• Keine Ergebnisse gefunden

Preparative Methods in Inorganic Solid State Chemistry

N/A
N/A
Protected

Academic year: 2022

Aktie "Preparative Methods in Inorganic Solid State Chemistry"

Copied!
98
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Preparative Methods in Inorganic Solid State Chemistry

Lecture series given at the Department of Inorganic

Chemistry at University of Bonn, Germany (winter term 2014)

R. Glaum

Institut für Anorganische Chemie Rheinische Friedrich-Wilhelms-Universität, Bonn (Germany)

http://www.glaum.chemie.uni-bonn.de email: rglaum@uni-bonn.de

(2)

Contents

http://www.glaum.chemie.uni-bonn.de/

1. Basic ideas and problems about solid state reactions 2. Phase diagrams – Reading and understanding

3. Crystal Growth from a melt 4. Crystal Growth from a flux

5. Hydrothermal/solvothermal syntheses

7. Chemical Vapour Transport / Chemical Vapour Deposition

9. Commercial processes 8. Purification of Solids

6. Electrochemical Syntheses

(3)

Reactivity of Solids I.

A. R. West, Solid State Chemistry and ist Applications, Wiley & Sons, 1984.

MgOs + Al2O3,s = MgAl2O4,s interdiffusion layer, thickness x

= k · x –1 dx

dt x = (k' · t) –1/2

parabolic growth

2Al3+ – 3Mg2+ + 4MgOs = MgAl2O4,s

Interface MgO / MgAl2O4:

3Mg2+ – 2Al3+ + 4Al2O3,s = 3 MgAl2O4,s

Interface MgAl2O4,s / Al2O3,s:

Overall reaction:

(4)

Spinel Mg

II

Al

III2

O

4

cubic, a = 8,081 Å; building units: [MgIIO4] and [AlIIIO6]

O2– Al/Cr3+ Mg2+

chromophor [CrO6]

http://www.glaum.chemie.uni-bonn.de/

(5)

M. C. Escher: Fishes to Birds

A. R. West, Solid State Chemistry and ist Applications, Wiley & Sons, 1999.

(6)

Reactivity of Solids II.

A. R. West, Solid State Chemistry and ist Applications, Wiley & Sons, 1984.

NiOs + Al2O3,s = NiAl2O4,s

= k · x –1 dx

dt x = (k' · t) –1/2

parabolic growth

2Al3+ – 3Ni2+ + 4NiOs = NiAl2O4,s

Interface NiO / NiAl2O4:

3Ni2+ – 2Al3+ + 4Al2O3,s = 3 NiAl2O4,s

Interface NiAl2O4,s / Al2O3,s:

Overall reaction:

formation of NiAl2O4,s

x

2

= k'' · t

Wagner mechanism

(7)

Reactivity of Solids III.

A. R. West, Solid State Chemistry and ist Applications, Wiley & Sons, 1984.

Problems:

high activation temperature required for migration (diffusion) of atoms (ions) in a solid

low thermal stability of some reaction products

Solutions:

application of high temperatures („shake and bake“; „heat and beat“; brute force methods)

providing large surface areas and short diffusion paths for a solid state reaction to happen

use of reactive precursor materials

Solid state reactions via more mobile phases (liquid or gas phase: reactions in melts, hydrothermal synthesis, CVT)

(8)

An Example: Synthesis of Na

3

N

M. Jansen, Angew. Chem. 2002, 114, 3897.

Na3N: anti-ReO3 structure type

Problem:

3Nal + 1/2N2,g

Na3Ns

very high activation temperature for the starting materials

low thermal stability of the

reaction product (Tdecomp ≤ 360°C)

Solution:

Intimidly mixed atoms have to be reacted!

Co-condensation of Na- and N-atoms T = 4K, followed by slow heating

(9)

Synthesis of RuSb

3

A. L. E. Smalley, M. L. Jespersen, D. C. Johnson, Inorg. Chem. 2004, 43, 2486.

RuSb3: metastable Skutterudite

Problem:

Rus + 3 Sbs

RuSb3,s high activation temperature for the educts (Rus)

Rus + 3 Sbs

=

RuSb2,s + ¼ Sb4,g

m.p.(Sb) = 631°C; b.p.(Sb)

=

1750°C

RuSb3,s + RuSb2,s + Sbs

(10)

Synthesis of RuSb

3

A. L. E. Smalley, M. L. Jespersen, D. C. Johnson, Inorg. Chem. 2004, 43, 2486.

(11)

Structures of ReO

3

and Skutterudite

Skutterudite: CoAs3 ReO3

http://www.glaum.chemie.uni-bonn.de/

(12)

An example from „real life“ (1)

S.C. Roy, planned Ph. D. thesis, 2014, University of Bonn.

