• Keine Ergebnisse gefunden

Effect of La and Mn on the properties of alkalineniobate-based piezoelectric ceramics

N/A
N/A
Protected

Academic year: 2022

Aktie "Effect of La and Mn on the properties of alkalineniobate-based piezoelectric ceramics"

Copied!
6
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Full Terms & Conditions of access and use can be found at

http://www.tandfonline.com/action/journalInformation?journalCode=tace20

Journal of Asian Ceramic Societies

ISSN: (Print) 2187-0764 (Online) Journal homepage: http://www.tandfonline.com/loi/tace20

Effect of La and Mn on the properties of alkaline niobate-based piezoelectric ceramics

Henry E. Mgbemere & Gerold A. Schneider

To cite this article: Henry E. Mgbemere & Gerold A. Schneider (2016) Effect of La and Mn on the properties of alkaline niobate-based piezoelectric ceramics, Journal of Asian Ceramic Societies, 4:1, 97-101, DOI: 10.1016/j.jascer.2015.12.004

To link to this article: https://doi.org/10.1016/j.jascer.2015.12.004

© 2016 The Ceramic Society of Japan and the Korean Ceramic Society

Published online: 20 Apr 2018.

Submit your article to this journal

Article views: 15

View Crossmark data

(2)

ContentslistsavailableatScienceDirect

Journal of Asian Ceramic Societies

HOSTED BY

jo u r n al h om ep a g e :w w w . e l s e v i e r . c o m / l o c at e / j a s c e r

Effect of La and Mn on the properties of alkaline niobate-based piezoelectric ceramics

Henry E. Mgbemere

a,b,∗,1

, Gerold A. Schneider

b

aDepartmentofMetallurgical&MaterialsEngineering,UniversityofLagos,Nigeria

bInstituteofAdvancedCeramics,HamburgUniversityofTechnology,Denickestrasse15,21073,Hamburg,Germany

a r t i c l e i n f o

Articlehistory:

Received18September2015 Receivedinrevisedform 13November2015 Accepted20December2015 Availableonline7January2016

Keywords:

Ferroelectrics Lead-freeceramics (KxNa1−x)NbO3

Dopants

a b s t r a c t

Lead-freeferroelectric(K0.44Na0.52Li0.04)(Nb0.86Ta0.1Sb0.04)O3ceramicsco-dopedwithdifferentamounts ofbothLaandMnhavebeenproducedusingsolid-statesynthesismethod.Therelativedensityvalues oftheunmodifiedsamplearebetween92and96%anddecreasesto∼91%forthesamplewith1mol%

oftheco-doping.Bi-modalgraindistributionisobservedinthesampleswhiletheaveragegrainsize decreaseswithco-dopingduetograingrowthinhibitionbypinningofthegrainboundarymovement.

Thediffractionpatternsshowatransformationfromanorthorhombicphasetoapseudo-tetragonalphase withco-dopantsaddition.TheCurietemperatureandthetetragonal-orthorhombictransitiontempera- turesareloweredfrom∼9000at330Cwithoutmodificationto∼4000attemperaturesbelow250C withco-dopantaddition.Thedielectriclossvaluesofthesamplesalsodecreasefrom∼0.4to0.05for temperaturesupto250Cwithco-doping.TheremnantpolarisationProfthesamplesdecreasesfrom

∼8.55kV/cmto∼6.57kV/cmwithco-dopantaddition.Thepiezoelectricchargecoefficient(d33),includ- ingthenormalisedstrainvalues,alsodecreasefrom∼400pm/Vand220pC/Nto157pm/Vand159pC/N, respectivelywithco-dopantsupto1mol%.

©2016TheCeramicSocietyofJapanandtheKoreanCeramicSociety.Productionandhostingby ElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

Lead zirconate titanate (Pb(ZrxTi1x)O3 (PZT)) based piezo- electricceramicsfindsa lotof applicationinactuators,sensors, transducersandotherelectromechanicaldevicesbecauseoftheir excellentpiezoelectricpropertiesandreliabilityinservice.How- ever,lead(Pb),whichisoneofthemainconstituentelementsof theseceramics,isatoxicmaterial,andwhenreleasedtotheatmo- sphereduringceramicprocessing,it causesboth environmental andhealthproblems,especiallytochildren[1].Anotherconcern isthedisposalofthewasteleadinelectronicdevicesafterthey haveoutlivedtheirusefulness[2].Legislationshavebeenenacted bysomemulti-nationalgovernmentsliketheEuropeanCommis- sionbanningitsuseinalmostallproducts[3].Thereishoweverno

Correspondingauthor.

