• Keine Ergebnisse gefunden

Parameterized complexity of configuration integer programs

N/A
N/A
Protected

Academic year: 2022

Aktie "Parameterized complexity of configuration integer programs"

Copied!
6
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Contents lists available atScienceDirect

Operations Research Letters

www.elsevier.com/locate/orl

Parameterized complexity of configuration integer programs

Dušan Knop

a

,

,

1

, Martin Koutecký

b

,

2

, Asaf Levin

c

,

3

, Matthias Mnich

d

,

4

, Shmuel Onn

c

,

5

aDepartmentofTheoreticalComputerScience,FacultyofInformationTechnology,CzechTechnicalUniversityinPrague,Prague,CzechRepublic bCharlesUniversity,Prague,CzechRepublic

cTechnionIsraelInstituteofTechnology,Haifa,Israel

dHamburgUniversityofTechnology,InstituteforAlgorithmsandComplexity,Hamburg,Germany

a rt i c l e i n f o a b s t r a c t

Articlehistory:

Received6August2021

Receivedinrevisedform31October2021 Accepted2November2021

Availableonline15November2021

Keywords:

Parameterizedalgorithms ConfigurationIP Surfing

Configuration integer programs (IP) have been key in the design of algorithms for NP-hard high- multiplicityproblems.First,wedevelopfastexact(exponential-time)algorithmsforConfigurationIPand matchinghardnessresults.Second, weshowcase the implications oftheseresults tobin-packing and facility-location-likeproblems.

©2021TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In 1961, Gilmore and Gomory [11] introduced the fundamen- tal and widely influential notion of Configuration IP (ConfIP for short), and applied it to the BinPacking problem. In BinPack- ing, one is given a set J ofn items with sizes p1

, . . . ,

pn

N, which need to be assigned (or packed) to a set of m identical bins of a common capacity T

N such that the total size of itemspackedper binisnotlarger thanitscapacity.Thisclassical problem has long been investigated from the perspective of ap- proximationalgorithms [13,20],andinrecentyearsalsofromthe perspective ofexactalgorithms [3,12,16,18].Gilmore andGomory usedtheConfIPtodescribeaBinPackingsolutionbyalistoftu- ples“(packingofonebins,multiplicity

μ

ofbinswithpackings)”.

In this paper,we consider a more generalform ofConfiguration IP.Formotivation,observethatthenaturalinputencoding forBin

*

Correspondingauthor.

E-mailaddresses:dusan.knop@fit.cvut.cz(D. Knop),koutecky@iuuk.mff.cuni.cz (M. Koutecký),levinas@ie.technion.ac.il(A. Levin),matthias.mnich@tuhh.de (M. Mnich),onn@ie.technion.ac.il(S. Onn).

1 Partially supported by the OP VVV MEYS funded project CZ.02.1.01/0.0/0.0/16_019/0000765“ResearchCenterforInformatics”.

2 Partially supported by Charles University project UNCE/SCI/004, and bythe project19-27871XofGAˇCR.

3 PartiallysupportedbyIsraelScienceFoundationgrant308/18.

4 SupportedbyDFGgrantMN59/4-1.

5 PartiallysupportedbytheDresnerchairandIsraelScienceFoundationgrant 308/18.

Packing does not list the item sizes one by one; rather, the n itemsare classified intod

n itemtypes andthe input specifies the size pj

N andthe number nj of items oftype j. The so- calledhigh-multiplicityencoding(atermfirstcoinedbyHochbaum andShamir [14]) thus givesa size vector p

= (

p1

, . . . ,

pd

)

anda multiplicityvector n

= (

n1

, . . . ,

nd

)

with

n

1

=

n1

+ · · · +

nd

=

n.

Observenowthat, foranypacking

σ

,each bini definesa vector x

= (

x1

, . . . ,

xd

)

,withxj beingthenumberofitemsoftype j as- signed to i by

σ

; such a vector x is called a configuration. This high-multiplicitybinpackingproblem(andmanyother optimiza- tionproblems)canberephrasedinthefollowingway,aswasfirst observedbyGilmoreandGomory [11].LetNbetheset

{

0

,

1

, . . . }

. LetCT

=

x

Nd

|

px

T

denotethesetofconfigurationsofsize at most T. Then, to decide if the given instance admits a feasi- ble solution amounts to deciding if n can be written as a sum ofm configurationsfromCT,i.e.,n

=

m

i=1xi,withxi

CT forall i

=

1

, . . . ,

m.Thistaskleads toa relativelysimpleformof config- urationIP,which hasan integralvariable

λ

x

N foreach config- uration x

CT, and asks for a solution with

x∈CT

λ

x

=

m and

x∈CT

λ

x

·

x

=

n.

