• Keine Ergebnisse gefunden

The Number of Vector Partitions of n with the Crank m

N/A
N/A
Protected

Academic year: 2022

Aktie "The Number of Vector Partitions of n with the Crank m"

Copied!
16
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Munich Personal RePEc Archive

The Number of Vector Partitions of n with the Crank m

Das, Sabuj and Mohajan, Haradhan

Assistant Professor, Premier University, Chittagong, Bangladesh.

10 July 2014

Online at https://mpra.ub.uni-muenchen.de/83697/

MPRA Paper No. 83697, posted 09 Jan 2018 05:11 UTC

(2)

1

The Number of Vector Partitions of n with the Crank m

Sabuj Das

Senior Lecturer, Department of Mathematics.

Raozan University College, Bangladesh.

Email: sabujdas.ctg@gmail.com

Haradhan Kumar Mohajan

Premier University, Chittagong, Bangladesh Email: haradhan_km@yahoo.com

Abstract

This article shows how to find all vector partitions of any positive integral values of n, but only all vector partitions of 4, 5, and 6 are shown by algebraically. These must be satisfied by the definitions of crank of vector partitions.

Keywords: Vector partitions, Crank, Congruences, Modulo.

International Journal of Reciprocal Symmetry and Theoretical Physics, Vol. 1, No. 2, 2014: 91-105.

1. Introduction

Here we discuss such a crank which in terms of a weighted count of what we call vector partitions. We give the definitions of , #

 

 , 

 

 , crank of vector partitions, weight of , NV

 

m,n , NV

m,t,n

and prove the partitions congruences moduli 5, 7 and 11 with the help of examples by finding all vector partitions of 4, 5 and 6, respectively. We analyze the generating functions for NV

 

m,n and NV

m,t,n

.

2. Definitions

 : A partition.

 

# : The number of parts of .

 

 : The sum of the parts of .

(3)

2

Crank of vector partitions: The number of parts of 2 minus the number of parts of 3, where 2 and 3 are unrestricted partitions in a vector partition 

1,2,3

of n, if the sum of  is

       

n

s  1  2  3  .

Weight of : Weight of vector partition  is defined as; 

   

  1# 1 .

 

m n

NV , : The number of vector partitions of n (counted according to the weight ) with the crank m.

m t n

NV , , : The number of vector partitions of n (counted according to the weight ) with the crank congruent to m modulo t.

3. The Crank for Vector Partitions

For a partition , let #

 

 be the number of parts of  and 

 

 be the sum of the parts of  with the convention #

   

  0 for the empty partition  of 0 (Andrews 1985, Andrews and Garvan 1988).

Let, V

 

1,2,3

1

is a partition into unequal parts 2, 3 are unrestricted partitions}. We shall call the elements of V

vector partitions. For 

1,2,3

in V

we define the sum of parts, s, a weight, , and a crank, c, by;

       

  1  2  3

s .

   

 1# 1

   

.

     

 # 2 # 3

c .

We say  is a vector partition of n, if s

 

n. For example, if 

1,11,1

, then s

 

4,

 

 1

, c

 

1 and  is a vector partition of 4.

The number of vector partitions of n (counted according to the weight ) with the crank m is denoted by Nv

 

m,n so that;

 

m n

 

NV , ; if V, s

 

n, and c

 

m.

We have 41 vector partitions of 4 are given in the following table:

(4)

3 Vector partitions of 4 Weight

 

Crank

 

, ,4

1  

 

+1 –1

, ,3 1

2   

+1 –2

, ,2 2

3   

+1 –2

, ,2 1 1

4    

+1 –3

, ,1 1 1 1

5     

+1 –4

,1,3

6

 

+1 0

,1,2 1

7   

+1 –1

,1 1 1 1

8     

+1 –2

,2 2

9   

+1 0

,2,1 1

10  

+1 –1

,1 1,2

11  

+1 1

,1 1,1 1

12   

+1 0

,3,1

13

 

+1 0

,2 1,1

14  

+1 1

,1 1 1,1

15   

+1 2

 

16 ,4,

+1 1

 

17 ,31,

+1 2

 

18 ,22,

+1 2

19 ,211,

+1 3

 

