• Keine Ergebnisse gefunden

Pseudodifferential and Singular Integral Operators

N/A
N/A
Protected

Academic year: 2022

Aktie "Pseudodifferential and Singular Integral Operators"

Copied!
5
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

de Gruyter Textbook

Pseudodifferential and Singular Integral Operators

An Introduction with Applications

Bearbeitet von Helmut Abels

1. Auflage 2012. Taschenbuch. X, 232 S. Paperback ISBN 978 3 11 025030 5

Format (B x L): 17 x 24 cm Gewicht: 393 g

Weitere Fachgebiete > Mathematik > Mathematische Analysis > Funktionalanalysis

schnell und portofrei erhältlich bei

Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft.

Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr

als 8 Millionen Produkte.

(2)

Contents

Preface v

1 Introduction 1

I Fourier Transformation and Pseudodifferential Operators

2 Fourier Transformation and Tempered Distributions 9

2.1 Definition and Basic Properties . . . 9

2.2 Rapidly Decreasing Functions –S.Rn/ . . . 13

2.3 Inverse Fourier Transformation and Plancherel’s Theorem . . . 15

2.4 Tempered Distributions and Fourier Transformation . . . 20

2.5 Fourier Transformation and Convolution of Tempered Distributions . 23 2.6 Convolution onS0.Rn/and Fundamental Solutions . . . 25

2.7 Sobolev and Bessel Potential Spaces . . . 27

2.8 Vector-Valued Fourier-Transformation . . . 30

2.9 Final Remarks and Exercises . . . 33

2.9.1 Further Reading . . . 33

2.9.2 Exercises . . . 34

3 Basic Calculus of Pseudodifferential Operators onRn 40 3.1 Symbol Classes and Basic Properties . . . 40

3.2 Composition of Pseudodifferential Operators: Motivation . . . 45

3.3 Oscillatory Integrals . . . 46

3.4 Double Symbols . . . 51

(3)

viii Contents

3.5 Composition of Pseudodifferential Operators . . . 54

3.6 Application: Elliptic Pseudodifferential Operators and Parametrices . 57 3.7 Boundedness onCb1.Rn/and Uniqueness of the Symbol . . . 63

3.8 Adjoints of Pseudodifferential Operators and Operators in .x; y/-Form . . . 65

3.9 Boundedness onL2.Rn/andL2-Bessel Potential Spaces . . . 68

3.10 Outlook: Coordinate Transformations and PsDOs on Manifolds . . . . 74

3.11 Final Remarks and Exercises . . . 77

3.11.1 Further Reading . . . 77

3.11.2 Exercises . . . 78

II Singular Integral Operators

4 Translation Invariant Singular Integral Operators 85 4.1 Motivation . . . 85

4.2 Main Result in the Translation Invariant Case . . . 87

4.3 Calderón–Zygmund Decomposition and the Maximal Operator . . . . 91

4.4 Proof of the Main Result in the Translation Invariant Case . . . 95

4.5 Examples of Singular Integral Operators . . . 100

4.6 Mikhlin Multiplier Theorem . . . 107

4.7 Outlook: Hardy spaces and BMO . . . 112

4.8 Final Remarks and Exercises . . . 118

4.8.1 Further Reading . . . 118

4.8.2 Exercises . . . 118

5 Non-Translation Invariant Singular Integral Operators 122 5.1 Motivation . . . 122

5.2 Extension to Non-Translation Invariant and Vector-Valued Singular Integral Operators . . . 124

5.3 Hilbert-Space-Valued Mikhlin Multiplier Theorem . . . 129

(4)

Contents ix

5.4 Kernel Representation of a Pseudodifferential Operator . . . 133

5.5 Consequences of the Kernel Representation . . . 140

5.6 Final Remarks and Exercises . . . 143

5.6.1 Further Reading . . . 143

5.6.2 Exercises . . . 144

III Applications to Function Space and Differential Equations

6 Introduction to Besov and Bessel Potential Spaces 149 6.1 Motivation . . . 149

6.2 A Fourier-Analytic Characterization of Hölder Continuity . . . 150

6.3 Bessel Potential and Besov Spaces – Definitions and Basic Properties 153 6.4 Sobolev Embeddings . . . 160

6.5 Equivalent Norms . . . 162

6.6 Pseudodifferential Operators on Besov Spaces . . . 164

6.7 Final Remarks and Exercises . . . 168

6.7.1 Further Reading . . . 168

6.7.2 Exercises . . . 168

7 Applications to Elliptic and Parabolic Equations 171 7.1 Applications of the Mikhlin Multiplier Theorem . . . 171

7.1.1 Resolvent of the Laplace Operator . . . 171

7.1.2 Spectrum of Multiplier Operators with Homogeneous Symbols 174 7.1.3 Spectrum of a Constant Coefficient Differential Operator . . . 177

7.2 Applications of the Hilbert-Space-Valued Mikhlin Multiplier Theorem 180 7.2.1 Maximal Regularity of Abstract ODEs in Hilbert Spaces . . . . 180

7.2.2 Hilbert-Space Valued Bessel Potential and Sobolev Spaces . . 185

7.3 Applications of Pseudodifferential Operators . . . 186

7.3.1 Elliptic Regularity for Elliptic Pseudodifferential Operators . 186 7.3.2 Resolvents of Parameter-Elliptic Differential Operators . . . 188

7.3.3 Application of Resolvent Estimates to Parabolic Initial Value Problems . . . 193

(5)

x Contents

7.4 Final Remarks and Exercises . . . 194

7.4.1 Further Reading . . . 194

7.4.2 Exercises . . . 195

IV Appendix

A Basic Results from Analysis 199 A.1 Notation and Functions onRn. . . 199

A.2 Lebesgue Integral andLp-Spaces . . . 201

A.3 Linear Operators and Dual Spaces . . . 206

A.4 Bochner Integral and Vector-ValuedLp-Spaces . . . 209

A.5 Fréchet Spaces . . . 212

A.6 Exercises . . . 216

Bibliography 217

Index 221

Referenzen

ÄHNLICHE DOKUMENTE

As it is shown in the following chapters, all of the studied stochastic differential equations are assumed to have nondegenerate noise term, and until now it is not clear whether

Chapter 7 is the final result of this thesis and is the application of Chapter 6, more specifically the stability estimates for anisotropic vector fields, to the Vlasov

Метод сплайн-коллокации для решения двумерного интегрального уравнения с логарифмическим ядром.В настоящем сборике, 18-23.. Численные методы

The classical cryptographic approach is that the sender and the receiver of a message have, in advance, to agree on a cipher: A cipher consists of two functions, an injective function

In our discussions regarding equation (1.1.2) with conditions (1.1.5) for β > 1 , we have to extend our fractional dierentiation and cordial Volterra integral operators.. As it

In many examples, mesocrystals outperform existing materials for the same application and in some cases, really outstanding properties could be achieved like for example the

A further direction of inquiry introduced a polynomial phase to the Carleson oper- ator. Stein asked whether this operator satisfies any L p bounds. The main difficulty in this

We can increase N by increasing the length of the column or decreasing the size of the stationary phase particles. (1.8 µm > 2.7 µm > 3.5 µm > 5 µm >