• Keine Ergebnisse gefunden

weights - BkgΣEvents/5 GeV

N/A
N/A
Protected

Academic year: 2022

Aktie "weights - BkgΣEvents/5 GeV"

Copied!
38
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

HIGGS BOSON DECAY AN D PRODUCT ION AT HADRON COLLIDERS

Michael Spira (PSI)

I Introduction

II Higgs Boson Decays

III Higgs Boson Production

IV Conclusions

(2)

I IN T RODUCT ION

• SM very successful ← precision data [LEP, Tevatron, LHC]

• open problems: – mechanism of electroweak symmetry breaking – unification of forces

– space-time structure @ short distances

• LHC: fundamental discoveries: Higgs boson(s?) Supersymmetry ?

Extra space dimensions ?

• electroweak symmetry breaking: two classes of realization:

– standard Higgs mechanism [SM, SUSY,. . . ]

– strong elw. symmetry breaking [TC, LH, Higgsless, ED,. . . ]

(3)

• we have found the Higgs: MH ∼ 125 GeV

• gg → H dominant

100 110 120 130 140 150 160

weights / 2 GeVΣ

20 40 60 80 100

γ γ

H

Data S/B Weighted Sig+Bkg Fit

Bkg (4th order polynomial)

ATLAS

Ldt=4.8fb-1

=7 TeV, s

Ldt=5.9fb-1

=8 TeV, s

=126.5 GeV) (mH

[GeV]

γ

mγ

100 110 120 130 140 150 160

weights - BkgΣ -8 -4 0 4 8

[GeV]

m4l

100 150 200 250

Events/5 GeV

0 5 10 15 20 25

Ldt = 4.8 fb-1

= 7 TeV:

s

Ldt = 5.8 fb-1

= 8 TeV:

s

4l ZZ(*)

H Data

Background ZZ(*)

t Background Z+jets, t

=125 GeV) Signal (mH

Syst.Unc.

ATLAS

(4)

.

• Higgs Boson Production

t;b

g g

H h,H

q q

W;Z W;Z

h;H

q q

W;Z

W;Z

g

g t

H

¯t

[GeV]

MH

80 100 200 300 400 500 1000

H+X) [pb] (pp σ

10-2

10-1

1 10

= 8 TeV s

LHC HIGGS XS WG 2014

H (NNLO+NNLL QCD + NLO EW) pp

qqH (NNLO QCD + NLO EW)

pp

WH (NNLO QCD + NLO EW) pp

ZH (NNLO QCD +NLO EW) pp

ttH (NLO QCD) pp

bbH (NNLO QCD in 5FS, NLO QCD in 4FS) pp

LHC Higgs XS WG

(5)

• Discovery: LHC [Tevatron]

→ Higgs mass couplings spin

CP λ ?

(6)

(ii) MSSM

• 2 Higgs doubletts

ESB

→ 5 Higgs bosons: h, H, A, H±

• LO: 2 input parameters: MA,tgβ = vv2

1

• radiative corrections ∝ m4t log m˜t1m˜t2

m2t → Mh <

∼ 135 GeV

Haber Carena,. . . Heinemeyer,. . . Zhang Slavich,. . .

· · ·

• modified couplings:

φ guφ gdφ gVφ h cα/sβ −sα/cβ sβα H sα/sβ cα/cβ cβα

A ctgβ tgβ 0

• Yukawa couplings: tgβ↑ ⇒ guφ↓ gdφ↑ gVφ

• LHC: gg → φ dominant for tgβ <∼ 10 gg → φb¯b dominant for tgβ >∼ 10

(7)

↓ ↓

gg → b¯bφ0, gg → φ0 φ0 → τ+τ

(8)

II HIGGS BOSON DECAYS

Partial Width QCD Electroweak Total on-shell Higgs

H b¯b/c¯c 0.2% 0.5% for MH <

500GeV 0.5% NNNNLO / NLO

0.1(1TeVMH )4 for MH > 500GeV 0.5–10%

H τ+τ+µ 0.5% for MH <

500GeV 0.5% NLO

0.1(1TeVMH )4 for MH > 500GeV 0.5–10%

H t¯t <

5% <

0.5% for MH < 500GeV 5% (NNN)NLO / LO

0.1(1TeVMH )4 for MH > 500GeV 5–10%

H gg 3% 1% 3% NNNLO approx. / NLO

H γγ < 1% < 1% 1% NLO / NLO

H < 1% 5% 5% (N)LO / LO

H W W/ZZ 4f < 0.5% 0.5% for MH < 500GeV 0.5% (N)NLO

0.17(1TeVMH )4 for MH > 500GeV 0.5–15%

• QCD: variation of Higgs widths for scale by factor 2 and 1/2 elw: missing HO estimated from known structure at NLO MH >