J. J. Moore, H. J. Feng, Prog. Mater. Sciences 1995, 39, 243-273.

Synthesis of CrIII(WVIO2)2(P2O7)(PO4) with high specific surface area ( low-temperature synthesis)

Starting materials: (NH4)6W12O39∙5H2O, 6 Cr(NO3)3∙9H2O, 18(NH4)2HPO4, glycine, HNO3

The concept: formation of a gel (coordination polymer) upon evaporation;

Glycin & Ammonia (fuel) react with HNO3 (oxidant) in a com- bustion reaction; formation of gaseous products and of a non- volatile, amorphous solid

Diffusion barrier: problem and chance in solid state chemistry

(13)

An example from „real life“ (1)

S.C. Roy, planned Ph. D. thesis, 2014, University of Bonn.

Keggin-type compound

2 (NH4)3PW12O40 + „Cr12P34O85 ReO3-type compound

(CrIII0.167WVI0.333PV0.500)O2.500.5 WVOPO4-type compound

(CrIII0.333WVI0.667)OPO4

Complete crystal chemical differentiation

CrIII(WVIO2)2(P2O7)(PO4)

(14)

Keggin-Anion [P(Mo3O10)4]3–

An example from „real life“ (1)

Keggin-type compound 2 (NH4)3PW12O40

+

„Cr12P34O85

S. C. Roy, planned Ph.D. Thesis 2014; P. Armand, D. Granier, A. van der Lee, Acta Crystallogr. 2007, E63, i191.

Close the balance for all components!

Cr12W24P36Ox

(15)

ReO3

ReO2(PO4)

ReVIO3 (a = 3.46 Å)

WVIO3 (a = 3.84 Å)

(CrIII0.167WVI0.333PV0.500)O2.50.5 (a = 3.78 Å) (CrIII0.10VIV0.10WVI0.30PV0.500)O2.50.5 ?

(CrIII0.10VV0.10WVI0.30PV0.500)O2.50O0.050.45 ?

S. C. Roy, planned Ph.D. Thesis 2014; R. Glaum, S. Islam et. al., Z. anorg. allg. Chem. 2013, 639, 2463.

ReO

3

type structures containing phosphate?

(16)

WVOPO4: a = 6.5538(4)Å, b = 5.2237(8)Å, c = 11.1866(8) Å, β = 90.332(7)°

(CrIII0.33WVI0.67)OPO4: a = 6.473(1)Å, b = 5.1569(4) Å, c = 11.049(2) Å, β = 90.11(1)°

Structure of (Cr

III0.33

W

VI0.67

)OPO

4

(CrIII0.33WVI0.67)OPO4:

(CrIII0.20VIV0.20WVI0.60)OPO4 ? (FeIII0.20VIV0.20WVI0.60)OPO4 ?

S. C. Roy, planned Ph.D. Thesis 2014.

(17)

C2/m, Z = 16, a = 37.016(3) Å, b = 12.756(1) Å, c = 9.428(1) Å, β =102.275(9)°

Structure of Cr

III

(W

VI

O

2

)

2

(P

2

O

7

)(PO

4

)

S. C. Roy, planned Ph.D. Thesis 2014.

Homogeneity range for VIII(WVIO2)2(P2O7)(PO4): (W1−xVx)OPO4, 0.33 ≤ x ≤ 0.40

(18)

Gibbs Phase Triangles I.

Gibbs phase triangle for system Ti / P / O

http://www.glaum.chemie.uni-bonn.de/

(19)

Gibbs Phase Triangles II.

A. R. West, Solid State Chemistry and ist Applications, Wiley & Sons, 1984.

Ternary phase diagrams A / B / C showing different

homogeineity regions

(20)

Gibbs Phase Triangles III.

Gibbs phase triangle for system Co / P / O (ϑ = 800°C)

A CoO

B Co3(PO4)2 C Co2P2O7 D Co2P4O12 E CoP4O11 F P4O10 G P4O6 H Co2P

I CoP

J CoP2

K CoP3

II IV

I

V

VI III

Co II :

Co, Co3(PO4)2, Co2P Co IV:

Co2P, Co2P2O7, CoP

http://www.glaum.chemie.uni-bonn.de/

M. Blum, K. Teske, R. Glaum, Z. Anorg. Allg. Chem. 2003, 629, 1709.

(21)

Oxygen Coexistence Pressure I.

K.Teske, H. Ullmann, N. Trofimenko, J. Thermal Anal., 49 ( 1997 ) S.1211-1220

flux control ( 5l / h )

carrier gas : argon + 1000 ppm hydrogen

up stream cell

down stream cell

moisturizer (opt.)

reactor with sample

coulometric / potentiometric determination of p(O2)

(22)

Oxygen Coexistence Pressure II.

Messprinzip

A. R. West, Solid State Chemistry and ist Applications, Wiley & Sons, 1984.

(23)

Oxygen Coexistence Pressure III.

Beispiel : CoIV (Co2P, Co2P2O7, CoP)

0,0008 0,0009 0,0010 0,0011

-24 -22 -20 -18 -16

-24 -22 -20 -18 -16

04. 02. 01

Co4blm1; Auswertung mit I log(p(O 2))(p(O 2)inatm)

1/T [1/K]

log (p(O2))= 29.028 • 1/T + 7.614

http://www.glaum.chemie.uni-bonn.de/

M. Blum, K. Teske, R. Glaum, Z. Anorg. Allg. Chem. 2003, 629, 1709.

(24)

Oxygen Coexistence Pressure IV.