E-mailaddresses:h.mgbemere@unilag.edu.ng,henrymgbemere@yahoo.com (H.E.Mgbemere).

1 Theresearchworkleadingtothisarticlewasdonewhilethefirstauthorwas workingattheInstituteofAdvancedCeramics,HamburgUniversityofTechnology, HamburgGermany.

PeerreviewunderresponsibilityofTheCeramicSocietyofJapanandtheKorean CeramicSociety.

overallsuitablereplacementyetforitsuseinpiezoelectricceram- ics, and so, it is still being allowed pending until a suitable replacementcanbefound.

Thesearchforpossiblelead-freereplacementcompositionsfor PZTceramicshasmoreorlessbeenfocussedon(Bi0.5Na0.5)TiO3 [4–6]and(KxNa1x)NbO3[7–9]basedceramicsystemsandreports in the literature so far show that the later exhibits slightly higherpiezoelectricpropertiesbutwithlowertemperaturestabil- ity[2,10,11].TheresearchonKNNceramicsbeganinthelate1940s butwasovertakenbyPZTbecauseofitsbetterproperties.Alotof researchhasbeendoneon(KxNa1−x)NbO3(KNN)basedpiezoelec- tricceramicsinthelast10yearsaccountingformorethan85%ofall publishedworksinthefield[2,12].Poorsinteringandlowpiezo- electricpropertiesarethemainproblemswithpureKNNceramics [13]. To overcome these problems, their ease of sintering and piezoelectricpropertieshavebeenimprovedbysubstitutingthe mainelementswithdopants.Someofthesecombinationsinclude KNN–Ba[14],KNN–SrTiO3[15,16],KNN–LiNbO3[17],KNN–LiTaO3 [18],KNN–LiSbO3 [19],(K,Na,Li)(Nb,Ta,Sb)O3 [20]andpureKNN withsinteringaidslikeCuO[21],ZnO[22],MnO2[23]andBi2O3 [24].

The KNN-based ceramics modified with Li, Ta and Sb first reported by Saito et al. [20] remains one of the most studied http://dx.doi.org/10.1016/j.jascer.2015.12.004

2187-0764©2016TheCeramicSocietyofJapanandtheKoreanCeramicSociety.ProductionandhostingbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(3)

98 H.E.Mgbemere,G.A.Schneider/JournalofAsianCeramicSocieties4(2016)97–101 compositions in terms of piezoelectric charge coefficient (d33)

values and efforts are still being made by various researchers toimproveontheexistingvalues[25–27].Manganesehasbeen reportedtoimprovethedensificationofKNNceramics,suppress graingrowthandhelpstoincreasetheelectricalresistivityofthe piezoceramic material,that is to improve resistivity[23,28,29].

Lanthanumhasalsobeenreportedtoimprovethepropertiesof PZT ceramics [30] and of BNT ceramics, provided it is <2at.%

[31,32].SincethepropertiesofBNTwereimprovedonaddition ofLa,itisalsobelievedthatitmayhavethesameeffectonKNN ceramics.Gaoetal.studiedtheeffectofCeandLaonKNNceram- ics and reported that provided the doping amount is <1mol%, thedielectric andferroelectricpropertiesvaluesaremaintained [33]. The effectof La2O3 on (K0.5Na0.5)(Nb0.96Sb0.04)O3 showed that the grain size reduced, while the density, dielectric con- stantandpiezoelectriccoefficientvaluesincreasedupto0.6mol%

dopantaddition[34].BaTiO3 hasbeenco-dopedwithMnandLa in order tostudy theireffects on theproperties of theceram- ics[35].Theauthorswanttodeterminethecombinedeffectsof twointerestingdopants(LaandMn)onthepropertiesofthewell established(K0.44Na0.52Li0.04)(Nb0.86Ta0.1Sb0.04)O3 ceramics. The objectivethereforeistoinvestigatetheeffectsofco-dopingonthe structure,dielectricandpiezoelectricpropertiesoftheseceramics.