∼ 500 GeV: Higgs self-interactions dominate error different uncertainties added linearly for each channel

• parametric uncertainties:

mt = 172.5 ± 1 GeV αs(MZ) = 0.118 ± 0.0015

mb(mb) = 4.18 ± 0.03 GeV mc(3GeV) = 0.986 ± 0.025 GeV different uncertainties added quadratically for each channel

• total uncertainties: parametric & theor. uncertainties added linearly

(9)

[GeV]

MH

90 200 300 400 1000

Higgs BR + Total Uncert [%]

10-4

10-3

10-2

10-1

1

LHC HIGGS XS WG 2013

b b τ τ

µ µ c c

t t gg

γ γ Zγ

WW

ZZ

−→

HDECAY & Prophecy4f

10%

10% ←∼ 20%

Denner, Heinemeyer, Puljak, Rebuzzi, S.

• MSSM: large SUSY–QCD corrections to φ0 → b¯b

h

b

b

~ g

~

b

~

b

απs mM˜g2µtgβ

SU SY ∼ ∆b

Hall,. . . Carena,. . . Nierste,. . . afliger,. . . Noth, S.

Mihaila, Reisser etc.

(10)

SUSY-QCD Corrections to b¯bφ0 [∆ <

∼ 1%]

Lef f = −λbbR

"

φ01 + ∆b

tgβφ02

#

bL + h.c. valid to all orders in ∆b

= −mb¯b

"

1 + iγ5G0 v

#

b − mb/v 1 + ∆b¯b

"

gbh 1 − ∆b tgα tgβ

!

h

+gbH 1 + ∆btgα tgβ

!

H − gbA 1 − ∆b tg2β

!

5A

#

b

b = ∆QCD(1)b + ∆elw(1)b

QCD(1)b = 2 3

αsR)

π M˜g µ tgβ I(m˜2b

1, m˜2b

2, M˜g2)

elw(1)b = λ2tR)

(4π)2 µ At tgβ I(m˜2t

1, m˜2t

2, µ2) I(a, b, c) = −

ab log a

b + bclog b

c + calog c a (a − b)(b − c)(c − a)

⇒ resummed Yukawa couplings ˜gbΦ Carena, Garcia, Nierste, Wagner Guasch, H¨afliger, S.

(11)

small αef f scenario [modified]

tgβ = 30

MQ˜ = 800 GeV

M˜g = 1000 GeV ←−

M2 = 500 GeV

Ab = At = −1.133 TeV µ = 2 TeV

m˜t

1 = 679 GeV m˜t

2 = 935 GeV m˜b

1 = 601 GeV m˜b

2 = 961 GeV

(12)

small αeff tgβ = 30

b

QCD

µ0 = (m~ g+m~ b1+m~ b2)/3

2-loop SUSYQCD 1-loop SUSYQCD

µR/µ0 0.6

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

10 -1 1 10

Noth, S.

(Mihaila, Reisser)

(13)

Γ[Φ → bb] = 3GFMΦ 4√

2π m2b(MΦ) ∆QCD ˜gbΦ h˜gbΦ + gbΦδremi MA2 ≫ MZ2 : tgα → − 1

tgβ ⇒ ˜gbh → 1

1 + ∆b 1 − ∆b tgα tgβ

!

→ 1

δh

−δH

−δA δφ

MA [GeV] 10 -4

10 -3 10 -2 10 -1

1

100 200 300 400 500 600 700 800 900 1000

δφ = δrem δSQCD

Guasch, H¨afliger, S.