1. What is the decomposition reaction?

2 / 7 Co2P2O7,s = 4 / 7 CoPs + O2,g

2. Thermodynamics :

rHT = (4/7∆fHT(CoPs) + ∆fHT(O2,g)) - 2/7 ∆fHT(Co2P2O7,s)

? ?

Van`t Hoff :

RT K = − ∆RG ln

R S RT

K RHR

∆ +

= ln

http://www.glaum.chemie.uni-bonn.de/

M. Blum, K. Teske, R. Glaum, Z. Anorg. Allg. Chem. 2003, 629, 1709.

(25)

Oxygen Coexistence Pressure V.

29.028 1053

4.567

rH

− = ∆ 7,614 1053

4.567

rS

= ∆

1053 132,6 kcal mol 1

RH

∆ = ⋅

1 1

1053 34,77 cal mol K

rS

∆ = ⋅ ⋅

CoP and Co2P2O7 are solids (a = 1), therefore Kp = p(O2) than follows :

log 4.567 4.567

r T r T

p H S

K T

∆ ∆

= − +

2 1

log (O )p 29.028 7.614

= − ⋅ +T

comparison of coefficients yields:

and eventually:

http://www.glaum.chemie.uni-bonn.de/

M. Blum, K. Teske, R. Glaum, Z. Anorg. Allg. Chem. 2003, 629, 1709.

(26)

26

Cobaltoxide

homogeneity ranges of CoO(s) and Co3O4(s) are not included

CoO(s) melts at higher oxygen pressure, only Co2O3(s) is only badly characterised

Stability ranges of Co(s), CoO(s), and Co3O4(s) as functions of T and p(O2)

P. Schmidt, Thermodynamische Analyse der Existenzbereiche fester Phasen – Prinzipien der Syntheseplanung in der Anorganischen Festkörperchemie, Habilitationsschrift,

TU Dresden, 2007. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1200397971615-40549

(27)

27

Oxygen co-existence pressures for binary systems I.

P. Schmidt, Thermodynamische Analyse der Existenzbereiche fester Phasen – Prinzipien der Syntheseplanung in der Anorganischen Festkörperchemie, Habilitationsschrift,

TU Dresden, 2007. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1200397971615-40549

(28)

28

P. Schmidt, Thermodynamische Analyse der Existenzbereiche fester Phasen – Prinzipien der Syntheseplanung in der Anorganischen Festkörperchemie, Habilitationsschrift,

TU Dresden, 2007. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1200397971615-40549

Oxygen Co-existence pressures for binary systems II.

(29)

29

P. Schmidt, Thermodynamische Analyse der Existenzbereiche fester Phasen – Prinzipien der Syntheseplanung in der Anorganischen Festkörperchemie, Habilitationsschrift,

TU Dresden, 2007. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1200397971615-40549

Oxygen Co-existence pressures for binary systems III.

(30)

30

P. Schmidt, Thermodynamische Analyse der Existenzbereiche fester Phasen – Prinzipien der Syntheseplanung in der Anorganischen Festkörperchemie, Habilitationsschrift,

TU Dresden, 2007. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1200397971615-40549

Oxygen Co-existence pressures for binary systems IV.

(31)

31

Metallo-thermic metal oxide reduction I.

P. Schmidt, Thermodynamische Analyse der Existenzbereiche fester Phasen – Prinzipien der Syntheseplanung in der Anorganischen Festkörperchemie, Habilitationsschrift,

TU Dresden, 2007. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1200397971615-40549

Reduction of Fe2O3(s) by aluminium is no problem!

(32)

32

P. Schmidt, Thermodynamische Analyse der Existenzbereiche fester Phasen – Prinzipien der Syntheseplanung in der Anorganischen Festkörperchemie, Habilitationsschrift,

TU Dresden, 2007. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1200397971615-40549

Reduction of HfO2(s) is impossible by aluminium but works with calcium!

Metallo-thermic metal oxide reduction II.

(33)

33

P. Schmidt, Thermodynamische Analyse der Existenzbereiche fester Phasen – Prinzipien der Syntheseplanung in der Anorganischen Festkörperchemie, Habilitationsschrift,

TU Dresden, 2007. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1200397971615-40549

Ti1-xNbxO2 und Ti1-xSnxO2 sind möglich, Nb1-xSnxO2 nicht!

Mischkristallbildung TiO

2

, NbO

2

, SnO

2

(34)

34

Redox behavior in a ternary system

P. Schmidt, Thermodynamische Analyse der Existenzbereiche fester Phasen – Prinzipien der Syntheseplanung in der Anorganischen Festkörperchemie, Habilitationsschrift,

TU Dresden, 2007. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1200397971615-40549

cobalt(II) titanates(IV) are stabil, the combinations CoIII/TiIII, CoII/TiIII and CoII/TiII are not!

Simplification:

components behave in the ternary system like the binaries!