2. Experimentalprocedure

The sampleswere synthesised using themixed-oxide route fromthefollowingrawpowders:K2CO3,Na2CO3,Li2CO3(99+%), Sb2O3, Nb2O5, Ta2O5 (99.5%) (Chempur Feinchemikalien und ForschungsGmbH,Karlsruhe,Germany)andMnO2,La2O3(99+%) (AlfaAesarGmbH,Karlsruhe,Germany).Therawpowderswere firstdriedinanovenfor4hatatemperatureof220Ctoensure thatlittleornomoistureispresent.Stoichiometriccompositions ofthepowderswerefirstweighed,mixedandattritionmilledfor 4husingethanolassolventand3mmdiameterZrO2ballsasthe millingmedia.Theethanolwasseparatedfromthemilledpow- derusingasolventextractor.Calcinationofthemilledpowderwas carriedoutat750Cfor4htoensurethatthevolatilecomponents oftheraw powdersareremovedsothattherequired composi- tion(K0.44Na0.52Li0.04)(Nb0.86Ta0.1Sb0.04)O3isformed.Itisbelieved thatSb2O3beingveryunstable,readilyoxidisesfromthe+3tothe +5valencestateinthepresenceofairatelevatedtemperatureto ensurestoichiometry.0,0.25,0.5and1mol%eachofbothLa2O3

andMnO2 rawpowderswereaddedtothesampleandthenthe milling,solventextractionandcalcinationstepswererepeatedto ensurethatthepowdersarehomogenous.

Thepowderswerepressedintodiscsof12.5mmdiameterand 4.5mminitiallywithauniaxialpressoperatingat40MPafor30s andlaterwithacoldisostaticpressat500MPafor2min.Thepellets weresinteredinachamberfurnaceat1075Cfor1hwithaheating andcoolingrateof3C/minand10C/min,respectively.Theden- sityofthesampleswasdeterminedusingtheArchimedesmethod whilethecrystalstructurewasexaminedusingX-raydiffraction analysiswithCuKradiation(D8Discover,BrukerAXSKarlsruhe, Germany).Samplesformicrostructuralexaminationwerepolished andthermallyetchedat925Cfor30min.Themicrostructurewas

observedusinga scanningelectronmicroscope(LEO1530SEM, Gemini/Zeiss,Oberkochen,Germany)whilethegrainsizemeasure- mentswerecarriedoutusingthemeaninterceptlengthmethod fromatleastsixdifferentareasoftheimage.Aminimumof100 grainswascountedintheanalysisoftheaveragegrainsize.

Silver paints actingas electrodeswere appliedonboth sur- facesofthesamplestobeusedforelectricalmeasurements.The temperaturedependenceofthedielectricpropertiesoftheceram- icswasmeasuredfrom20Hzto1MHzwithanLCR meter(HP 4284A,Agilent Technologies,Inc.,Palo Alto,USA) attachedtoa heatingfurnace.Thepolarisationhysteresiscurveswereobtained usingastandardSawyer-Towercircuitwhilethestrainhystere- siscurveswereobtainedusinganinductivetransducerdevice.A completehysteresisloopmeasurementwasperformedin200s.

Thepiezoelectriccoefficientd33wasmeasuredusingalowsignal displacementtransducer(HottingerBaldwinMesstechnikGmbH, Darmstadt,Germany)connectedtoalock-inamplifierwhilethe slopeofthestrainhysteresisloopwasusedtoobtainthehighsignal piezoelectricchargecoefficient.

3. Resultsanddiscussion

The density values for the La and Mn co-doped (K0.44Na0.52Li0.04)(Nb0.86Ta0.1Sb0.04)O3 ceramics are as shown inTable1.Aminimumof12sampleswasusedinthecalculationof thedensityvalues.Thetheoreticaldensityvaluesforthesamples arealsocalculatedusingtheX-raydiffractionpatternsanditwas assumedthattheorthorhombicphaseistheonlyphasepresent.

Intheunmodifiedsample,valuesrangingfrom92%to96%ofthe theoreticaldensityareobtained.WhenLaandMnco-dopingare introduced,therelative densityvalueslightlydecreasesbutthe deviation fromthe mean density value also decreases.For the co-dopedsamples,thehighestrelativedensityvalue(94.9±0.9%) isobtainedwiththesamplemodifiedwith0.5mol%anddecreases to90.96±0.5% with1mol%. Mn and Lahave been reportedto improvethedensificationofpiezoelectricceramicsthroughpin- ningofthegrainboundarymovement [28,34].In this case,the co-dopants ensure that while the density value decreases,the deviationfromthemeanvalueofthedensityalsodecreases.The theoreticaldensityvaluesforeachcompositionwascalculatedand itis4.79g/cm3fortheunmodifiedsampleandgraduallyincreases to4.84g/cm3forthesamplewith1mol%co-doping.