However, other optimization problems lead to more complex formsofConfigurationIP.Maybetherearebinsofdifferenttypes, inwhich case

τ

denotes the number ofbintypes with

μ

i being thenumberofbinsoftype i,wherebinsofacommontypehave commoncharacteristics.Itemsmayalsohaveseveralothercharac- teristics,andthenan item typeisthe setofitemswithcommon characteristics. We may also incur a cost for each configuration.

Thus,ourConfigurationIPisdefinedasfollows.

https://doi.org/10.1016/j.orl.2021.11.005

0167-6377/©2021TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

Configuration IP(ConfIP)

Input: Dimensiond

N,finitesetsX1

, . . . ,

Zd, objectivefunctions f1

, . . . ,

:

Zd

Z,numbers

μ

1

, . . . , μ

τ

N,andatargetvectorn

Zd. Find: min τ

i=1

xXi fi

(

x

) · λ

ix

|

τ

i=1

xXix

· λ

ix

=

n

,

xXi

λ

xi

= μ

i

, λ

ix

N

x

Xi

i

∈ {

1

, . . . , τ }

.

WerefertovandenAkkeretal. [26] forpracticalinvestigations ofConfIP,andtoHochbaumandShmoys [15],Alonetal. [1],Fer- nandez de laVega andLueker [9] andKarmarker andKarp [20]

forstudiesofapproximationalgorithmsbasedonConfIP. Previous studiesofthebinpackingprobleminthehigh-multiplicitysettings weredonebyJansenandSolis-Oba [17] andJansenandKlein [16].

Ourcontributionsandpaperoutline.Ourcontributionistwo-fold.

First, inSection 3we provideseveralfixed-parameter algorithms, andinSection4weprovehardnessresultsforConfIP,delineating thecomplexity landscapewithregardto themostnaturalparam- eters showing that some trade-offs evident in our analysis are inevitable. Second, to showcase the usefulness and versatility of ourapproach, weapply inSection 5ouralgorithms tohighmul- tiplicity problemsinbin packingandsurfing, a generalmodel of facilitylocationandmulticommodityflows.

2. Preliminaries

Forpositiveintegersm

,

nweset

[

m

,

n

] = {

m

,

m

+

1

, . . . ,

n

}

and

[

n

] = [

1

,

n

]

. Wewrite vectorsinboldface(e.g.,x

,

y) andtheiren- tries in normal font (e.g., the i-th entry of x is xi or x

(

i

)

). For

α

R,

α

isthefloorof

α

,and

α

istheceiling of

α

.Fordata object O,wedenoteby

O

itsbinaryencodinglength.ThesetN isthesetofnon-negativeintegers,thatis,N

= {

0

,

1

,

2

, . . . }

.

TheinputofConfIPcanbegivenexplicitlyonlyinfairlylimited scenarios.Thus,weassumethateach(possiblyverylarge)setXiis definedsuccinctly.Thefollowingdefinitioncapturesthecasewhen each Xi isdefined asa projection of integerpoints ofa rational polytope.

Definition1(P -representation).Fori

=

1

, . . . , τ

,let Pi

Rd+di be a polytope andlet

π

i

((

x

,

x

)) =

x

Rd bea projection discarding the last di coordinates. We call the collection P1

, . . . ,

a P - representation of X1

, . . . ,

if Xi

= π

i

(

Pi

)

Zd,foreach i

∈ [ τ ]

. Let each Pi by defined as Pi

=

(

x

,

x

) |

Ai

(

x

,

x

)

bi

for some Ai

Zmi×(d+di) andbi

Zmi.The parametersofa P -representation arethefollowingquantities:M

=

maxi∈[τ]mi,D

=

maxi∈[τ]di,

=

maxi∈[τ]

Ai

∞,L

= ,

b1

, . . . ,

bτ

.

We consistentlyusesuperscripts torefer toobjectsandquan- titiesrelatedtothe types(e.g., Xi

,

di

,

fi

, . . .