(35)

35

Redox equilibria between oxides of iron and titanium

P. Schmidt, Thermodynamische Analyse der Existenzbereiche fester Phasen – Prinzipien der Syntheseplanung in der Anorganischen Festkörperchemie, Habilitationsschrift,

TU Dresden, 2007. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1200397971615-40549

Only the combinations FeIII/TiIV and FeII/TiIV are stable!

(36)

36

Redox equilibria between oxides of iron and titanium

P. Schmidt, Thermodynamische Analyse der Existenzbereiche fester Phasen – Prinzipien der Syntheseplanung in der Anorganischen Festkörperchemie, Habilitationsschrift,

TU Dresden, 2007. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1200397971615-40549

p(O2) rises from metallic titanium to iron(II) oxide.

I) II) III) IV)

sollid solutions:

FeIII2TiIV2O7 FeIII2TiIVO5 FeIITiIVO3 FeII2TiIVO4

(37)

37

Redox equilibria in the system Fe / V / O

P. Schmidt, Thermodynamische Analyse der Existenzbereiche fester Phasen – Prinzipien der Syntheseplanung in der Anorganischen Festkörperchemie, Habilitationsschrift,

TU Dresden, 2007. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1200397971615-40549

In ternary oxides the combinations FeII/VIII, FeII,III/VIII, FeII,III/VIII,IV, FeIII/VIV and FeIII/VV are stable!

(38)

Phase Diagrams I.

A. R. West, Solid State Chemistry and ist Applications, Wiley & Sons, 1984.

incongruent melting of AB and various solid solutions

(39)

Phase Diagram MgO – Al

2

O

3

A. R. West, Solid State Chemistry and ist Applications, Wiley & Sons, 1984.

(40)

Crystal Growth Techniques I.

A. R. West, Solid State Chemistry and ist Applications, Wiley & Sons, 1984.

Czochralski Verneuil

pulling direction

heater coil crucible growing

crystal melt

O2 + powder

O2 + H2

flame droplets

growing crystal

crystal support

(e.g.: Al2(SO4)3 + Cr2(SO4)3)

(41)

Verneuil‘s Technique

powder particels melt in the flame of an H2/O2 burner and crystallize on a crystal seedling; ruby and saphire are grown on an industrial scale applying Verneuil‘s technique

W. J. Moore, Der feste Zustand, Vieweg, 1977.

ca. 250 cm

(42)

Synthetische Kristalle

Synthetische Kristalle besitzen die gleiche chemische Zusammensetzung wie natürlich gewachsene.

W. Schumann, „Edle Steine“, BLV Verlagsges. 1993.

(43)

Crystal Growth Techniques II.

A. R. West, Solid State Chemistry and ist Applications, Wiley & Sons, 1984.

Stockbarker Bridgman

zone melting

purification and crystallisation of metals

(44)

Flux Growth Techniques I.

B. R. Pamplin (ed.), Crystal Growth, Pergamon Press, 1975.

Reasons for application of the technique:

1) Desired material does not melt or has very high m.p.

2) Lowering of crystallization temperature

3) Improvement of crystal quality

4) Avoiding non-stoichiometry

(45)

Flux Growth Techniques II.

B. R. Pamplin (ed.), Crystal Growth, Pergamon Press, 1975.

Choice of a flux:

1) High solubility for desired compound

2) High temperature coefficient of solubility

3) No miscibility with the compound to be crystallized

4) Inertness towards dissolved material and crucible

(46)

Flux Growth Techniques III.

B. R. Pamplin (ed.), Crystal Growth, Pergamon Press, 1975.

Selected Examples - Oxides

(47)

Flux Growth Techniques IV.

B. R. Pamplin (ed.), Crystal Growth, Pergamon Press, 1975.

Means of achieving crystallization from fluxed melts:

EF:

temperature gradient

(transport) A,B,C:

slow cooling AD:

evaporation of solvent

Ostwald-Miers-Region

(48)

Flux Growth Techniques V.

B. R. Pamplin (ed.), Crystal Growth, Pergamon Press, 1975.

Temperature profile (pendulum) for seed reduction:

(49)

Flux Growth Techniques VI.

B. R. Pamplin (ed.), Crystal Growth, Pergamon Press, 1975.

Modified flux growth

cfg. zone melting

(50)

Flux Growth Techniques VII.

K.-Th. Wilke, J. Bohm, Kristallzüchtung, DVW 1988.

elements, borides, carbides, pnictides from metallic fluxes

(51)

Hydrothermal Synthesis I.

A. R. West, Solid State Chemistry and ist Applications, Wiley & Sons, 1984.

temperature

volume density liquid

phase

gas phase

two phase

p, T diagram of water

critical point

(52)

Hydrothermal Synthesis II.

A. R. West, Solid State Chemistry and ist Applications, Wiley & Sons, 1984.

p, T diagram of water

constant volume various percen- tages % of filling of an autoclave

(53)

Hydrothermal Synthesis III.