Thescanningelectronmicroscope(SEM)imagesofthepolished surfaceofthesampleswithdifferentco-dopingamountsareshown inFig.1.Allthemicrographshavegrainswithquasi-cubicmorphol- ogy,whichhasbeenreportedforKNNceramics[36].Grainsthat arerelativelynon-uniforminsizeandcontainingfeweramounts ofporesareformed.

FortheunmodifiedsampleinFig.1a,aninhomogeneousgrain size distribution can be observed. Some grains are very large relative to others and this abnormal grain growth leads to a bimodalgrainsizedistributionwithlargegrainsbeingsurrounded by smallergrains. Some of the smallergrains have sizesof as small as ∼600nm. The average grain size for the large grains is ∼4.9±1.0␮m, and for the small grains, it is ∼1.7±0.8␮m.

Unevenlydistributedandsizedporescanalsobeseenatthegrain Table1

Datashowingthedensity,dielectricandpiezoelectricpropertiesof(K0.44Na0.52Li0.04)(Nb0.86Ta0.1Sb0.04)O3ceramicsco-dopedwithdifferentamountsofLaandMnatroom temperature.

Dopingamount (mol%)

εr@1kHz tan(1kHz) d33(pC/N) Normalisedstrain, d33(pm/V)

Theoretical density(g/cm3)

Relative density(%)

Remnantpolarisation, Pr(␮C/cm2)

Coercivefield, Ec(kV/cm)

0 ∼1146 0.1515 220 400±10 4.79 94.25±2.3 ∼18.9 8.55

0.25 ∼1397 0.0812 196 259±5 4.81 93.87±0.6 ∼10.0 6.57

0.5 ∼1311 0.0283 167 283±5 4.82 94.87±0.9 ∼10.0 6.57

1.0 ∼1357 0.0293 159 157±4 4.84 90.96±0.5 ∼7.5 6.57

(4)

Fig.1.Scanningelectronmicroscopeimagesofthethermallyetchedsurfacesof(K0.44Na0.52Li0.04)(Nb0.86Ta0.1Sb0.04)O3ceramicssinteredat1075Cfor1hinairatmosphere showing(a)theundopedceramic,(b)ceramicwith0.25mol%ofLa,Mnand(c)with0.5mol%ofLa,Mn.

boundariesandtherearealsosignsofliquid phaseatthegrain boundaries.Fig.1bshowsthemicrostructureofthesamplewith 0.25mol%oftheco-dopants.Thesurfacesofthesampleshaveboth smoothandroughgrains,whichmaybeattributedtothedifferent crystallographicplanes,whichbehavedifferentlyduringetching.

Thehigherenergeticplanestrytoreverttothelowerenergetic planesandtheresultisaroughsurface.Itstillhasabimodalgrain sizedistributionbutwithfewerpores.Thelargegrainshaveamean grainsizeof2.6±0.5␮mwhilethesmallgrainshaveameangrain sizeof1.1±0.5␮m.Themicrostructuresofthesamplesco-doped with0.5mol%and1mol%,respectivelyarenotsignificantlydiffer- entandsoonlythesamplewith0.5mol%ispresented.Theamount ofgrainswithlargesizescontinuestodecreasesuchthatthevol- umeofgrainswithsimilarsizesincreases.Thelargegrainshavean averageparticlesizeof1.9±0.4␮mwhilethesmallgrainshavean averagesizeof0.8±0.4␮m(Fig.1c).Mnisknowntocreateoxy- genvacanciesinKNNceramics,whichhindersthemovementofthe grainboundariesandinhibitsgraingrowthleadingtolesservolume ofporesinthemicrostructure[28,37].InLa-doped(Bi0.5Na0.5)TiO3

ceramicsat1at.%,thegrainsizehasbeenreportedtoincrease[31].

Fig.2showstheX-raydiffraction(XRD)patternsforsamples modifiedwithdifferentamounts ofthedopants.Thepeak pos- itionsdidnotchangesignificantlywithdopingbutthepeakshapes changed.Intheunmodifiedstate,theorthorhombicphaseisthe dominantstructureatroomtemperature.Thereisareportinthe literaturethat states thata two-phaseorthorhombic tetragonal coexistenceis observed[38].When0.25mol% ofthe co-dopant is addedto theceramic, thepeak splittingbetweenthe ortho- rhombicandtetragonalphasesattheBraggangleof∼47isroughly equal and indicatesthat thestructure is close tothepolymor- phicphaseboundaryposition.Thevolumeofthetetragonalphase

graduallyincreaseswhilethatoftheorthorhombicphasedecreases withmoredopantaddition.Apseudocubicphasehasbeenreported whenthereisLasubstitutionontheA-siteofthelattice[33].Some extrapeaks(markedwithcirclesin Fig.2)canbeobservedbut couldnotbeidentifiedbecauseitsvolumeisverylittleintheextra peaksthatwerefound.Asecondphase relatedtoNa2Ti4O9 has beenreportedwhentheA-andB-siteofKNNceramicshasbeen simultaneouslydopedwithLaandTi,respectively[39].

