• Keine Ergebnisse gefunden

Assessment of Single Crystal X-ray Diffraction Data Quality

N/A
N/A
Protected

Academic year: 2022

Aktie "Assessment of Single Crystal X-ray Diffraction Data Quality"

Copied!
188
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)
(2)
(3)
(4)
(5)
(6)

𝟏̅

𝟏̅

(7)
(8)
(9)

⋅ ⋅ ⋅

𝜆 =ℎ 𝑝

𝑝 = [ℎ 2𝜋] 𝒌𝑖

|Δ𝒌| = 𝑛 ⋅ 𝜆, 𝑛 ∈ ℤ

𝐚 ⋅ Δ𝒌 = |𝐚| ⋅ |Δ𝒌| ⋅ 𝑐𝑜𝑠(𝐚, Δ𝒌) = ℎ 𝐛 ⋅ Δ𝒌 = |𝐛| ⋅ |Δ𝒌| ⋅ 𝑐𝑜𝑠(𝐛, Δ𝒌) = 𝑘 𝐜 ⋅ Δ𝒌 = |𝐜| ⋅ |Δ𝒌| ⋅ 𝑐𝑜𝑠(𝐜, Δ𝒌) = 𝑙

𝐚=𝒃 × 𝒄

𝑉 , 𝐛=𝒂 × 𝒄

𝑉 , 𝐜=𝒂 × 𝒃

𝑉 , 𝑉 = (𝒂 × 𝒃) ⋅ 𝒄

⋅ ⋅ ⋅

Δ𝒌 = 𝑲

(10)

2𝑑 sin 𝜃 = 𝑛𝜆, 𝑛 ∈ ℤ

𝐹(ℎ𝑘𝑙) = ∫ 𝜌(𝒓) exp{2𝜋𝑖(ℎ𝒂+ 𝑘𝒃+ 𝑙𝒄)𝒓}𝑑𝒓

𝑉

(11)

𝜌(𝒓) =1

𝑉∑ ∑ ∑ 𝐹(ℎ𝑘𝑙) exp{−2𝜋𝑖(ℎ𝒂+ 𝑘𝒃+ 𝑙𝒄)}

𝑙 𝑘

𝐹ℎ𝑘𝑙

𝑓𝑗 = ∫ 𝜌(𝒓𝑗) ⋅ exp(2𝜋𝑖𝒔 ⋅ 𝒓𝑗) 𝑑𝒓𝑗

𝑓0(sin 𝜃/𝜆) = ∑ 𝑎𝑖

4

𝑖=1

⋅ exp(−𝑏𝑖(𝑠𝑖𝑛𝜃/𝜆)2) + 𝑐

𝑓(𝜃, 𝜆) = 𝑓0(𝜃) + Δ𝑓(𝜆) + 𝑖Δ𝑓′′(𝜆)

(12)

𝐹(ℎ𝑘𝑙) = ∑ 𝑓𝑗

𝑗

⋅ exp (2𝜋𝑖(ℎ𝑥𝑗+ 𝑘𝑦𝑗+ 𝑙𝑧𝑗)) ⋅ exp(−2𝜋2𝑈(𝜃))

𝑈 = 𝑈112𝒂∗2+ 𝑈22𝑘2𝒃∗2+ 𝑈33𝑙2𝒄∗2+ 2𝑈23𝑘𝑙𝒃𝒄+ 2𝑈13ℎ𝑙𝒂𝒄+ 2𝑈12ℎ𝑘𝒂𝒃

| ( )|

𝜌(𝒓) =1

𝑉∑ ∑ ∑|𝐹(ℎ𝑘𝑙)| exp(−2𝜋𝑖(ℎ𝑥 + 𝑘𝑦 + 𝑙𝑧 − 𝛼ℎ𝑘𝑙))

𝑙 𝑘

(13)

⋅ ( )⋅ ( )⋅ ( ) Eq. 1-20

(14)

( ) [ ⋅ ( ) ] ( ⋅〈 〉) Eq. 1-21

(15)

𝑅𝑚𝑒𝑟𝑔𝑒=∑ ∑ |𝐹 𝑖 𝑜,𝑖2 (ℎ) − 〈𝐹𝑜2(ℎ)〉|

∑ 𝐹 𝑜2(ℎ)

𝑅𝑠𝑖𝑔𝑚𝑎=∑ 𝜎(𝐹 𝑜2(ℎ))