).Toavoidconfusion, we always use parentheseswhen intending to expressexponen- tiation (e.g.,

(

di

)

2). With each Xi given implicitly, the objective functions fi alsomust haveimplicitrepresentations, orbe given by oracles. We consider the following classes of objective func- tions:

linear:givenvectorsw1

, . . . ,

wτ

Zd,let fi

(

x

) =

wix.

convex:each fi

(

x

)

isaconvexfunction.

extension-separableconvex:each fi

(

x

) =

min

x:(x,x)∈Pi∩Zd+dgi

(

x

,

x

)

for gi a separableconvex function. (In some ofour applica- tions theobjective is only expressible asa separableconvex functionintermsoftheauxiliaryvariablesx.)

concave:each fi

(

x

)

isaconcavefunction.

fixed-charge:each fi

(

x

) =

ci

N ifx

=

0and fi

(

x

) =

0 oth- erwise;wecallci apenalty.

ForaConfIPinstancegiveninits P-representation,set fmax

=

max

i∈[τ] max

(x,x)∈Zd+di:Ai(x,x)≤bi

fi

(

x

) .

CONFIP asN-foldIP.Below, weconnect ConfIP withaspecial classofintegerprograms(IPs).ThebaselineIPis:minf

(

x

) :

Ax

=

b

,

l

x

u

,

x

Zn where f

:

Rn

R, A

Zm×n, b

Zm, and l

,

u

(Z ∪ {±∞} )

n.Wedenote fmax

=

max

x∈Zn:lxu

|

f

(

x

) |

.Ageneral- izedN-foldIPmatrixisdefinedas

E(N)

=

⎜ ⎜

⎜ ⎜

⎜ ⎝

E11 E21

· · ·

E1N E12 0

· · ·

0

0 E22

· · ·

0

.. . .. . . . . .. .

0 0

· · ·

E2N

⎟ ⎟

⎟ ⎟

⎟ ⎠ .

Here,r

,

s

,

t

,

N

N,E(N)isan

(

r

+

Ns

) ×

Nt-matrix,Ei1

Zr×t and Ei2

Zs×t,i

∈ [

N

]

,are integermatrices.ProblemIPwith A

=

E(N) is known as generalized N-foldinteger programming (generalized N-fold IP)[7]. The structure of E(N) allows us todivide any Nt- dimensionalobject,such asthevariablesofx,boundsl

,

u,orthe objective f, into N bricks of sizet,e.g. x

= (

x1

, . . . ,

xN

)

. Weuse subscriptstoindexwithin a brickandsuperscriptsto denotethe indexofthebrick,i.e., xij is the jth variableofthe ith brickwith j

∈ [

t

]

andi

∈ [

N

]

.Wecalla brickintegralifallofitscoordinates areintegral,andfractionalotherwise.

ThehugeN-foldIP problemisthe(high-multiplicity)extension ofgeneralized N-fold IP wherethere arepotentially exponentially manybricks.The inputtoa hugeN-foldIP problemwith

τ

types ofbricksis definedby matrices Ei1

Zr×t and E2i

Zs×t,i

∈ [ τ ]

, vectorsl1

, . . . ,

lτ,u1

, . . . ,

uτ

Zt,b0

Zr, b1

, . . . ,

bτ

Zs,func- tions f1

, . . . ,

:

Rt

R satisfying

i

∈ [ τ ], ∀

x

Zt

:

fi

(

x

)

Z andgivenbyevaluationoracles,andintegers

μ

1

, . . . , μ

τ

Nsuch that τ

i=1

μ

i

=

N. We say that a brick is of type i if its lower and upper bounds are li and ui, its right hand side is bi, its objectiveis fi, andthe matricesappearing at the corresponding coordinates are Ei1 and Ei2. We let E be the 2

× τ

block ma- trix E

=

E11 E21

· · ·

Eτ1 E12 222

· · ·

Eτ2

. We refer toOnn [25] and Knop et al. [22,23] forstudiesofhuge N-foldIP.

3. Algorithmsfor CONFIP

Ourgoalistoprovethefollowingtheorem.

Theorem1.LetSbeaConfIPinstancegiveninitsP -representation (if the objective f is convex or concave,we assume itis presented byanevaluationoracle),andletN

= μ

1

=

τ

i=1

μ

iandL

ˆ =

L

+

n

,

fmax

,

N

.