Fig.3ashowsthetemperaturedependenceofthedielectriccon- stantvaluesmeasuredonheatingat1kHzforthesampleco-doped

Fig.2. X-raydiffractionpatternsof(K0.44Na0.52Li0.04)(Nb0.86Ta0.1Sb0.04)O3ceramics dopedwithdifferentamountsofdopants.Tracesofanextraphasecanbeobserved onthepatterncontaining1mol%ofLaandMn.

(5)

100 H.E.Mgbemere,G.A.Schneider/JournalofAsianCeramicSocieties4(2016)97–101

500 400

300 200

100 0

2000 4000 6000 8000 10000

140 120 100 80 60 40 120020 1600 2000 2400

Dielectricconstant (εr)

Temperature (°C)

0 mol%

0.25 mol%

0.5 mol%

1 mol%

(a)

Temp. (°C)

500 400

300 200

100 0

0 5 10 15

300 250 200 150 100 0,0 50 0,1 0,2 0,3 0,4 0,5

tanδ

Temperature (°C) 0 mol%

0.25 mol% 0.5 mol% 1 mol% (b)

tanδ

Temperature (°C)

Fig. 3. Temperature dependence of (a) the dielectric constant values for (K0.44Na0.52Li0.04)(Nb0.86Ta0.1Sb0.04)O3 ceramics measured at 1kHz and (b) the dielectricloss(tanı)valuesfor(K0.44Na0.52Li0.04)(Nb0.86Ta0.1Sb0.04)O3ceramicsmea- suredat1kHz.Theinsetinthegraphmagnifiestheregionofthegraphfrom20C to250Candfrom20Cto300Cfor(a)and(b),respectively.

withdifferentamountof Laand Mn. Thereis a slight increase inthedielectricconstantvaluesatlowertemperatureswhenthe samples are modified with the dopants. Both phase transition temperatures(Tc and TT-O)decrease withincreasing amountof thedopants.TheTcdecreasesfrom∼330Cto∼240Cwhenthe dopantsareaddedbutdo notdecreasesubstantiallywithmore additions.Additionofthedopantsalsoledtoa decreaseinthe dielectric constant values atthe Tc. While a dielectric constant valueof∼9000wasobtainedinthesamplewithoutthedopants, 5000andbelowisobtainedinthedopedsamplesattheTc.Sim- ilar resultshave been reported for La2O3 and MnO2 co-doped 0.02Pb(Y2/3W1/3)O3–0.98Pb(Zr0.52Ti0.48)O3[40].Broadeningatthe dielectricconstantpeakisalsoobservedforthedopedsamples.The highertheamountofdopingused,thebroaderisthepeakvalueat theTc,whichisanindicationofpossiblerelaxorbehaviour.

Thetemperaturedependenceofthedielectricloss(tanı)forthe samplesmeasuredat1kHzisshowninFig.3b.Theinsetshows thatattemperaturesbelow250C, theco-dopants areeffective atreducingthelossbehaviouroftheceramic.Intheunmodified sample, thedielectric loss increasesfrom 0.15 to ∼0.45 as the measurementtemperatureincreases.Additionof0.25mol%ofthe co-dopantsledtoadecreaseinthelossvaluesfrom∼0.4to0.05.

Co-dopingwith0.5mol%givesthebestresultwithvaluesbelow 0.03evenatveryhightemperatures.Furtheradditionupto1mol%

increasesthedielectriclossofthesample.

