• Keine Ergebnisse gefunden

First principles modeling of oxygen vacancy formation and mobility in (Ba,Sr)(Co,Fe)O 3-δ δ δ δ perovskites

N/A
N/A
Protected

Academic year: 2022

Aktie "First principles modeling of oxygen vacancy formation and mobility in (Ba,Sr)(Co,Fe)O 3-δ δ δ δ perovskites"

Copied!
1
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

First principles modeling of oxygen vacancy formation and mobility in (Ba,Sr)(Co,Fe)O 3-δ δ δ δ perovskites

R. Merkle a , E.A. Kotomin a,b , Y.A. Mastrikov b,c , M.M. Kuklja c , J. Maier a

a

MPI Solid State Research Stuttgart,

b

Inst. Solid State Physics Riga,

c

University of Maryland

MPI for Solid State Research

Stuttgart

3.80 3.85 3.90 3.95 4.00 4.05

0.00 0.25

0.50 0.75

1.00

0.25 0.50

0.75 1.00 BaxSr1-xCoyFe1-yO3-δ

x Ba y Co

lattice constant

hexagonal perovskite Å

lattice constant/

0.3 0.4 0.5 0.6 0.7

0.00 0.25

0.50 0.75

1.00

0.00 0.25 0.50

0.75 1.00 BaxSr1-xCoyFe1-yO3-δ

x Ba y Co

δ

? δ

600°C pO2= 10-3bar oxygen deficiency

BSCF permeation membranes

high D (Z.P. Shao (2000)) test as SOFC cathode

high k (Z.P. Shao, S.M. Haile (2004))

mechanistic interpretation:

L. Wang, R. Merkle, J. Maier J. Electrochem. Soc. 157 (2010) B1802

* vacancy formation energy increases linearly with Fe content

↔ ↔

difference in band structure

* vacancy migration barriers in good agreement with experiments

* barriers are determined by combination of

geometrical constraints (d

A*-O*

in transition state) and electronic contribution (vacancy formation energy)

Ba

1-x

Sr

x

Co

y

Fe

1-y

O

3-δδδδ

perovskites: high concentration and mobility of V

o..

Summary

Acknowledgement

The research leading to these results has received funding from the European Union's Seventh Framework Program FP7/2007- 2013 (NASA-OTM) under grant agreement n°228701 and the US National Science Foundation (NSF) grant n°08 32958. Authors thank NSF for its support through TeraGrid resources provided by the Texas Advanced Computing Center (TACC) and the National Center for Supercomputing Applications (NCSA) under grant number TG-DMR100021. MMK is grateful to the Office of the Director of NSF for support under the IRD Program. Any appearance of findings, conclusions, or recommendations, expressed in this material are those of the authors and do not necessarily reflect the views of NSF. This study was supported also by a grant of computer time at the EMS Laboratory at PNNL (Project No 42498).

Authors are greatly indebted to D. Gryaznov for many stimulating discussions.

1000/T / K-1

0.9 1.0 1.1 1.2 1.3 1.4 1.5

DVo.. / cm2 s-1

1e-8 1e-7 1e-6 1e-5

Ba0.5Sr0.5Co0.8Fe0.2O3-δ

BSF

SF La0.5Sr0.5CoO3-δ

La0.8Sr 0.2CoO3-δ

LSC: R.A. De Souza et al.,Solid State Ionics 106 (1998) 175 L. Wang et al., Appl. Phys. Lett. 94 (2009) 071908

D

Vo

.. from

18

O isotope exchange:

Ea= 0.5 eV

1 1 22

3 3

1 1 22

1 1 A y=1/8

C y=1/2

B

y=1/ 4 X: δδδδ=3/8

y=1/4

3 3 3 1 1 1 222 E

y=3/8 Y:δδδ=1/2δ

y=1/4 Fe

Co

* VASP 4.6 + PAW and plane wave basis set

* PBE-type exchange-correlation GGA functional

* 4x4x4 k-point mesh in the Brillouin zone (Monkhorst-Pack scheme)

