflux[gm-2 yr-1 ]

3 4 5

0 100 200 300 400 500 600

y = 10(-1.36087+0.737415*x)

B

, r2=53%

y = -279.337+98.1174*x, r2=13%

Underlying assumption:

Climate change is similarly related to LR04 in 40k and 100k world

(1) Regression is in general good (r2 = 93,78,90, 73,53,42%).

(2) Most difficult is Fe flux to Antarctica (two approaches, see left).

(27)

Ground-truthing of LR04-based approach

5 4 3

18 O(o / oo)

A

180 200 220 240 260 280 300

pCO2(atm)

B

700 600 500 400 300 200 100 0

Time (kyr BP) -1.0

-0.8 -0.6 -0.4 -0.2 0.0 0.2

13 C(o /oo)

700 600 500 400 300 200 100 0

Time (kyr BP) -1.0

-0.8 -0.6 -0.4 -0.2 0.0 0.2

13 C(o /oo)

LR04 OLD C

(1) Simulated glacial/interglacial amplitudes of original approach are about 85% of those in the data sets.

(2) 400-kyr cycle in δ13C (eccentricity) is not covered by simulations.

(28)

Ground-truthing of LR04-based approach

160 200 240 280 pCO

2

( atm)

160 200 240 280

pCO

2

( atm)

pCO

2

r

2

= 67%

LR04

OLD

-0.4 -0.2 0.0 0.2

13

C (

o

/

oo

) -0.4

-0.2 0.0 0.2

13

C (

o

/

oo

)

deep Pacific

13

C r

2

= 76%

OLD LR04

LR04-based approach loses about 10%

of the glacial/interglacial amplitudes in both pCO2 and δ13C.

(29)

Null Hypothesis

5 4 3

18 O(o /oo)

A

180 200 220 240 260 280 300

pCO 2(atm) 180

200 220 240 260 280 300

B

180 ppmv

280 ppmv

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2

2.0 1.5 1.0 0.5 0

Time (Myr BP) -1.0

-0.8 -0.6 -0.4 -0.2 0.0 0.2

13 C(o /oo)

C

100-kyr MPT

40-kyr

pCO2: within errorbars;

δ13C: amplitudes in 40-kyr world too small

⇒ Reject Null Hypothesis

(30)

Variation in Glacial/Interglacial Amplitudes

40K MPT 100K

0 20 40 60 80 100 120

G/IG(CO2)(ppmv)

CO2 - absolute

LR04 data

40K MPT 100K

CO2 - relative

0.0 0.2 0.4 0.6 0.8 1.0 1.2

f ratio(-)

LR04 data

40K MPT 100K

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

G/IG(13 C)(o / oo)

deep Pacific - absolute

LR04 data

40K MPT 100K

deep Pacific - relative

0.0 0.2 0.4 0.6 0.8 1.0 1.2

f ratio(-)

LR04 data

(31)

Improving the Null Hypothesis

LR04 regression function between LR04 and climate records Null Hypothesis

(32)

Improving the Null Hypothesis

LR04 regression function between LR04 and climate records Null Hypothesis

IRON alternative regression for Fe flux

(Southern Ocean marine export production)

(33)

Improving the Null Hypothesis

LR04 regression function between LR04 and climate records Null Hypothesis

IRON alternative regression for Fe flux

(Southern Ocean marine export production)

NHICE Sea level, ∆T in deep ocean and northern hemisphere from Bintanja & van de Wal (submitted)

(34)

Northern Hemispheric Ice Sheets Bintanja et al. (2005, submitted)

Deconvolute LR04 stacked δ18O into climate variables (∆Tdeepocean, ∆Tatmosphere, size of ice sheets, sea level)

(35)

Improving the Null Hypothesis

LR04 regression function between LR04 and climate records Null Hypothesis

IRON alternative regression for Fe flux

(Southern Ocean marine export production)

NHICE Sea level, ∆T in deep ocean and northern hemisphere from Bintanja & van de Wal (submitted)

REGOLITH as NHICE + Regolith Hypothesis (Clark et al., 2007), additionally changing silicate weathering rates between 2 and 1 Myr BP

Referenzen

ÄHNLICHE DOKUMENTE

Conversely, low d 13 C (less than 0‰ PDB) dominates the deep western South Atlantic below depths of 3 km reaching as far north as 50°N, whereas in the eastern Atlantic, south of

The focus of our investigation is on the changes in the glacial/interglacial (G/IG) amplitudes in climate (represented by LR04) and the carbon cycle (represented by benthic δ 13

The results suggest that •øBe rain rates and authigenic U concentration cannot serve as quantitative paleoproductivity proxies because they have also been influenced

Therefore, we use CLIMBER-2, a coupled atmosphere- ocean-vegetation model of intermediate complexity, to explore the possibility of vegetation expansion in arid northern Africa

With hyperbolic (or present-biased) preferences we establish conditions such that an increase in environmental regulation can both reduce pollution, as well as increase firm profits

Nevertheless: Object oriented programming as with C++ help us to structure our software.... C/C++ programming, a very

Adaptation and mitigation, although pursuing the same objective (a reduction of residual climate costs), exhibit major differences, which have implications for their

The Harris-Todaro hypothesis replaces the equality of wages by the equality of ‘expected’ wages as the basic equilibrium condition in a segmented but homogeneous labour market, and