20 ,1111,

+1 4

1, ,3

21

  –1 –1

1, ,2 1

22  

–1 –2

1, ,1 1 1

23   

–1 –3

 

1,1,2

24

–1 0

1,1,1 1

25 

–1 –1

1,2,1

26

–1 0

1 1,1,1

27  

–1 1

28 1,3, –1 1

29  1,21, –1 2

30 1,111, –1 3

2, ,2

31

  –1 –1

2, ,1 1

32  

–1 –2

2,1,1

33

–1 0

(5)

4

34 2,2, –1 1

35 2,11, –1 2

3, ,1

36

  –1 –1

2 1, ,1

37

  

+1 –1

38 3,1, –1 1

39 21,1,

+1 1

 

40  4, , –1 0

 

41 31, ,

+1 0

From the above table we have,

 

0,4 

         

6 9 12 13 24

NV + 

       

26 33 40 41

= 1+1+1+1–1–1–1–1+1 = 1 (1)

The number of vector partitions of n (counted according to the weight ) with the crank congruent to k modulo t is denoted by NV

k,t,n

, so that;

 

  



m V

V k t n N m t k n

N , , , , ; (2)

if V, s

 

n, and c

  

k modt

. From the table we get;

1,5,4

NV

       

5 11 14 16 +

         

27 28 34 38 39

= 1+1+1+1–1–1–1–1+1 = 1. (3) By considering the transformation that interchanges 2 and 3 we have;

 

m n N

m n

NV ,  V  , .

We illustrate with an example;

 

1,4 

NV

   

11 14...

 

39

= 1 + 1 + 1–1–1–1–1+1 = 0.

and

(6)

5

1,4

NV

   

1 7 ...

 

37

= 1 + 1 + 1–1–1–1–1+1 = 0

NV

 

1,4  NV

1,4

. Again,

NV

51,5,4

NV

4,5,4

  

20 1

NV

1,5,4

NV

51,5,4

by (3).

Generally we can write,

m t n

N

t m t n

NV , ,  V  , ,

3.1. The Generating Function for NV

 

m,n The generating function for NV

 

m,n is;

 

n



n

m n V

 

n n

n

n

x z n m N x

z zx

x

 



 

0 1 1

1 , 1

1 (4)

which was proved by Atkin and Swinnerton-Dyer (1954). By putting z = 1 in (4), we get;

 

n



n

n

n x x

x

1 1

1

1

 

n

m n

V m n x

 

N



0

,

   

n

m n

V n

n N m n x

x n

P

 



0 0

,

  

 



m

V m n N n

P , . (5)

Now we discuss it with an example;

R. H. S. =

 



m

V m n N ,

(7)

6

 



m

V m N ,4

=…+NV

4,4

+NV

3,4

+NV

2,4

+NV

1,4

+NV

 

0,4 +NV

 

1,4 +NV

 

2,4 +NV

 

3,4 +NV

 

4,4 +…

= 0 + 1 + 0 + 1 + 0 + 1 + 0 + 1 + 0 + 1= 5 = P

 

4 = L. H. S.

3.2. The Generating Function for NV

 

0,n The generating function for NV

 

0,n is defined as;

   

0

2 2

1

n n

n n

x x x

           



 

 

 

 

 ...

1 1 1

1 1 1

1 2

2 3 15 2 2

2 8 2

3

x x

x x

x x x

x x

...

. 0

1  23456

x x x x x x

=NV

 

0,0 +NV

 

0,1x+NV

 

0,2 x2+NV

 

0,3 x3+NV

 

0,4 x4+NV

 

0,5 x5+NV

 

0,6 x6+…

=

 

0

, 0

n

n

V n x

N .

3.4 Result

3.4.1. The result is;

   

5 4 4 5

5 , 5

,   P n

n k

NV ; 0k4.

Proof: We prove the result with an example.

From the table 1 we get;

0,5,4



         

6 9 12 13 24

NV + 

       

26 33 40 41

= 1+1+1+1–1–1–1–1+1 = 1,

1,5,4

NV = 1+1+1+1–1–1–1–1+1 = 1,

(8)

7

2,5,4

NV = 1+1+1+1–1–1–1= 1,

3,5,4

NV = 1+1+1–1–1+1–1= 1,

4,5,4

NV = 1+1+1–1–1–1–1+1+1 = 1.