* ion charges calculated by the Bader method

* energy cut-off 520 eV

* Ba

4

Sr

4

(Co,Fe)

4

O

12-δ

supercells (2

×

2

×

2)

* Fe: high spin state, Co: intermediate spin

E. A. Kotomin et al., Solid State Ionics 188 (2011) 1

Computational details

different vacancy configurations in supercell

Electronic structure

Oxygen vacancy formation

Oxygen vacancy migration

SrCo1-yFeyO2.875

Fe fraction y

0.00 0.25 0.50 0.75 1.00

vacancy formation energy / eV

1.0 1.5 2.0 2.5

Ba0.5Sr0.5Co1-yFeyO2.875 Co-VO..-Co

Co-VO..-Fe

Co-VO..-Co Co-VO..-Fe Fe-VO..-Fe O

energy / eV

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4

arb. units

-5 0 5

arb. units

-10 0 10

Fe

arb. units

-5 0 5

Co

O px O py O pz dxy + dxz + dyz dz2 + d(x2+y2)

dxy + dxz + dyz dz2 + d(x2+y2) spin-projected density of states (DOS) for

Ba0.5Sr0.5Co0.75Fe0.25O2.875

A*

B**

A'*

B*

Oh Oh

Ov Ov O*

A*

B**

A'*

B*

Oh Oh

Ov Ov O*

transition state and initial state for Ba0.5Sr0.5CoO2.875

E.A. Kotomin, R. Merkle, Y. A. Mastrikov, M. M. Kuklja, J. Maier, ECS Transact. 35(1) (2011) 823; JES (2011) submitted cartoon of the BSCF band structure (density of states)

oxygen loss for δ

δ δ = 1/8: excess electronsδ

distributed mainly to Co and O

significant (Fe,Co)-O covalency (t

2g

) Fe: 1 eV gap between occupied

↑↑↑↑

e

g

and empty

↓↓↓↓

e

g

BSCF ≈≈≈≈ linear increase of V

O..

formation energy with Fe content

more narrow empty Fe states at higher energy

SCF: slightly higher values

oversized Ba favours reduction of Fe,Co

transition state:

O* moving through

"critical triangle"

transition state:

e density map in (110) plane for Ba0.5Sr0.5Co0.75Fe0.25O2.875

barriers DFT expt. good BSCF 0.44 eV 0.5 eV* agreement BSF 0.72 eV 1.0 eV*

SCF 0.64 eV 0.65 eV**

geometric factors:

d

A-O*

compared to BSC*

(cf. SrSr, SrBa and BaBa barriers for BSC)

Ba Ba

Sr Sr

Co O*

electronic factors:

vacancy formation energy (cf. SrBa barriers for BSC, SCF, BSF)

*L. Wang et al., JES 157 (2010) B1802

**Y. Teraoka et al., Mat. Res. Bull. 23 (1988) 51

D.N. Mueller et al., J. Mat. Chem. 19 (2009) 1960

cf. XAS study for Ba

0.1

Sr

0.9

Co

0.8

Fe

0.2

O

3-δ

:

charge distribution depends delicately on

δ

(more e to Fe at low T, high pO

2

)

comparison to expt. data:

EV

= 0.6 eV for BSF (

δ

= 0.34), 0.5 eV for BSCF (δ = 0.52)

EV

depends on δ

extrapolate to δ = 1/8 trend of smaller E

V

for Co-rich materials confirmed O

Ox

+ 2 M

Mx¾

0.5 O

2

+ V

O..

