• Keine Ergebnisse gefunden

2 /s] [g/cm   rate   Reaction

N/A
N/A
Protected

Academic year: 2022

Aktie "2 /s] [g/cm   rate   Reaction"

Copied!
25
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

WIR SCHAFFEN WISSEN – HEUTE FÜR MORGEN

Progress Report on the Development of a nitriding model

Bernd Jäckel, Sanggil Park, Leticia Fernandez‐Moguel ::  ::  Paul Scherrer Institut

EMUG Meeting, April 6th+7th, 2017, Madrid, Spain

(2)

Page 2

Content

1. Introduction

2.Experimental conditions 3.Experimental data

4.Description of different phases

5.Analysis and preliminary results

6.Outlook

(3)

Introduction

The influence of Nitrogen in  the air‐oxidation of zircaloy based cladding materials has been known since a long

time.

A period of nitriding leads to

a macro cracked oxide scale

after reoxidation.

(4)

Page 4

Introduction

First strong evidence, that Nitrogen is not only a catalyst for the cladding degradation by oxidation, but also an important reaction partner was found from the off gas

analysis in the Sandia Fuel Project phase 2.

Figure from SFP final seminar 2013, Paris

(5)

Introduction

Three experimental phases were selected to investigate the dependency of the reaction

parameters on different controled conditions for oxidation and nitriding.

In the first phase a pre oxidation is selected to

produce an oxide layer with different thickness (pre breakaway and post breakaway).

The second phase is the nitriding of the pre

oxidized sample with different duration to check for the nitriding mechanism.

The final phase includes a reoxidation of the sample to investigate the reaction rates after nitriding.

(6)

Page 6

Content

1.Introduction

2. Experimental conditions 3.Experimental data

4.Description of different phases

5.Analysis and preliminary results

6.Outlook

(7)

Experimental Conditions

Two different thermal balance systems were used to perform the

experiments at KIT, Germany: Netzsch STA‐409 and Setaram TAG.

(8)

Page 8

Experimental Conditions

The specimen are slightly different for the two facilities.

(9)

Experimental Conditions

Experimental Test Matrix for Netzsch STA‐409

Temperature Pre‐Oxidation Nitriding Re‐Oxidation

900°C 2 h, 6 h 1 h, 15 h no, 2 h

1000°C 20 min, 40 min 1 h, 15 h no, 1 h 1100

°

C 30 s, 10 min 1 h, 15 h no, 20 min 1200°C 10 s, 1 min 1 h, 15 h no, 10 min

Setaram TAG: (1000°C and 1100°C) additional nitriding (0.5 h, 3 h, 6 h)

Inclusive repetition experiments 75 tests were performed and analysed

(10)

Page 10

Content

1.Introduction

2.Experimental conditions 3. Experimental data

4.Description of different phases

5.Analysis and preliminary results

6.Outlook

(11)

Experimental data

(12)

Experimental data

Page 12

STA STA

TAG TAG

(13)

Content

1.Introduction

2.Experimental conditions 3.Experimental data

4. Description of different phases

5.Analysis and preliminary results

6.Outlook

(14)

Experimental phases

Page 14

16 phases could be identified in the experiments (some may be covered in some experiments):

1: Gas phase transition from Ar to O2 2: Fast oxygen uptake of zirconium 3: Parabolic pre oxidation

STA TAG

(15)

Experimental phases

16 phases could be identified in the experiments (some may be covered in some experiments):

4: Transition to breakaway 5: Post breakaway oxidation

6: Gas phase transition from O2 to N2

STA

(16)

Experimental phases

Page 16

16 phases could be identified in the experiments (some may be covered in some experiments):

7: 1. linear nitriding 8: Transition nitriding 9: 2. linear nitriding 10: Metal depletion 11: No nitriding

STA

(17)

Experimental phases

16 phases could be identified in the experiments (some may be covered in some experiments):

12: N2 – O2 Transition 13: Parabolic reoxidation 14: Linear reoxidation 15: Metal (ZrN) depletion 16: O2 – Ar Transition

STA STA

(18)

Page 18

Content

1.Introduction

2.Experimental conditions 3.Experimental data

4.Description of different phases

5. Analysis and preliminary results

6.Outlook

(19)

Analysis and preliminary Results

The parabolic oxidation follows the oxidation rate function from Hofmann  used for the zircaloy cladding oxidation in Oxygen. The data points below the  curve reflect the time of dynamic concentration change of the oxidizing gas  (Ar – O2 Transition) which is reducing the reaction rate.