(14)

BR(h) small αeff

tgβ = 30 bb_

τ+τ 2-loop SUSY−elw/QCD

1-loop SUSY−elw/QCD

Mh [GeV]

0.2 0.5 1

90 95 100 105 110 115 120

µR = 13 Pi

Noth, S. → HDECAY

(15)

+ charged Higgs decays

(16)

SUSY Decays

BR(Φ→χχ) tgβ = 3

M2 = 140 GeV µ = 160 GeV A

H H±

MΦ [GeV]

100 200 500 1000

BR(Φ→squarks) tgβ = 3

M~ Q = 400 GeV At = 1.05 TeV

A H

H±

MΦ [GeV]

300 500 700 1000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

HDECAY

• if kinematically possible → important

(17)

III HIGGS BOSON PRODUCT ION (i) gg → h/H/A

0

t;b;

~

t;

~

b

g g

Georgi,. . . Gamberini,. . .

• NLO QCD corrections: ∼ 10. . .100%

S., Djouadi, Graudenz, Zerwas Dawson, Kauffman

• NNLO calculated for mt ≫ Mφ ⇒ further increase by 20–30%

[mass effects small] Harlander, Kilgore

Anastasiou, Melnikov Ravindran, Smith, van Neerven Marzani, Ball, Del Duca, Forte, Vicini

Harlander, Ozeren

Pak, Rogal, Steinhauser

• N3LO for mt ≫ Mφ ⇒ scale stabilization scale dependence: ∆ <

∼ 5% Moch, VogtRavindran

de Florian, Mazzitelli, Moch, Vogt Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Mistlberger Ball, Bonvini, Forte, Marzani, Ridolfi

(18)

• N3LL soft gluon resummation: <

∼ 2% Catani, de Florian, Grazzini, Nason Ravindran Ahrens, Becher, Neubert, Yang Ball, Bonvini, Forte, Marzani, Ridolfi Bonvini, Marzani Schmidt, S.

• elw. corrections: ∼ 5% Aglietti,. . .

Degrassi, Maltoni Actis, Passarino, Sturm, Uccirati

• QCD corrections to squark loops: 10–100% uhlleitner, S.

Bonciani, Degrassi, Vicini

• genuine SUSY–QCD corrections: 10–100%

[← ∆b @ large tgβ]

Harlander, Steinhauser, Hofmann Degrassi, Slavich Anastasiou, Beerli, Daleo uhlleitner, Rzehak, S.

• SUSY-elw. corrections unknown

• impl. of gg → φ in POWHEG including mass effects @ NLO

Bagnaschi, Degrassi, Slavich, Vicini

(19)

• QCD corrections to squark loops: M¨uhlleitner, S.

σ(pp → h/H + X) [pb]

√s = 14 TeV tgβ = 3

NLO LO mt = 174.3 GeV CTEQ6

Mh/H [GeV]

h H

❍ ❍

80 100 200 300 500 700 1000

10-2 10-1 1 10 102 103

√s = 14 TeV tgβ = 3

σ(pp → h/H + X) / σ

mt = 174.3 GeV CTEQ6

Mh/H [GeV]

h H

❍ ❍

80 100 200 300 500 700 1000

0.92 0.94 0.96 0.98 1 1.02 1.04

σ(pp → h/H + X) [pb]

√s = 14 TeV tgβ = 30

NLO LO mt = 174.3 GeV CTEQ6

Mh/H [GeV]

h H

❍ ❍

80 100 200 300 500 700 1000

10-3 10-2 10-1 1 10 102 103 104 105

√s = 14 TeV tgβ = 30

σ(pp → h/H + X) / σ

mt = 174.3 GeV CTEQ6

Mh/H [GeV]

h H

❍ ❍

80 100 200 300 500 700 1000

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

(20)

σ(gg → Φ) = σLO(gtΦ,˜gbΦ)h1 + δQCD + δSQCDi

K (pp H+X) τ phobic

s = 14 TeV tgβ = 30

PDF4LHC15_nlo

µR = µF = MH/2 QCD + SUSYQCD QCD

MH [GeV] 0.9

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

200 300 400 500 600 700 800 900 1000

g

g

˜ h/H tb]

t[b]

˜

g +· · ·

PRELIMINARY

M¨uhlleitner, Rzehak, S.