NV

0,5,4

=NV

1,5,4

=NV

2,5,4

=NV

3,5,4

=NV

4,5,4

=1=

 

5 4

P , where n = 0.

In general we can write;

   

5 4 4 5

5 , 5

,   P n

n k

NV ; 0k4.

Hence the Theorem.

3.2.2. The result is;

   

7 4 5 7

7 , 7

,   P n

n k

NV ; 0k6.

Proof: We prove the result with an example.

The vector partitions of 5 are given in the table below:

Vector partitions of 5 Weight

 

Crank

 

, ,5

1  

 

+1 –1

, ,4 1

2  

+1 –2

, ,3 2

3    

+1 –2

, ,3 1 1

4    

+1 –3

, ,2 2 1

5    

+1 –3

, ,2 1 1 1

6     

+1 –4

, ,1 1 1 1 1

7       

+1 –5

 

8  5, , –1 0

 

9  ,5,

+1 1

 

10  ,41,

+1 2

11 41, ,

+1 0

12  4,1, –1 1

(9)

8

13 1,4, –1 1

,4,1

14

 

+1 0

,1,4

15

 

+1 0

1, ,4

16

  –1 –1

4, ,1

17

  –1 –1

 

18  32, ,

+1 0

19 ,32,

+1 2

20 3,2, –1 1

21 2,3, –1 1

,3,2

22

 

+1 0

,2,3

23

 

+1 0

3, ,2

24

  –1 –1

2, ,3

25

  –1 –1

 

26 ,311,

+1 3

27 31,1,

+1 1

28 1,31, –1 2

,3 1,1

29  

+1 1

,1,3 1

30   

+1 –1

3 1, ,1

31

  

+1 –1

1, ,3 1

32   

–1 –2

33  3,11, –1 2

,1 1,3

34   

+1 1

,3,1 1

35   

+1 –1

3, ,1 1

36   

–1 –2

 

37  ,221,

+1 3

38  1,22, –1 2

,2 2,1

39   

+1 1

,1,2 2

40  

+1 –1

1, ,2 2

41  

–1 –2

42 21,2,

+1 1

43 2,21, –1 2

,2,2 1

44  

+1 1

,2 1,2

45  

+1 1

2 1, ,2

46

  

+1 –1

2, ,2 1

47  

–1 –2

(10)

9

 

48 ,221,

+1 4

,2 1 1,1

49   

+1 2

,1,2 1 1

50    

+1 –2

51 1,211, –1 3

1, ,2 1 1

52    

–1 –3

53 21,11,

+1 2

,2 1,1 1

54    

+1 0

,1 1,2 1

55    

+1 0

2 1, ,1 1

56    

+1 –2

,1 1 1,2

57    

+1 2

,2,1 1 1

58    

+1 –2

59  2,111, –1 3

2, ,1 1 1

60   

–1 –3

61 ,11111,

+1 5

,1 1 1 1,1

62     

+1 3

,1,1 1 1 1

63     

+1 –3

1, ,1 1 1 1

64     

–1 –4

65  1,1111, –1 4

,1 1,1 1 1

66     

+1 –1

,1 1 1,1 1

67     

+1 1

1,1,1 1 1

68   

–1 –2

1,1 1 1,1

69   

–1 2

1,1 1,1 1

70   

–1 0

1,1 1,2

71 

–1 1

1,2,1 1

72  

–1 –1

2,1 1,1

73  

–1 1

2,1,1 1

74  

–1 –1

2,2,1

75

–1 0

2,1,2

76

–1 0

1,2,2

77

–1 0

 

3,1,1

78

–1 0

 

1,3,1

79

–1 0

 

1,1,3

80

–1 0

1 2,1,1

81 

+1 0

1,1 2,1

82  

–1 1

(11)

10

1,1,1 2

83 

–1 –1

From this table we have;

0,7,5

NV

       

8111415 +

         

1822235455 +

         

70 75 76 77 78

+

     

798081

= –1+1+1+1+1+1+1+1+1–1–1–1–1–1–1–1–1+1 = 1.