∑ 𝐹 𝑜2(ℎ)

𝑅𝑟.𝑖.𝑚. =∑ ( 𝑁 𝑁 − 1)

ℎ𝑘𝑙 ∑ |𝐹𝑁𝑖 𝑜,𝑖2(ℎ𝑘𝑙) − 〈𝐹𝑜2(ℎ𝑘𝑙)〉|

∑ ∑ 𝐹 𝑁𝑖 𝑜,𝑖2 (ℎ𝑘𝑙)

𝑅𝑝.𝑖.𝑚.=∑ ( 1 𝑁 − 1)

ℎ𝑘𝑙 ∑ |𝐹𝑁𝑖 𝑜,𝑖2 (ℎ𝑘𝑙) − 〈𝐹𝑜2(ℎ𝑘𝑙)〉|

∑ ∑ 𝐹 𝑁𝑖 𝑜,𝑖2 (ℎ𝑘𝑙)

(16)

𝑅1 =∑ℎ𝑘𝑙||𝐹𝑜(ℎ𝑘𝑙)| − |𝐹𝑐(ℎ𝑘𝑙)||

ℎ𝑘𝑙|𝐹𝑜(ℎ𝑘𝑙)|

𝑤𝑅2 = √∑ℎ𝑘𝑙𝑤{𝐹𝑜2(ℎ𝑘𝑙) − 𝐹𝑐2(ℎ𝑘𝑙)}2

ℎ𝑘𝑙𝑤{𝐹𝑜2(ℎ𝑘𝑙)}2 𝑤 = 1 [𝜎⁄ 2(𝐹𝑜2) + (𝑎𝑃)2+ 𝑏𝑃]

𝑃 = [2

3⋅ 𝐹𝑐2+1

3⋅ max(𝐹𝑜2, 0)]

𝐺𝑜𝑜𝐹 = √∑ℎ𝑘𝑙𝑤{𝐹𝑜2(ℎ𝑘𝑙) − 𝐹𝑐2(ℎ𝑘𝑙)}2 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 − 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

(17)

𝑒𝑔𝑟𝑜𝑠𝑠=1

2∫ |𝜌0(𝒓)|𝑑3𝑟

𝑉

df(0)

ρ(d=2)

(18)

( ∑ 𝐹𝑜2⁄∑ 𝐹𝑐2< 1)

(Fo

2)/(F

c2)

(19)
(20)

𝜌(𝑟) = 𝑃𝑐𝑜𝑟𝑒𝜌𝑐𝑜𝑟𝑒(𝑟) + 𝑃𝑣𝑎𝑙𝜅3𝜌𝑣𝑎𝑙(𝜅, 𝑟) + ∑ 𝜅𝑙′3

𝑙𝑚𝑎𝑥

𝑙=0

𝑅𝑙(𝜅𝑙, 𝑟) ∑ 𝑃𝑙𝑚±𝑑𝑙𝑚±(Ω)

𝑙

𝑚=0

𝜅𝑙

𝑅𝑙(𝜅𝑙, 𝑟) = (𝜅𝑙 𝛼𝑙)3 (𝜅𝑙 𝛼𝑙 𝑟)

[𝑛(𝑙) + 2]!exp(−𝜅𝑙 𝛼𝑙 𝑟)

𝜅𝑙

𝜅𝑙

(21)
(22)
(23)

∇ ∇𝜌

∇ρ(r) = 0, a point of zero-flux. These points are characterised by the rank m (number of non-zero eigenvalues) and the signature n (algebraic sum of the sign of the eigenvalues) of the corresponding Hessian Matrix H(r). The Hessian is the partial second derivative of the spatial coordinates x, y, z at the point r.