(21)

(ii) W/Z fusion: pp → WW/ZZ → h/H

h,H

q q

W;Z

W;Z Cahn, Dawson

Hikasa Atarelli, Mele, Pitolli

• QCD corrections ← DIS: ∼ 10%

[approx] 2–loop: <

∼ 1%

[approx] 3–loop: <

∼ 0.3%

Han, Valencia, Willenbrock Figy, Oleari, Zeppenfeld Berger, Campbell Bolzano, Maltoni, Moch, Zaro Cacciari, Dreyer, Karlberg, Salam, Zanderighi Dreyer, Karlberg

• elw. corrections: ∼ 10% Ciccolini, Denner, Dittmaier

• genuine SUSY-QCD corrections small Djouadi, S.

• genuine SUSY-elw. corrections: <∼ 5% Hollik, Rzehak, Plehn, Rauch Figy, Palmer, Weiglein

[implemented in VBFNLO]

(22)

(iii) Higgs–strahlung: pp → W/Z → W/Z + h/H

h;H

q q

W;Z

W;Z

Glashow,. . . Kunszt,. . .

• QCD corrections ← DY: ∼ 30%

2–loop: <

∼ 5%

Han, Willenbrock Brein, Djouadi, Harlander

• SUSY-QCD corrections small Djouadi, S.

• electroweak corrections: ∼ −10% Ciccolini, Dittmaier, Kr¨amer

• W/Z + H: fully exclusive @ NNLO QCD Ferrera, Grazzini, Tramantano

(23)

(iv) Bremsstrahlung: pp → t¯t + h/H/A

0 q

q

g

t

t

0 g

g

t

t

dominant

Kunszt Gunion Marciano, Paige

• t¯th → t¯tb¯b important @ LHC → top Yukawa cplg.

• QCD corrections [SM]: ∼ 20%

[threshold suppressed: σLO ∼ β4]

Beenakker, Dittmaier, Kr¨amer, Pl¨umper, S., Zerwas Dawson, Orr, Reina, Wackeroth Broggio, Ferroglia, Pecjak, Signer, Yang

• SUSY-QCD corrections: moderate Dittmaier, H¨afliger, Kr¨amer, S., Walser

• link to parton showers: aMC@NLO, PowHel Frederix et al.

Garzelli, Kardos, Papadopoulos, Tr´ocs´anyi

• important work on backgrounds t¯tb¯b, t¯tjj, etc.

Bredenstein, Denner, Dittmaier, Pozzorini Bevilacqua, Czakon, Papadopoulos, Pittau, Worek Cascioli, Maierhofer, Pozzorini

(24)

h H

❍ ❍

K(pp tt_ h/H + X) tgβ = 5

µ = (2mt + Mh/H)/2 SPS5

s = 7 TeV

s = 14 TeV

full

SUSYQCD

Mh/H [GeV] -0.5

-0.25 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

50 100 150 200 250 300 350 400 450 500

Dittmaier, H¨afliger, Kr¨amer, S., Walser

(25)

(v) b¯b+Higgs production

g

g b

H

¯b b

¯b

H

σ(pp bb_ h + X) [fb]

√s = 7 TeV MSTW2008 µ = (2mb + Mh)/4

gg bb_ h (NLO) bb_ → h (NNLO)

Mh[GeV] 10 -1

1 10 102

100 150 200 250 300 350 400 450 500

[ b]

exact g b¯b splitting & mass/off-shell effects no resummation of logMH2/m2b terms

massless/on-shell b’s, no pT b

resummation of logMH2/m2b terms

NLO NNLO

Santander matching:

σ = σ4F S + wσ5F S 1 + w

w = log MH

mb − 2

Harlander, Kr¨amer, Schumacher

Dittmaier, Kr¨amer, S.

Dawson, Jackson, Reina, Wackeroth Harlander, Kilgore

(26)

matching

Bonvini, Papanastasiou, Tackmann Forte, Napoletano, Ubiali

(27)

MA MH [GeV] δQCDA δSU SYA δSU SY remA δQCDH δSU SYH δSU SY remH 100 113.9 0.23 0.30 0.4 × 104 0.27 0.38 0.3 × 104 200 200 0.38 0.30 2.9 × 104 0.39 0.30 5.8 × 104 7 TeV 300 300 0.46 0.30 6.7 × 104 0.47 0.30 9.3 × 104 400 400 0.53 0.30 1.3 × 103 0.53 0.30 1.5 × 103 500 500 0.57 0.30 2.0 × 103 0.59 0.30 2.2 × 103 100 113.9 0.14 0.30 0.4 × 104 0.17 0.38 0.5 × 104 200 200 0.28 0.30 2.7 × 104 0.29 0.30 5.7 × 104 14 TeV 300 300 0.37 0.30 6.5 × 104 0.39 0.30 9.3 × 104 400 400 0.45 0.30 1.2 × 103 0.45 0.30 1.5 × 103 500 500 0.50 0.30 2.1 × 103 0.49 0.30 2.3 × 103 tgβ MA MH [GeV] δASU SY δSU SY remA δSU SYH δSU SY remH