A. R. West, Solid State Chemistry and ist Applications, Wiley & Sons, 1984.

Solubilities under hydrothermal conditions

1a) SiO2 – NaOH 450°C 1b) SiO2 – Na2CO3 450°C 2a) Al2O3 – NaOH 430°C 2b) Al2O3 – Na2CO3 430°C 3) LiGaO2 – NaOH 400°C 4a) ZnO – NaOH 360°C 4b) ZnO – KOH 360°C 5a) ZnS – KOH 450°C 5b) ZnS – KOH 360°C

6) KTa0.65Nb0.35O3 – KOH 650°C

(54)

Hydrothermal Synthesis IV.

A. R. West, Solid State Chemistry and ist Applications, Wiley & Sons, 1984.

Steel autoclaves

(55)

Hydrothermal Synthesis V.

A. R. West, Solid State Chemistry and ist Applications, Wiley & Sons, 1984.

Solubilitiy of SiO2 in water (left) and NaOH (right)

temperature

solubility

250 atm

500 atm 750 atm 1000 atm

0,5n NaOH (80% filling)

(56)

Hydrothermal Synthesis VI.

B. R. Pamplin, Crystal Growth, Pergamon Press, 1975.

(57)

α - β Transition for Quartz

H. Bärnighausen, Commun. Math. Chem. 1984, 9, 139.

Structural relationship

P 62 2 2

α-SiO2 ↔ β-SiO2, TT = 573°C (2nd order) t2

P 32 2 1

(58)

Chemical Vapour Transport I.

http://www.glaum.chemie.uni-bonn.de/

Chemical Vapour Transport: Migration of an otherwise immobile solid in a chemical potential gradient via a mobile phase (gas or liquid)

Migration in a temperature gradient

Cl2,g Fe2O3,s

transport agent

T(source)

T(sink) isothermal transport; short distance transport; mineralisation effects;

hydrothermal syntheses

(59)

Chemical Vapour Transport II.

http://www.glaum.chemie.uni-bonn.de/

Chemical Transport

Physical Transport

(Destillation, Sublimation) without transport agent

direction always from hot to cold (T2 6 T1)

needs a transport agent (but:

autotransport)

migration from hot to cold (T2 6 T1) as well as from cold to hot (T1 6 T2) possible

Applications:

van Arkel / de Boer - Method purification of solids

halogen lamps crystal growth

mineral formation / Geology

Applications:

purification of solids and liquids freeze drying

(60)

Natural Hematite Fe

2

O

3

http://www.glaum.chemie.uni-bonn.de/

(61)

Chemical Vapour Transport III.

http://www.glaum.chemie.uni-bonn.de/

Questions:

Cl2,g Fe2O3,s

transport agent

Fe2O3,s + 3 Cl2,g = 2 FeCl3,g + 3/2 O2,g “transport reaction”

Which solids can be “transported”?

Optimum experimental conditions (TA; T)?

Speed of the migration (deposition); migration rate?

transporting species

FeCl3,g; O2,g

(62)

Chemical Vapour Transport IV.

http://www.glaum.chemie.uni-bonn.de/

Fe2O3,s + 3 Cl2,g = 2 FeCl3,g + 3/2 O2,g “transport reaction”

The migration direction is determined by the sign of the reaction enthalpy of the transport reaction:

endothermic, ∆RHT > 0 Y T2 6 T1

exothermic, ∆RHT < 0 Y T1 6 T2 (Def.: T1 < T2) Examples: Oxides / chlorine

Chlorides, bromides / Al2X6

Si (Ti, Fe and other metals) / iodine

endotheric

exothermic Estimation of the sign of the reaction enthalpy by consideration of bond energies of educts and products

Thermodynamics

(63)

Chemical Vapour Transport V.

http://www.glaum.chemie.uni-bonn.de/

Fe2O3,s + 3 Cl2,g = 2 FeCl3,g + 3/2 O2,g “transport reaction”

“transport equilibrium”

K P FeCl P O

P = 2 P Cl3 3 2 2

3

2

( ) ( )

( )

/

(favorable: KP . 1; ∆RG . 0)

log ( )

, ,

K T H

T

S

P

R T R T

= − ∆ ⋅ + ∆

4 567 4 567

Gibbs-Helmholtz-equation

RGT = ∆ RHT − ⋅TRST

(selection of T) van t’Hoff-equation

Thermodynamics

(64)

Chemical Vapour Transport VI.

http://www.glaum.chemie.uni-bonn.de/

Experimental setting and definitions

ABK

ampoule dimensions: l . 11cm; q . 2,0 cm2; V . 22 cm3 V(source) : V(sink) . 2 : 1

Diffusion length s: 8 - 10 cm

SBK T(source)

T(sink) V(source)

V(sink)

(65)

Chemical Vapour Transport VII.

http://www.glaum.chemie.uni-bonn.de/

Calculation of partial pressures for CVT of Fe2O3,s using chlorine:

Fe2O3,s + 3 Cl2,g = 2 FeCl3,g + 3/2 O2,g

K P FeCl P O

P = 2 P Cl33 2 2

3

2

( ) ( )

( )

/

P(Cl2)T1, T2; P(FeCl3)T1, T2; P(O2)T1, T2; ΣPT1, T2 (8 unknown)

P FeCl( 3) = 43 P O( 2 )

(2 Gl.) (2 Gl.)