Thepolarisationhysteresiscurvesforthesamplesareshown inFig.4.Allthemeasuredsamplesattainedsaturationpolarisation

Fig. 4. A plot of the polarisation–electric field hysteresis curves for (K0.44Na0.52Li0.04)(Nb0.86Ta0.1Sb0.04)O3ceramicsco-dopedwithdifferentamounts ofLaandMn.

whenanelectricfieldof20kV/cmisapplied.Theadditionoftheco- dopantstotheceramicsledtoareductioninboththecoercivefield (Ec)andtheremnantpolarisation(Pr)values.Inthesamplewithno modification,thePrandEcvaluesare∼18␮C/cm2and∼9kV/cm, respectively.Additionof0.25mol%eachoftheco-dopantsledtoa reductioninthePrandEcvaluesto∼10␮C/cm2and∼6.25kV/cm, respectively.Withincreasingdopantamounts,slightlyreducedPr

valuesareobtainedbutthereisnosignificantdifferenceintheEc

values.ThedecreaseinPrvalueswithincreasingdopantamountis probablyduetothepinningeffectofthedomainwalls,whichisa resultoftheincreaseinthenumberofdefectsinthelattice.

Fig.5showsthestrainhysteresiscurvesfortheceramicsmod- ified with different amounts of the co-dopants. Samples with dopantsupto0.5mol%couldbemeasuredandhavethetypical butterflyshape,which indicatesthepresenceofferroelectricity.

Duetolargeleakage current,agood hysteresiscurvecouldnot beobtainedforthesamplemodifiedwith1mol%ofthedopants.

Withincreasingamountofthedopants,theareaofthehysteresis loopdecreases,whichalsoagreeswiththeirdecreasingpiezoelec- tricactivity.Thepiezoelectricchargecoefficient(d33)valuesforthe samplesareshowninTable1.Thehighestvalueofthenormalised strain(400±10pm/V)isobtainedintheunmodifiedsample.Asthe amountofco-dopantsincreases,thed33valuegenerallydecreases

Fig. 5. A plot of the strain–electric field hysteresis curves for (K0.44Na0.52Li0.04)(Nb0.86Ta0.1Sb0.04)O3ceramicsco-dopedwithdifferentamounts ofLaandMn.

(6)

butthereductiondoesnotdrasticallychangewiththeamountsof thedopants.

Apossibleexplanationfortheobservedreductioninpiezoelec- tric properties and increasingconductivity leadingto dielectric breakdown in the samples with increasing amount of the co- dopants is given below. The ionic radius, valence state and coordinationnumberofanionistheoreticallyusedtopredictits positionontheperovskitelattice.La3+(1.06 ˚A)isbelievedtoenter theA-siteofthelatticesinceitssizeisclosertothoseofNa+(1.02 ˚A) andK+(1.39 ˚A)Mn,whichismulti-valentintheory,andcanenter boththeAandBsitesoftheperovskitelattice.OntheA-siteofthe lattice,thecoordinationnumberofK+,Na+andLi+is12.Lawith avalenceof+3,acoordinationnumberof12andionicradiusof 1.06 ˚A,therefore,fitswellintotheA-site.OntheB-site,Nb5+,Ta5+

andSb5+havecoordinationnumbersof6.Mnhasdifferentoxida- tionstatesandsoitspositionintheperovskitelatticedependson itsoxidationstate.Acurrentreportintheliteratureonthestateof Mnindicatesthatthepossiblestateforitispredominantly+4and sometimes+2[29].OntheassumptionthatLawilloccupytheA-site positionwhileMnwilloccupytheB-sitepositionoftheperovskite lattice,La3+ontheA-sitewillcreateA-sitevacancieswhereasMn willcreateoxygenvacanciesasshownusingtheKröger–Vinknota- tion,asshowninEqs.(1)–(3).WithLa3+ontheA-siteofthelattice (Eq.(2)),itisalsopossiblethatoxygengaswillbeliberatedleading totheformationofelectrons.Mnwithavalencestateof+4will leadtothecreationofoxygenvacanciesintheperovskitelattice.

La2O33ABO−→32La••A +3O×O+4VA (1) La2O32ABO−→32La••A +1

2O2(g)↑+4e+2O×O (2) 2MnO22ABO−→32MnB+3O×O+V••O (3) SimultaneousdopingoftheAandtheBsitesoftheperovskitelat- ticecancreateinternalbiasfield,whichleadstotheformationof defectdipoles.InastudyofBi0.5Na0.5TiO3–Bi0.5Li0.5TiO3–BaTiO3 ceramicsco-dopedwithLaandFeontheAandBsitesrespectively, itwasreportedthatinternalbiasfieldwascreated,whichledtothe formationofdefectdipolesofthetype(Fe

Ti–V••O)[32].Thissitua- tionresultsinanasymmetricstrainbehaviour,whichisobserved inourwork.