+ 2 M

M

'

L. Wang et al., ECS Transact, 13(26) (2008) 85

E O Co

Fe

EF(δ ≈1/8) EF(δ= 0) Fermi energy:

EV Em

/ eV / eV B*-O*

/ Å B*-Ov

/ Å B*-Oh

/ Å q(O*)

∆q(O*) / e0

B*-B**

/ Å

A*-O* A*A'*

Sr Ba / Å / Å / Å BSC BaSr

1.21 0.40

SrSr 1.03 0.43

BaBa 1.28 0.75

1.70 -13%

1.71 -12%

1.68 -14%

1.77 -9%

1.79 -8%

1.76 -10%

1.95

±0%

1.95

±0%

1.95

±0%

-0.97 +0.10

-0.96 +0.11

-0.95 +0.12

5.68 +3%

5.48 -1%

5.63 +2%

2.37 2.58 4.12 +6%

2.41 4.19 +7%

2.49 4.12 +6%

BSCF BaSr 1.34 0.42 C*VC->C*VC 1.40 0.46 CVF*->CVF*

1.69 -13%

1.69 -13%

1.77 -9%

1.76 -10%

1.98 +1.5%

1.91 -2%

-0.98 +0.09

-0.95 +0.13

5.75 +4%

5.65 +2%

2.38 2.59 4.10 +5%

2.39 2.57 4.15 +6%

BSF BaSr 2.22 0.72

1.68 -14%

1.78 -9%

1.95

±0%

-0.96 +0.12

5.68 +3%

2.40 2.57 4.14 +6%

SCF SrSr 1.58 0.60 C*VC->C*VC 1.69 0.67 CVF*->CVF*

1.70 -11%

1.70 -11%

1.79 -7%

1.77 -8%

1.92

±0%

1.91 -2%

-0.97

-0.97 5.56 +2%

5.52 +2%

2.38 4.08 +6%

2.38 4.11 +7%

Vacancy formation energy EV, migration barrier Em, and structural parameters of oxygen migration.

* indicates the migrating O and directly connected cations. Italic numbers give the change in the transition state relative to the ideal structure.

∆q(O*) is the change of O* ion charge in the transition state relative to the initial state. For BSCF and SCF, the geometry and barrier from a Co-VO..-Co initial state to a Co-VO..-Co final state as well as for Fe-VO..-Co to Fe-VO..-Co (Fe*-O* transition state) is given

0.4 0.5 0.6 0.7 0.8 0.9 1.0

1.0 1.2 1.4 1.6 1.8 2.0 2.2

-0.10 -0.08 -0.06 -0.04 -0.02 0.020.00 0.04

migration barrier / eV

∆r(A*O*) relative to BSC / Å

BSF SrSr F*VF BaSr F*VF BaBa F*VF BSCF5528 BaSr F*VF BSCF5555 BaSr C*VF SCF SrSr C*VC SrSr CVF*

BSCF BaSr C*VC BaSr CVF*

BSC SrSr C*VC BaSr C*VC BaBa C*VC

vacancy form atio n

energy / eV

Referenzen

ÄHNLICHE DOKUMENTE

The non-oxygen gas components are trapped in cold trap, Oxygen passes to the molecular sieve cooled with liquid nitrogen and is transferred to the mass spectrometer for

An even larger deviation from the canonical picture of river water flow in the Arctic Ocean occurs in the early 1990s, when river water almost entirely moves eastward along

The objective of this study is to analyse spatial patterns of measured late-glacial to late-Holocene precipitation δ 18 O changes from published groundwater, ground ice, glacial ice

PC Physico-chemical Mg/Ca, Ti/Ca, Fe/Ca, Fe/Sr, Al/Si, Si/Ca, C/N, δ 15 N, Grain size, Petrography, Alkenone, Thermoluminescence, Mineralogy, pH, Eh, Magnetic susceptibility

Only isotope systems with a radiogenic component like the strontium (Sr) isotope system or ‘light’ stable isotopes with a large relative mass difference like carbon (C), nitrogen

Falls ihr die Aufgabe 1,d) aus dem Ortsraum kommend nachrechnen wollt, ben¨ otigt ihr ebenso die Fouriertransformierte der δ(p) Funktion.. (4) Dar¨ uberhinaus wurden wir

Auf dem Umkreis eines gleichseitigen Dreiecks ABC wählen wir einen Punkt P wie zum Beispiel in der Abbildung 1.. Die Sache spielt im

noch vorhandene Eduktmoleküle können sich mit Produktmolekülen mischen und damit einen Beitrag zur Erhöhung der Gesamtentropie liefern.. 2 Die Berechnungen und die Grafiken