Σ PT1, T2 = P(Cl2)T1, T2 + P(FeCl3)T1, T2 + P(O2)T1, T2 n°(Cl2) = [(VT1/RT1)(P(Cl2)T1 + 3/2 P(FeCl3)T1]

+ [(VT2/RT2)(P(Cl2)T2 + 3/2 P(FeCl3)T2] (2 Gl.) Σ PT1 = Σ PT2

(66)

Chemical Vapour Transport VIII.

http://www.glaum.chemie.uni-bonn.de/

Partial pressure calculation for CVT of Fe2O3,s using chlorine:

Fe2O3,s + 3 Cl2,g = 2 FeCl3,g + 3/2 O2,g P(Cl2)T1, T2; P(FeCl3)T1, T2; P(O2)T1, T2; ΣPT1, T2 (8 unknown pressures)

2 x -60,6

Exp. conditions: V = 22cm3; V(source) : V(sink) = 2 : 1

P°(Cl2) = 1 atm bei 298 K; n° = 0,982 mmol

3/2 x 0,0 3 x 0,0

-196,8

2 x 82,2 3/2 x 49,0 3 x 53,3

20,9

RH298 = 75,6 [kcal / mol]

RS298 = 57,1 [cal / mol@K]

(67)

Chemical Vapour Transport IX.

http://www.glaum.chemie.uni-bonn.de/

Partial pressures as a function of temperature:

Ptotal P(Cl2) P(FeCl3) P(O2)

T(source) T(sink)

(68)

Chemical Vapour Transport X.

http://www.glaum.chemie.uni-bonn.de/

Prerequisit for the application of the diffusion model:

Diffusion between source and sink is the rate determining step of the whole migration/deposition process

migration / deposition:

(mechanism)

1.) Reaction of ABK with transport agent 2.) evaporation of volatile species

(1. phase transfer reaction)

3.) “migration” from source to sink 4.) seed formation

5.) Crystal growth

(2. phase transfer reaction)

(69)

Chemical Vapour Transport XI.

http://www.glaum.chemie.uni-bonn.de/

Transport formula derived by Harald Schäfer

 , [ ]

,

n i

j

P P

T q

s D mol

A

= ⋅

C

⋅ ⋅

⋅ ⋅ ⋅

∆ Σ

0 8

0

1 8 10

3

nA i, j Pc ΣP T q s D0

Mole transported solid stoichiometric coefficients

partial pressure difference [atm]

total pressure[atm]

average temperature of diffusion path [K]

cross section of diffusion path [cm2] length of diffusion path [cm]

mean diffusion coefficient; 0,1 [cm2@sec-1]

(70)

Transport of Metals I.

http://www.glaum.chemie.uni-bonn.de/

Zrs + 4 Ig = ZrI4,g; 280 1450°C Purification of Zirconium following van Arkel / de Boer:

(similarly: Ni, Cu, Fe, Cr, Si, Ti, Hf, Th, V, Nb, Ta, U) Mos + 5/2 Cl2,g (5 Clg) = MoCl5,g; 400 1400°C

Ws + 3 Cl2,g (6 Clg) = WCl6,g; 400 1400°C

Nis + 4 COg = Ni(CO)4,g; 80 200°C Purification of Nickel using the Mond-process:

(thermal stability of halogenide)

(vgl. H. Schäfer, Chemische Transportreaktionen, Verlag Chemie (1962))

(71)

Transport of Metals II.

http://www.glaum.chemie.uni-bonn.de/

e. g.: Ms + 2 Clg = MCl2,g; 800 1000°C

Transport of Fe and Ni using halogens (exothermic):

thermal instability of halides, e. g.:

Rhs + 3/2 Cl2,g = RhCl3,g(s) (Y no transport) Transport of noble metals:

(vgl. H. Schäfer et al., Z. anorg. allg. Chemie 286 (1956) 42.)

Transport of Fe and Ni using hydrogen halides (endothermic):

e. g.: Ms + 2 HClg = MCl2,g + 2 H2,g; 1000 800°C

(vgl. H. Schäfer et al., Z. anorg. allg. Chemie 414 (1975) 137.)

increased volatility of halides by gas complex formation, e. g.:

Rhs + 3/2 Cl2,g + Al2Cl6,g = RhAl2Cl9,g; 600 800°C

(72)

Transport of Oxides I.

http://www.glaum.chemie.uni-bonn.de/

Fe2O3,s + 3 Cl2,g = 2 FeCl3,g + 3/2 O2,g; 1000 900°C Chlorine as transport agent:

Problem: a) frequently unfavourabel equilibria; b) transport of lower (stronly reducing oxides) is impossible Y Oxidation

TiO2,s + 2 Cl2,g = TiCl4,g + 2 O2,g; 900 800°C

MoO3,s + Cl2,g = MoO2Cl2,g + 1/2 O2,g; 900 800°C

Nb2O5,s + 3 Cl2,g = 2 NbOCl3,g + 3/2 O2,g; 1000 900°C

Solution: avoiding “free” oxygen; using non-oxidising transport agents (HCl, TeCl4, TaCl5, PI3)

(73)