2

𝐻(𝒓) =

(

𝜕2𝜌

𝜕𝑥2

𝜕2𝜌

𝜕𝑥𝜕𝑦

𝜕2𝜌

𝜕𝑥𝜕𝑧

𝜕2𝜌

𝜕𝑦𝜕𝑥

𝜕2𝜌

𝜕𝑦2

𝜕2𝜌

𝜕𝑦𝜕𝑧

𝜕2𝜌

𝜕𝑧𝜕𝑥

𝜕2𝜌

𝜕𝑧𝜕𝑦

𝜕2𝜌

𝜕𝑧2 )

𝑛𝑎𝑝− 𝑛𝑏𝑐𝑝+ 𝑛𝑟𝑐𝑝− 𝑛𝑐𝑐𝑝= 1

(24)

∇𝜌(𝐫) ⋅ 𝐧(𝐫) = 0 ∀ 𝐫 ∈ surface 𝑆(𝐫)

∇𝜌(𝐫) n(r) r

22

2𝑉(𝒓) = −4𝜋(𝜌𝑛𝑢𝑐𝑙𝑒𝑎𝑟(𝒓) − 𝜌(𝒓))

𝑉(𝒓) = ∫(𝜌𝑛𝑢𝑐𝑙𝑒𝑎𝑟(𝒓) − 𝜌(𝒓))

|𝒓− 𝒓| 𝑑3𝒓

𝑉(𝒓) = ∑ 𝑍𝑖

|𝑹𝒊− 𝒓|

𝑁

𝑖=1

− ∫ 𝜌(𝒓)

|𝒓− 𝒓|𝑑3𝒓

(25)

𝐸𝑡𝑜𝑡= 𝐸𝑒𝑠+ 𝐸𝑖𝑛𝑑+ 𝐸𝑑𝑖𝑠𝑝+ 𝐸𝑒𝑥−𝑟𝑒𝑝

𝐸𝑒𝑠 = ∑ ∑𝑍𝑎𝑍𝑏 𝑟𝑎𝑏 𝑏∈𝐵 𝑎∈𝐴

+ ∫ 𝜌𝐴(𝒓𝐴)𝑉𝐴𝑛𝑢𝑐

𝐴

𝑑𝒓𝐴+ ∫ 𝜌𝐵(𝒓𝐵)𝑉𝐵𝑛𝑢𝑐

𝐵

𝑑𝒓𝐵

+ ∫ ∫𝜌𝐴(𝒓𝐴)𝜌𝐵(𝒓𝐵)

|𝒓𝐴− 𝒓𝐵|

𝐵 𝐴

𝑑𝒓𝐴𝑑𝒓𝐵 𝑉𝐴𝑛𝑢𝑐 𝑉𝐵𝑛𝑢𝑐

⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ HC

𝑠(𝒓) = |∇𝜌(𝒓)|

2(3𝜋2)1 3 𝜌(𝒓)4 3

(26)

𝐸𝑡𝑜𝑡 = 𝐸𝑒𝑠+ 𝐸𝑖𝑛𝑑+ 𝐸𝑑𝑖𝑠𝑝+ 𝐸𝑒𝑥−𝑟𝑒𝑝

(27)
(28)
(29)
(30)
(31)

̅

(32)

×

(33)

〈 〉

(34)

〈 〉

(35)

𝑁∑(𝐼 −𝐼〉)2/(𝑁 − 1) ∑𝜎2(𝐼)〉

(36)

〈 〉

#

(37)

(38)
(39)
(40)

〈 〉

(41)

ℎ𝑘𝑙

( ) 𝑤 =

( ) ( ( ))

(42)

[𝐹𝑐𝑎𝑙𝑐2 (3ℎ 3𝑘 3𝑙)]= (1 − 𝑘𝑡𝑤𝑖𝑛)𝐹𝑐𝑎𝑙𝑐2 (3ℎ 3𝑘 3𝑙) + 𝑘𝑡𝑤𝑖𝑛𝐹𝑐𝑎𝑙𝑐2 (ℎ𝑘𝑙)

𝑘𝑡𝑤𝑖𝑛

Test crystals.

̅

(43)
(44)

filtered

( )

〈 〉

( )

(45)

.

𝐾 = 〈 〉 〈 〉

(46)

2

3

4

5

(47)

× 1 ×

(48)
(49)
(50)
(51)
(52)
(53)

(54)
(55)
(56)
(57)

-∇

-∇

df(0)

ρ(d=2)

(58)

(59)
(60)

( )

( )

(61)

𝑅𝑐𝑟𝑜𝑠𝑠=∑ ∑ |𝐹𝑘 𝑛 𝑜2− 𝐹𝑐2|

∑ ∑ 𝐹𝑘 𝑛 𝑜2

(62)

( )

(63)

(64)

𝑘−1 𝑘 ⋅ 𝑁

ϵ

(65)

(66)

(67)

(68)

(69)
(70)