Reaction rate [g/cm2 /s]

10000/T [1/K]

(20)

Analysis and preliminary Results

Page 20

The first linear nitriding process is assumed to reflect the nitriding of the  oxygen stabilized α-zirconium. This layer growths has to be modeled  depending on the sample temperature to receive the right amount of  available α‐zirconium for nitriding.

Reaction rate [g/cm2 /s]

10000/T [1/K]

(21)

Analysis and preliminary Results

After oxidation of the α‐zirconium the reaction rate dropped drastically. 

The further nitriding can be interpreted as reaction of nitrogen with the  sub stoichiometric zirconium oxide (Breakaway effects can be observed at  temperatures below 1100°C). Possible leakage of the facility may influence  the measurement of very low reaction rates.

Reaction rate [g/cm2 /s]

10000/T [1/K]

(22)

Analysis and preliminary Results

Page 22

For the development of the model it has to be assumed, that all processes  are running in parallel (as far as the reacting gases are available). The 

reactions are:

oxidation in steam or oxygen

production of α‐Zr(O) layer by oxygen diffusion

production of sub stoichiometric zirconia by oxygen diffusion

nitriding of α‐Zr(O)

nitriding of sub stoichiometric zirconia

reoxidation of ZrN

The breakaway effect has also to be considered due to the reduction of the  protective layer thickness to deliver higher reaction rates as observed in  the tests below 1100°C.

(23)

Content

1.Introduction

2.Experimental conditions 3.Experimental data

4.Description of different phases

5.Analysis and preliminary results

6. Outlook

(24)

Outlook

Page 24

A model will be developed as stand alone programme to recalculate the  oxidation and nitriding behavior of the different experiments.

The next phase is the testing of the model against independent  experiments like QUENCH‐10 and SFP Phase II or others.

Preparation of the model for implementation in severe accident codes.

Needs:

Nitrogen as reacting and consumable gas

ZrN as new material

α‐Zr(O) as new material

sub stoichiometric zirconium oxide as new material (as in ASTEC)

(25)

Wir schaffen Wissen – heute für morgen

Questions?

Referenzen

ÄHNLICHE DOKUMENTE

The structure of the cluster with 64 CVE is that of a “spiked triangle” in which the triphenylphosphonioacetylide CCPPh 3 acts as a six-electron donor and the bonding mode is that of

The difference between the P–C distances to C(5) and to the phenyl carbon atoms amounts to about 10 pm, and the shorter bond lengths to the ylidic carbon atom indicate some double

From the argumentation in Isaiah 40-66, especially in 40-48, it appears that many members of the exilic community harbored serious doubts as to whether a

Starting from strong evidence against a simple linear Taylor rule, we model nonlinearities using logistic smooth transition regression (LSTR) models.. The LSTR models with

Crystal structures of XenA have been determined for the oxidized enzyme alone and in complex with two different substrates bound to the active site (4,6).. A structure of

So far this is not an intensive topic of research for filter cakes created by smearing, because only the influence on fluid loss performance was evaluated and not the

Dieses Werk darf nicht bearbeitet oder in anderer Weise verändert werden. • Im Falle einer Verbreitung müssen Sie anderen die Lizenzbedingungen, unter welche dieses Werk fällt,

16 shows computations of cell voltage with constant exchange current density as well as concentration dependent exchange current density, for slow ( D f A = 1) and fast ( D f A