Similarly,

0,7,5

NV NV

1,7,5

…=NV

6,7,5

1 =

 

7 5 P .

In general we can write;

   

7 5 5 7

7 , 7

,   P n

n k

NV ; 0k6.

Hence the result.

3.2.3. The result is;

   

11 6 6 11

11 , 11

,   P n

n k

NV .

Proof: We prove the result with an example.

The vector partitions of 6 are given in the table below:

Vector partitions of 6 Weight

 

Crank

 

, ,6

1 

 

+1 –1

, ,5 1

2   

+1 –2

, ,4 2

3   

+1 –2

, ,4 1 1

4    

+1 –3

, ,3 3

5   

+1 –2

, ,3 2 1

6     

+1 –3

, ,3 1 1 1

7      

+1 –4

, ,2 2 2

8     

+1 –3

(12)

11

, ,2 2 1 1

9      

+1 –4

, ,2 1 1 1 1

10      

+1 –5

, ,1 1 1 1 1 1

11      

+1 –6

 

12 ,6,

+1 1

 

13 ,51,

+1 2

14 ,42,

+1 2

 

15 ,411,

+1 3

 

16 ,33,

+1 2

17  ,321,

+1 3

 

18 ,3111,

+1 4

 

19  ,222,

+1 3

 

20 ,2211,

+1 4

21 ,21111,

+1 5

22  ,111111,

+1 6

 

23 6, , –1 0

24 51, ,

+1 0

 

25  42, ,

+1 0



26 321, , –1 0

,5,1

27

 

+1 0

,1,5

28

 

+1 0

,4,2

29

 

+1 0

,2,4

30

 

+1 0

,4,1

31

 

+1 1

,4,1 1

32  

+1 –1

,1,4 1

33  

+1 –1

,1 1,4

34  

+1 1

,3,3

35

 

+1 0

,3 2,1

36  

+1 1

,1,3 2

37   

+1 –1

,3,2 1

38  

+1 –1

,2 1,3

39   

+1 1

,1 3,2

40   

+1 1

,2,1 3

41  

+1 –1

,3,1 1 1

42    

+1 –2

,3 1,1 1

43   

+1 0

(13)

12

5, ,1

44

  –1 –1

45 5,1, –1 1

4, ,2

46

  –1 –1

47  4,2, –1 1

,1 1 1,3

48    

+1 2

,1 1,3 1

49    

+1 0

,1,3 1 1

50   

+1 –2

,3 1 1,1

51   

+1 2

,2 2,2

52  

+1 1

,2,2 2

53  

+1 –1

,2,1 1 1 1

54    

+1 –3

,1 1 1 1,2

55    

+1 3

,2 1,1 1 1

56    

+1 –1

,1 1 1,2 1

57    

+1 1

,2 1 1,1 1

58    

+1 1

,1 1,2 1 1

59    

+1 –1

,1 1 1 1,1 1

60      

+1 2

,1 1,1 1 1 1

61     

+1 –2

,1 1 1,1 1 1

62      

+1 0

,1,1 1 1 1 1

63     

+1 –4

,1 1 1 1 1,1

64      

+1 4

3,2,1

65

–1 0

3,1,2

66

–1 0

2,3,1

67

–1 0

2,1,3

68

–1 0

1,2,3

69

–1 0

1,3,2

70

–1 0

3,1,1 1

71 

–1 –1

3,1 1,1

72  

–1 1

2,2 1,1

73 

–1 1

2,1,1 2

74  

–1 –1

1,1 1 1,1 1

75   

–1 1

1,1 1,1 1 1

76    

–1 –1

1,1,1 1 1 1

77    

–1 –3

1,1 1 1 1,1

78   

–1 3

(14)

13

2,1 1,1 1

79  

–1 0

4,1,1

80

–1 0

3, ,3

81

  –1 –1

82 3,3, –1 1

83 3,111, –1 3

3, ,1 1 1

84    

–1 –3

85 2,22, –1 2

2, ,2 2

86  

–1 –2

87  2,211, –1 3

2, ,2 1 1

88    

–1 –3

2, ,2 2

89  

–1 –2

2, ,1 1 1 1

90    

–1 –4

91 1,11111, –1 –4

1, ,1 1 1 1 1

92     

–1 –5

93 12,3,

+1 1

1 2, ,3

94

  