3 200 209.7 0.04 2.1 × 104 0.04 5.7 × 104 5 200 204.0 0.06 2.4 × 104 0.06 5.3 × 104 7 200 202.1 0.08 2.5 × 104 0.09 3.9 × 104 7 TeV 10 200 200.9 0.12 2.5 × 104 0.12 3.8 × 104 20 200 200.1 0.21 2.6 × 104 0.21 4.4 × 104 30 200 200.0 0.30 2.9 × 104 0.30 5.8 × 104 3 200 209.7 0.04 2.0 × 104 0.04 7.2 × 104 5 200 204.0 0.06 2.2 × 104 0.06 5.0 × 104 7 200 202.1 0.08 2.4 × 104 0.09 4.4 × 104 14 TeV 10 200 200.9 0.12 2.5 × 104 0.12 4.1 × 104 20 200 200.1 0.21 2.7 × 104 0.21 4.4 × 104 30 200 200.0 0.30 2.7 × 104 0.30 5.7 × 104

Dittmaier, H¨afliger, Kr¨amer, S., Walser

(28)

(vi) pp → t¯bH + X

• MH± < mt − mb: σt¯bH = σt¯t × BR(¯t → ¯bH)

• MH± ∼ mt − mb: new NLO calculation Degrande, Frederix, Wiesemann, Zaro

• MH± > mt − mb:

g

g t

H

b b

g t

H

exact g b¯b splitting & mass/off-shell effects no resummation of logMH2±/m2b terms

massless/on-shell b’s, no pT b

resummation of logMH2±/m2b terms

NLO NLO

(29)

• Santander matching

minimum: tgβ ∼

smt

mb ∼ 8

Dittmaier, Kr¨amer, S., Walser Plehn Flechl, Klees, Kr¨amer, Spira, Ubiali

(30)

• analogous for charged Higgs: ˜gbH± = tgβ

1 + ∆b 1 − ∆b tg2β

!

σN LO = σLO|gH±

b ˜gbH± × n1 + δQCD + δSQCDrem o tgβ δSU SYrem [%]

3 −5.7%

5 −7.9%

10 −4.8%

30 −0.13%

Dittmaier, Kr¨amer, S., Walser

(31)

gg → HH

g

g

H

H

t, b

λ

+ g

g

H

H

t, b

g

g

H

H

t, b ctt/bb

• threshold region: sensitive to λ

large MHH: sensitive to ctt/bb [e.g. boosted Higgs pairs]

qZHH q WHH qq HHqq

ggHH

s=14 TeV, MH =125 GeV

σ(pp HH +X) [fb]

λHHHSMHHH

5 3

1 0 -1 -3

-5 1000

100

10

1

0.1 Baglio, Djouadi, Gr¨ober, M¨uhlleitner, Quevillon, S.

gg → HH : ∆σ

σ ∼ −∆λ λ [decreasing with MHH2 ]

(32)

gg → HH SM

g

g

H

H

t, b

λ

+ g

g

H

H

t, b +· · ·

• third generation dominant → t, b

• 2-loop QCD corrections: ∼ 90 − 100%

[MH2 ≪ 4m2t , µ = MHH]

φ1

φ2

g

g φ1

φ2

φ, Z

g

g φ1

φ2

g g

φ1

φ2

g

g g

φ1

φ2

g

g g

φ1

φ2

g

q q

K(pp → HH+X)

√s=14 TeV

µ2 = M2 = Q2 mt = 175 GeV

Ktot

Kgg

Kvirt

Kqq Kgq

MH [GeV]

-0.5 0 0.5 1 1.5 2 2.5 3

80 100 120 140 160 180 200

Dawson, Dittmaier, S.