Transport of Oxides II.

http://www.glaum.chemie.uni-bonn.de/

Fe2O3,s + 6 HClg = 2 FeCl3,g + 3 H2Og; 900 800°C Non-oxidising transport agents:

Problems: occuring of solid (condensed) binary (halides) and ternary (tantalates; phosphates) phases

Ti3O5,s + 12 HClg = 3 TiCl4,g + 5 H2Og + H2,g; 900 800°C MoO3,s + TeCl4,g = MoO2Cl2,g + TeOCl2,g; 900 800°C

Ta2O5,s + 3 TaCl5,g = 5 TaOCl3,g; 1000 900°C 3 TiO2,s + 4 PI3,g = 3 TiI4,g + P4O6,g; 900 800°C

(74)

Transport of Complex Oxides I.

http://www.glaum.chemie.uni-bonn.de/

CoNb2O6,s + 5/2 Cl2,g = CoCl2,g + NbOCl3,g + 5/2 O2,g Transport behaviour similar to binary components:

lower solubility generally means lower solubility difference (lower migration rate)

(Co1-xZnx)Os + Cl2,g = (1-x) CoCl2,g + x ZnCl2,g + 1/2 O2,g Stabilisation of binary componenten by formation of the ternary

phase leeds to lower solubility in the gas phase of the ternary phase in comparison to the binary phases.

NiTiO3,s + 3 Cl2,g = NiCl2,g + TiCl4,g + 3/2 O2,g

(75)

Transport of Complex Oxides II.

http://www.glaum.chemie.uni-bonn.de/

ZnSO4,s + Cl2,g = ZnCl2,g + SO2,g + 1/2 O2,g Chemical Vapour Transport of anhydrous sulfates:

Fe2(SO4)3,s + 3 Cl2,g = 2 FeCl3,g + 3 SO3,g + 3/2 O2,g Fe2(SO4)3,s + 3 Cl2,g = 2 FeCl3,g + 3 SO2,g + 3 O2,g FeSO4,s + 2 HClg = FeCl3,g + SO2,g + H2Og + O2,g

(formation of Fe2O3,s)

NiSO4,s + Cl2,g = NiCl2,g + SO3,g + 1/2 O2,g Al2(SO4)3,s + 3 SOCl2,g = 2 AlCl3,g + 6 SO2,g

2 VO(SO4)s + 3 Cl2,g = 2 VOCl3,g + 2 SO3,g + O2,g

NiSO4,s + PbCl2,g = PbSO4,s + 2 NiOs + SO2,g + Cl2,g

(76)

Transport of Halides I.

http://www.glaum.chemie.uni-bonn.de/

Caveat: migration in a temperature gradient frequently must be regarded as distillation or sublimation!

CrCl3,s + 1/2 Cl2,g = CrCl4,g; 800 700°C MoBr3,s + MoBr5,g = 2 MoBr4,g; 475 250°C

Transport via higher halogenides (TR accompanied by oxidation):

(vgl. H. Schäfer, Z. anorg. allg. Chemie 414 (1975) 137.)

MoBr2,s + HgBr2,g = MoBr4,g; 1000 900°C

2 AlCl3,g = Al2Cl6,g

Transport via formation of gaseous complexes using AlCl3, AlI3, FeCl3 as complexing agent:

DimH298 = -30,1 [kcal / mol]; ∆DimS298 = -36,9 [cal / mol@K]

(77)

Transport of Halides II.

http://www.glaum.chemie.uni-bonn.de/

Dissoziation behaviour of Al2Cl6,g

(compare also dimerisation of CoCl2,g and other halides)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

400 600 800 1000 1200 1400 1600

temperature [K]

Al2Cl6,g AlCl3,g

(78)

Transport of Halides III.

http://www.glaum.chemie.uni-bonn.de/

(79)

Transport of Halides IV.

http://www.glaum.chemie.uni-bonn.de/

Examples (synthesis of crystaline, anhydrous halogenides):

2 CrCl3,s + 3 Al2Cl6,g = 2 CrAl3Cl12,g

CoBr2,s + Al2Br6,g = CoAl2Br8,g; 400 300°C

( H. Schäfer et al., J. Less-Common Met. 61 (1978) 47.)

But:

CrCl2,s + Al2Cl6,g = CrAl2Cl8,g; 450 350°C

Pt (excess) + Br2,s + Al2Br6,g Y PtBr3,g; 400 350°C

Pd (excess) + I2,s + Al2I6,g Y Pd2Als + I2,g; T: 350 - 600°C Transport of Pd2Als: 375 600°C

( H. Schäfer, Angew. Chemie 88 (1976) 775.)

(80)

How to get metastable Solids?

When is a compound „stable“?

Synthetic pathways to metastable solids?