+1 –1

95 31,2,

+1 1

3 1, ,2

96

  

+1 –1

3 1,1,1

97  

+1 0

98 41,1,

+1 1

4 1, ,1

99

  

+1 –1

100 4,11, –1 2

4, ,1 1

101  

–1 –2

102 31,11,

+1 2

3 1, ,1 1

103   

+1 –2

104 21,111,

+1 3

2 1, ,1 1 1

105    

+1 –3

2 1,1,2

106 

+1 0

2 1,2,1

107 

+1 0

1,2 1,2

108 

–1 1

1,2,2 1

109 

–1 –1

110 1,23, –1 2

1, ,2 3

111  

–1 –2

,4,2

112

 

+1 1

(15)

14

2 3, ,1

113

  

+1 –1

114 2,13, –1 2

2, ,3 1

115  

–1 –2

116 1,221, –1 3

1, ,2 2 1

117   

–1 –3

2 1,1 1,1

118  

+1 1

2 1,1,1 1

119  

+1 –1

1,1 1,2 1

120  

–1 0

1,2 1,1 1

121  

–1 0

From this table we have;

0,11,6

NV

       

23 24 25 26 +

         

27 28 29 30 35 +

         

43 49 62 65 66

+

     

67 68 69 +

     

70 79 80

+

         

97 106 107 120 121

= –1+1+1–1+1+1+1+1+1+1+1+1–1–1–1–1–1–1–1–1+1+1+1–1–1 = 1.

0,11,6

NV 1 =

 

11 6

P , where n = 0 and k = 0.

Hence the result.

4. Conclusions

We verified that for any positive integral value of n in the relation

  

 



m

V m n N n

P , and easily

can find generating function for NV

 

m,n in terms of various corresponding cranks of vector partitions.

Acknowledgment

It is a great pleasure to express our sincerest gratitude to our respected teacher Professor Md. Fazlee Hossain, Department of Mathematics, University of Chittagong, Bangladesh. We will remain ever grateful to our respected teacher Late Professor Dr. Jamal Nazrul Islam, JNIRCMPS, University of Chittagong, Bangladesh.

(16)

15 References

Andrews G.E. (1985), The Theory of Partitions, Encyclopedia of Mathematics and its Application, vol. 2 (G-c, Rotaed) Addison-Wesley, Reading, mass, 1976 (Reissued, Cambridge University, Press, London and New York 1985).

Andrews G.E. and Garvan F.G. (1988), Dyson’s Crank of a Partition, Bulletin (New series) of the American Mathematical Society, 18(2): 167–171.

Atkin, A.O.L. and Swinnerton-Dyer, P. (1954), Some Properties of Partitions, Proc. London Math.

Soc. 3(4): 84–106.

Referenzen

ÄHNLICHE DOKUMENTE

First stage nymphs of Triatoma infestans and Dipetalogaster maximus which had never fed after egg hatching, were allowed to ingest by artificial feeding a blood-free suspension

The AdS/CFT correspondence according to this suggestion may be seen as a two- step procedure: Starting from the correlation functions in the large N expansion of the conformal

function for reverse plane partitions of shape λ with nonnegative entries may be described as follows: Let us define the hook of a square s in the diagram of a partition to be the

If we forgo the link to vector space t-partitions via duality, we can ask for an upper bound on the cardinality of constant-dimension codes of dimension k in F v q with

Constant-dimension codes with the maximum possible minimum distance have been studied under the name of partial spreads in Finite Geometry for several decades.. Not surprisingly,

We examined such point sets for n = d + 1 and received the following table of numbers of nonisomorphic integral simplices by computer calculations.. Here we call the largest

In this article the number of smallest parts in the overpartitions of n with smallest part not overlined is discussed, and the vector partitions and

The exponent of z represents the crank of partitions of a positive integral value of n and also shows that the sum of weights of corresponding partitions of n is