(33)

• 2-loop QCD corrections:

σ = σ0 + σ1

m2t + · · · + σ4 m8t

√scut (GeV)

K

1.5 1.75 2 2.25 2.5 2.75 3

300 400 500 600 700

∼ +10%

Grigo, Hoff, Melnikov, Steinhauser

• NLO mass effects @ NLO in real corrections: ∼ −10%

Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Torrielli, Vryonidou, Zaro

→ sizeable virtual mass effects

• NNLO QCD corrections: ∼ 20%

[MH2 ≪ 4m2t ]

300 400 500 600 700

0.00 0.05 0.10 0.15 0.20

QHGeVL

dӐdQHfbGeVL

LO NLO

de Florian, Mazzitelli NNLO

Grigo, Melnikov, Steinhauser

• soft gluon resummation: ∼ 10%

[MH2 ≪ 4m2t ]

Shao, Li, Li, Wang de Florian, Mazzitelli

(34)

Full NLO calculation: top only

Numerical integration, sector decomposition, contour deformation

∼ −20%

∼ −6%

Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zirke Baglio, Campanario, Glaus, M¨uhlleitner, S., Streicher (in preparation)

• 13 TeV:

σN LO = 27.80(8)+13.8%12.8% f b σN LOHEF T = 32.22+18%

15% f b

⇒ -13.7% mass effects

(35)

IV CON CLUSION S

• Higgs boson searches/studies at LHC belong to major endeavours

• most (SUSY–)QCD and –elw. corrections known → ∆ <

∼ 10 − 15%

@ LHC

• several dedicated HO–tools available for SM, MSSM [NMSSM,. . . ]

• important to develop NLO event generators [← backgrounds]

(36)

BACKUP SLIDES

(37)

τ-phobic scenario [scale = 1 TeV]

mt = 173.2 GeV tgβ = 30

MQ˜ = 1.5 TeV M˜g = 1.5 TeV M2 = 200 GeV

Ab = At = 4.417 TeV [Xt = 2.9 MQ˜] µ = 2 TeV

M˜

3 = 500 GeV

m˜t

1 = 1.318 TeV m˜t

2 = 1.726 TeV m˜b

1 = 1.501 TeV m˜b

2 = 1.565 TeV

(38)

SPS 5

tgβ = 5

µ = 639.8 GeV At = −1671.4 GeV Ab = −905.6 GeV m˜g = 710.3 GeV mq˜L = 535.2 GeV m˜b

R = 620.5 GeV m˜t

R = 360.5 GeV

−→ m˜t

1 = 204.1 GeV, m˜t

2 = 656.1 GeV, m˜b

1 = 533.3 GeV, m˜b

2 = 625.2 GeV

Referenzen

ÄHNLICHE DOKUMENTE

Druckapplikation, Druck- elimination, Zugapplika - tion – das sind die drei wichtigen Funktionen ei- nes Funktionsreglers III und somit Begriffe, mit de- nen sich

Druckapplikation, Druck- elimination, Zugapplika - tion – das sind die drei wichtigen Funktionen ei- nes Funktionsreglers III und somit Begriffe, mit de- nen sich

Im Zuge meiner Ausführungen kam ich dabei auch darauf zu sprechen, dass die einzelnen Landeskirchen heute gut daran täten, sich für ihr damaliges diskriminierendes Handeln

Besonders dadurch, dass Dreyer von einem Annäherungsprozess spricht, in dessen Verlauf er mit Medea und dem Jesus-Film die filmische Tragödie zu erreichen sucht, wäre eine

Übung 10: Ich höre einen Hund / ein Kind / eine Verkäuferin / eine Nachricht / ein Flugzeug / einen Lastwagen. Ich suche einen Hund / ein Kind / ein Buch. Ich rufe einen Hund / ein

Lassen Sie uns nur ein Thema herausgreifen: Wir sind der Überzeugung, dass wir – ähnlich wie im Rettungswesen – für die Hilfeleistung durch die Polizei eine

Das hier präsen- tierte Arbeitspaket Transdisziplinarität und Kompetenzteams soll Strukturen und Pro- zesse für einen kontinuierlichen Austausch zwischen Wissenschaft und Praxis im

Der Zugang über einen journalistischen Text, wie ihn die Schüler aus Rezensionen oder Filmkritiken kennen, wird von den Schülern als realitätsnäher und deshalb motivierender als