4. Conclusion

(K0.44Na0.52Li0.04)(Nb0.86Ta0.1Sb0.04)O3ceramicsmodifiedwith differentamounts ofbothLaand Mnhavebeenpreparedusing theconventionalmixed-oxidemethod.Therelative densityval- uesslightlydecreasedfrom94.25±2.3%intheunmodifiedsample to 91±0.5% in the 1mol% La and Mn sample. The degree of scatterin thedopedsamplesis howeverlower. Bi-modal grain size distribution is observed in all the samples and the aver- agegrainsizedecreaseswithincreasingco-dopantamounts.The crystalstructure of theceramicschangedwithco-dopantaddi- tionsfromadominantorthorhombicphasethroughatwo-phase orthorhombic-tetragonalcoexistencetoapseudo-cubicphasewith 1mol%.The dielectricconstant and dielectric lossvalues inthe ceramicsatlowertemperaturesimprovedwhenthedopantsare added. The phase transition temperatures (Tc and TT-O) in the ceramicsareloweredwithco-dopantadditionsbutthereisverylit- tlechangeinthetransitiontemperatureswithincreasingamount ofthedopants.Thepiezoelectricandferroelectricpropertiesofthe ceramicsdecreasewithdopantadditionbutnosignificantdiffer- enceinthePrandEcvaluesareobservedwithincreasingamount

ofthedopants.Itisbelievedthatthedopantsbeingaliovalentto theunmodifiedcomposition,introducedcation,oxygenvacancies anddefectdipolesintotheperovskitelattice.

Acknowledgements

Theresearchleadingtotheseresultshasreceivedfinancialsup- portfromDeutscheForschungsgemeinschaftundergrantno.SCHN 372/16-1.

References

[1]H.Needleman,Annu.Rev.Med.,55,209–222(2004).

[2]J.Rödel,K.G.Webber,R.Dittmer,W.Jo,M.KimuraandD.Damjanovic,J.Eur.

Ceram.Soc.,35,1659–1681(2015).

[3]EuropeanParliamentandtheCouncil,Eur.J.,37,1–9(2003).

[4]T.TakenakaandK.Sakata,Ferroelectrics,95,153–156(1989).

[5]T.Takenaka,K.SakataandK.Toda,Ferroelectrics,106,375–380(1990).

[6]H.E.Mgbemere,R.P.FernandesandG.A.Schneider,J.Eur.Ceram.Soc.,33, 3015–3022(2013).

[7]L.EgertonandD.M.Dillion,J.Am.Ceram.Soc.,42,438–442(1959).

[8]J.-F.Li,K.Wang,F.-Y.Zhu,L.-Q.ChengandF.-Z.Yao,J.Am.Ceram.Soc.,96, 3677–3696(2013).

[9]H.E.Mgbemere,M.HintersteinandG.A.Schneider,J.Am.Ceram.Soc.,96, 201–208(2013).

[10]T.A.Skidmore,T.P.ComynandS.J.Milne,Appl.Phys.Lett.,94,222902(2009).

[11]E.Hollenstein,D.DamjanovicandN.Setter,J.Eur.Ceram.Soc.,27,4093–4097 (2007).

[12]J.Roedel,W.Jo,K.T.P.Seifert,E.-M.Anton,T.GranzowandD.Damjanovic,J.

Am.Ceram.Soc.,92,1153–1177(2009).

[13]H.Birol,D.DamjanovicandN.Setter,J.Eur.Ceram.Soc.,26,861–866(2006).

[14]Z.S.AhnandW.A.Schulze,J.Am.Ceram.Soc.,70,18–21(1987).

[15]Y.Guo,K.-i.KakimotoandH.Ohsato,SolidStateCommun.,129,279–284 (2004).

[16]M.Kosec,V.Bobnar,M.Hrovat,J.Bernard,B.MalicandJ.Holc,J.Mater.Res., 19,1849–1854(2004).

[17]K.-i.Kakimoto,K.Akao,Y.GuoandH.Ohsato,Jpn.J.Appl.Phys.,44,7064–7067 (2005).

[18]E.Hollenstein,M.Davis,D.DamjanovicandN.Setter,Appl.Phys.Lett.,87, (2005).

[19]G.-Z.Zang,J.-F.Wang,H.-C.Chen,W.-B.Su,C.-M.Wang,P.Qi,B.-Q.Ming,J.Du andL.-M.Zheng,Appl.Phys.Lett.,88,212908(2006).

[20]Y.Saito,H.Takao,T.Tani,T.Nonoyama,K.Takatori,T.Homma,T.Nagayaand M.Nakamura,Nature,432,84–87(2004).