(71)

∇

 (| | )

 

(72)

 ∇

 

(73)

(74)
(75)
(76)

(77)
(78)
(79)
(80)
(81)

⋅⋅⋅

(82)
(83)

̅

̅

̅

̅

(84)

̅

̅

̅

̅

̅

(85)

(86)
(87)
(88)
(89)

⋅⋅⋅

⋅⋅⋅

⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅

⋅⋅⋅

(90)

2ρ(r)

2

(91)
(92)
(93)

⋅⋅⋅

(94)

(95)

⋅⋅⋅ π is present that spans the crystal

1̅ 1̅

1̅]

1̅]

(96)
(97)
(98)

(99)

(100)

(101)

(102)
(103)

(104)

(105)

(106)
(107)
(108)

(109)
(110)
(111)
(112)
(113)

⋅⋅⋅ .

(114)

∑ 𝐹𝑜2/ ∑ 𝐹𝑐2

(115)
(116)
(117)
(118)

𝟏̅

0.12 ⋅ ⋅ 0.09

(119)

0.09 ⋅ ⋅ 0.08

(120)

𝟏̅

0.10 ⋅ ⋅ 0.07

(121)

(122)

(123)

(124)

0.11 ⋅ 0.10 ⋅ 0.09

(125)

(126)

0.122⋅0.115⋅0.104

(127)

(128)

̅

(129)

(130)
(131)
(132)
(133)
(134)
(135)
(136)
(137)
(138)
(139)

1

Ag Mo

2

Ag Mo

(140)

3

Ag Mo

4

Ag Mo

(141)

5

Ag Mo

6

Ag Mo

(142)

7

Ag Mo

𝑁(1) − 𝐶(1) [Å]

𝑒𝑔𝑟𝑜𝑠𝑠 [𝑒]

𝑑𝑓(𝜌0) 𝜌𝑚𝑖𝑛(𝑑 = 2) [𝑒Å−3] 𝜌𝑚𝑎𝑥(𝑑 = 2) [𝑒Å−3]

(143)

(144)

1

2

(145)

3

4

(146)

5

6 (IµS)

(147)

6 (TXS)

(148)

𝑘𝑡𝑤𝑖𝑛

(149)

𝑘𝑡𝑤𝑖𝑛

(150)

𝑘𝑡𝑤𝑖𝑛

(151)

𝑘𝑡𝑤𝑖𝑛

(152)

𝑘𝑡𝑤𝑖𝑛

(153)

𝑘3

(154)
(155)
(156)
(157)

𝚫(𝑪 − 𝑪) 𝑹𝟏 𝒌

(158)

(159)

(160)
(161)

(162)
(163)
(164)
(165)
(166)

(167)
(168)
(169)
(170)
(171)
(172)
(173)
(174)
(175)

Int en si ty

(176)

(177)
(178)
(179)
(180)

∑ 𝐹𝑜2/ ∑ 𝐹𝑐2

(181)
(182)
(183)
(184)
(185)
(186)
(187)
(188)

Referenzen

ÄHNLICHE DOKUMENTE

To quantify the eye volume, a package of commercial image processing software (Disect Systems Ltd., UK) was applied to analyse the data received by the detected density

1) Mixing, the feed material for the melting process will comprise magnesia raw material and recyclable material. 2) Melting: Starting phase and fusion of magnesia raw material. 3)

A type of matrices used often in statistics are called positive semi- definite (PSD).. The eigen-decomposition of such matrices always exists, and has a particularly

For the scalar Sturm–Liouville prob- lems, there is an enormous literature on estimates of large eigenvalues and regularized trace formulae which may often be computed explicitly

From the combination of quantitative electron-diffraction data with X-ray- and neutron-diffraction data (so-called three-beam experiment) the partial structure factors and

Two equivalent ferri-pyochelin moieties are held together by a hydroxy and an acetate unit which satisfy the remaining two coordination sites ofFe 3+. Key words: Pyochelin,

(1997), Probing of Pseudomonas aerugi- nosa, Pseudomonas aureofaciens, Burkholderia (Pseu- domonas) cepacia, Pseudomonas fluorescens, and Pseudomonas cepacia with the ferripyochelin

Since the point group of the crystals is 2/m, and the three rotation patterns in the planes perpendicular to the rs-plane can be mirrored at the twofold axis b, the sign ambiguity