(81)

Zeolithe M

x/n

[(AlO

2

)

x

(SiO

2

)

y

]·mH

2

O

(82)

Zeolithe M

x/n

[(AlO

2

)

x

(SiO

2

)

y

]·mH

2

O

(83)

Zeolithe M

x/n

[(AlO

2

)

x

(SiO

2

)

y

]·mH

2

O

(84)

[TO 4 ]-Gruppen als Bausteine

Linde A Ultramarin

Linde X/Y, Faujasit

Na2Ca[Al4Si10O28]·20H2O 4

Sodalith β-Käfig

(85)

Ein molekularer Baukasten

(86)

Ein molekularer Baukasten

(87)

Löcher mit SiO 2 drumherum

Linde A Linde X/Y, Faujasit

Na2Ca[Al4Si10O28]·20H2O Sodalith

Zeolithe besitzen Hohlräume, in die Moleküle oder Ionen eingelagert werden können.

(88)

Synthese von Zeolithen

SiO

2

haltige Verbindungen

z.B. Wassergläser, Kieselsole

+ Natronlauge, Temperatur > 50°C, hydrothermale Reaktionsbedingungen

Zeolith

Al

2

O

3

haltige Verbindungen

z.B. Aluminiumhydoxide, Aluminate, Kaoline

(89)

Anwendungen von Zeolithen

Eigenschaft Anwendung

Adsorption Isolierglas

Kühlmittel

Dynamische Adsorption Trocknung und Reinigung von Erdgas, Spaltgas; Luftzerlegung

Trenneigenschaften Alkane / Isoalkane Trennung,

Ionenaustausch Waschmittel, Abwasserreinigung

Katalyse Fließbettcracken, Hydrocracken,

Methanolumwandlung

(90)

Phosphates with Open Framework Structures

A. K. Cheetham, G. Férey, T. Loiseau, Angew. Chem. 1999,111, 3466-3492.

VPI-5 (AlPO4)

M. E. Davis et al., Nature 1988,331, 698.

~13 Å

Precipitation in

the presence of

a structure dir-

ecting reagent

(91)

Phosphates with Open Framework Structures

A. K. Cheetham et al., Chem. Commun. 2001, 859-860.

VSB-1 [Ni18(HPO4)14(OH)3F9(H3O/NH4)4 • 12 H2O

Effective catalyst for dehydrocyclodimerization of butadien!

Limited thermal stability of open framework

structures!

(92)

Hydrothermal Synthesis of M

2

(H

2

P

2

O

7

)

2

M. Blum, unpublished results, Univ. of Bonn, 2004.

H. Thauern, Diploma Thesis, Univ. of Bonn, 2002.

M2(H2P2O7)2 = M2P4O12 + 2 H2O (M = Ni, Zn) 2 M2(H2P2O7)2 = M(PO3)2 + 2 H2O (M = Zn)

(93)

Various Forms of FePO 4

Y. Song, P. Y. Zavalij, M. Suzuki, M. S. Whittingham, Inorg. Chem. 2002, 41, 5778-5786.

Starting from FePO

4

• 2 H

2

O:

monoclinic and orthorhombic FePO

4

[FeO

6

]

[FeO

4

]

a

c c

b c

b

c

b

(94)

94

Aufbau eines Li-Ionen Akkumulators

M. Wohlfahrt-Mehrens, Zentrum für Sonnenenergie- und Wasserstoff-Forschung, Ulm.

Laden Entladen

Flüssige od. feste (Polymer) Elektrolyte

Alternative Elektroden- materialien?

z.B.: LiFeIIPO4

Aufgeladen: CoIVO2 und LiC6 Entladen: LiCoIIIO2 und C6

Alternative Elektrolyte?

94

(95)

Various Forms of FePO 4

A.S. Anderson, B. Kalska, L. Haggstrom, J. O. Thomas, Solid State Ionics 2000, 130, 41-52.

Delithiation of LiFePO

4

(Olivine):

preservation of the kinetically stable network structure

a

b

mineralogy:

(Fe1-xMnx)PO4 from Li(Fe1-xMnx)PO4

new compounds:

V2(PO4)3 from Li3V2(PO4)3

Lithium batteries;

electrode materials

Referenzen

ÄHNLICHE DOKUMENTE

1.10 Basic structures of binary solids derived from sphere packings by a systematic filling of tetrahedral and/or

First calculate the lattice enthalpy for CaCl from the Born Haber cycle and make a guess about the sublimation and ionization enthalpy for Ca on the basis of the values given in

7.) KMnF 3 crystallizes in the cubic Perovskite structure with a lattice constant of 420 pm. Sketch the structure and calculate the shortest interatomic distances Mn-F, K-F,

Describe some thermodynamical aspects of the first steps of seed formation in the course of a solid state reaction between MgO and Al 2 O 3.. Describe the possible reaction

4.3 Diffraction of X-rays or neutrons at a crystalline sample (single crystal or crystal powder). Spacing d (hkl)

Whereas mutual solubility of LiI and Mnl2 is negligible at any temperature deficient NaCl-type mixed crystals Lit_xM[~.nxI (MIX= Mn, Cd, Pb) are formed at temper- ature above 540

Herein we report the crystal structures and spectro- scopic properties of the products, the calculation of Raman frequen- cies by DFT methods in the crystalline phase, their

If the switch is open, GRAPHICS is high and the character generator output is going into output shift register UB.. This controls the VIDEO REVERSE signal thru