[21]M.Matsubara,K.KikutaandS.Hirano,J.Appl.Phys.,97,114105(2005).

[22]R.ChenandL.Li,J.Am.Ceram.Soc.,89,2010–2015(2006).

[23]C.-W.Ahn,H.-C.Song,S.Nahm,S.-H.Park,K.Uchino,S.Priya,H.-G.LeeandK.

Nam-Kee,Jpn.J.Appl.Phys.,44,L1361–L1364(2005).

[24]H.Du,D.Liu,F.Tang,D.ZhuandZ.Wancheng,J.Am.Ceram.Soc.,90,2824–2829 (2007).

[25]S.-Y.Choi,S.-J.Jeong,D.-S.Lee,M.-S.Kim,J.-S.Lee,J.H.Cho,B.I.KimandY.

Ikuhara,Chem.Mater.,24,3363–3369(2012).

[26]M.R.Bafandeh,R.GharahkhaniandJ.-S.Lee,J.AlloysCompd.,602,285–289 (2014).

[27]F.-Z.Yao,K.Wang,W.Jo,J.-S.LeeandJ.-F.Li,J.Appl.Phys.,116,114102 (2014).

[28]H.E.Mgbemere,R.-P.Herberand G.A. Schneider,J. Eur.Ceram. Soc., 29, 1729–1733(2009).

[29]L.Wang,W.Ren,W.Ma,M.Liu,P.ShiandX.Wu,AIPAdv.,5,097120(2015).

[30]M.HammerandM.J.Hoffmann,J.Electroceram.,2,75–84(1998).

[31]A.HerabutandA.Safari,J.Am.Ceram.Soc.,80,2954–2958(1997).

[32]J.Li,F.Wang,C.M.Leung,S.W.Or,Y.Tang,X.Chen,T.Wang,X.QinandW.Shi, J.Mater.Sci.,46,5702–5708(2011).

[33]D.Gao,K.W.Kwok,D.LinandH.L.W.Chan,J.Phys.D:Appl.Phys.,42,035411 (2009).

[34]J.YooandB.Seo,Ferroelectrics,425,106–113(2011).

[35]M.M.V.Petrovi¢,J.D.Bobi¢,R.Grigalaitis,B.D.Stojanovi¢andJ.Banys,ActaPhys.

Pol.A,124,155–160(2013).

[36]E.RinggaardandT.Wurlitzer,J.Eur.Ceram.Soc.,25,2701–2706(2005).

[37]L.-X.HeandC.-E.Li,J.Mater.Sci.,35,2477–2480(2000).

[38]H.E. Mgbemere, R.P. Fernandes, M. Hinterstein and G.A. Schneider, Z.Kristallogr.,226,138–144(2011).

[39]J. Fuentes, J. Portelles, A. Pérez, M.D. Durruthy-Rodríguez, C. Ostos, O.

Raymond,J.Heiras,M.P.CruzandJ.M.Siqueiros,Appl.Phys.A,107,733–738 (2012).

[40]S.J.Yoon,S.Y.Yoo,J.H.Moon,H.J.JungandH.J.Kim,J.Mater.Res.,11,348–352 (1995).

Referenzen

ÄHNLICHE DOKUMENTE

Um möglichst wenig Aufnahmeverluste zu verursachen, ist also eine tiefe Führung des Rotors notwendig, bei der gesichert werden kann, daß sowohl alle Ähren

The results show that as the grain size increases, both the impedance and the permittivity of the films decrease, whereas the conductivity shows an inverse variation.. The Z ∗ plane

The condensation energy can, in principle, be measured by integrating the spin magnetization as a function of mag- netic field 共 H 兲 and comparing it to the linear curve of a

Advanced methods like the Warren-Averbach analysis [2] allow the determination of a volume and an area averaged mean grain size and so enable to calculate the width of the

The hardness values extracted by employing the volume fraction model (Fig. 9a) and the relative change in hardness (Fig. 9b) are in line with general behavior discussed

KEYWORDS: SUPER AUSTENITIC STEEL – GRAIN REFINEMENT – SOLIDIFICATION STRUCTURE – CERIUM – HETEROGENEOUS

We propose a numerical model of the evolution of the average grain size in deep ice cores that takes into account recrystallization processes such as normal grain growth and

The influence of deformation temperature on the microstructural evolution of an austenitic stainless steel with an initial grain size of 120 μm, deformed to =57% with a strain-rate of ˙