1 ConfIPwithalinear,convex,orfixed-chargeobjectivecanbesolved in time

(

N

(

d

+

D

))

O(N(d+D))L

ˆ

O(1), and is thus fixed-parameter tractableparameterizedbyN andd

+

D.

2 ConfIPwithaconcaveobjectivecanbesolvedintime

(

M N

(

d

+

D

) ·

log

)

O(N(d+D))L

ˆ

O(1),andisthusfixed-parametertractableparam- eterizedbyN,M,d

+

D,andwith

giveninunary.

3 ConfIP with a linear or an extension-separable convex objective canbe solvedintime

(

Md

)

O(M2d+d2M)L

ˆ

O(1),and isthusfixed- parametertractableparameterizedbyM,d,and

.

(3)

4 ConfIPwithalinearorfixed-chargeobjectivecanbesolvedintime

( τ

dD Mlog

)

τ(d+D)O(1)L

ˆ

O(1),andisthusfixed-parametertractable

parameterizedby

τ

,M,d,andD if

isgiveninunary.

Part 3 andPart 4thus meanthat we can solve ConfIP either in doubly-exponential time parameterized by d, D,

τ

, m, and M andall numbershave tobe giveninunary, orsingle-exponential timeparameterizedbyd,m, M,andthelargestcoefficient

(but for polynomial

τ

). In Part 2 and Part 4 we use the fact that

(

log

α )

β

2β2/2

+ α

o(1) [5,Hint 3.18] to saythat havinglog

in thebaseamountstofixed-parameteralgorithms when

isgiven in unary. It is worth noting that the parameter-dependence for N-fold IP w.r.t. the “usual” parameters is

(

Md

)

O(d2M+M2d

)

. As thegeneralruntimedependson,e.g., ellipsoidmethod,we givea boundof

(

L

+

N

+

D

)

O

(

1

)

thatsufficestocomparewiththeabove Theorem1.ThenextlemmashowshowtomodelConfIPashuge N-foldIP.

Lemma2.LetaConfIP instanceS begiven inits P -representation.

Thenintime

( τ +

D

+

M

+

L

+ μ ,

n

)

,onecanconstructahugeN-fold IPwhichmodelsSandhasparametersr

=

d,s

=

2M,t

=

d

+

D

+

M,

E

=

,N

= μ

1,andwith fi beingtheobjectiveforbricksof type i.

Proof. LetE1

= (

I0

)

Zd×(d+D+M)whereIisthe

(

d

×

d

)

-identity matrix and 0 is a

(

d

× (

D

+

M

))

-all-zero matrix, let E1i

=

E1 for each i

∈ [ τ ]

, and let b0

=

n. The last M coordinates ofeach brick will play the role of slack variables in order to model in- equalities in the system Aix

bi. For each i

∈ [ τ ]

, obtain Ei2 from Ai by adding M

mi zero rows and D

di zero columns, and then appending from the right the M

×

M identity matrix, ensuring E2i has M rows and d

+

D

+

M columns, and append M

mizeroes tobi.Formallyextendtheobjectivefunction fi to d

+

D

+

MdimensionsbymakingitignorethelastM

+

D

didi- mensions.Foreachi

∈ [ τ ]

,defineli

= {−∞}

d+di

× {

0

}

M+Ddi and ui

= {+∞}

d+di

×{

0

}

Ddi

×{+∞}

M.Let

μ

ibethenumberofbricks oftype i,foreachi

∈ [ τ ]

.

It is easy to check that, foreach brick j

∈ [

N

]

oftype i

∈ [ τ ]

oftheresultinghuge N-fold formulation,xj restrictedtothefirst d

+

di coordinates can take on exactly the values of Pi

Zd+di. Moreover, theobjectivevalueofthe brickis exactlytheobjective value of corresponding point of Pi

Zd+di in the ConfIP prob- lem.Finally,bythedefinitionofE1,thesumoftherestrictionsof all bricks to the firstd coordinates is exactly n.This showsthat wehavereducedtheConfIPinstancetoahugeN-foldIPinstance in a way which allows us to recover the ConfIP optimum from thehuge N-foldIP optimum.Moreover,theboundsare clearlyas statedinthelemma.

ThefirstthreepartsofTheorem1areestablishednextvia ap- plication ofprevious results,as we describe next: Use Lemma 2 to obtainan N-fold IP instance.Part 1forconvexor linearfunc- tionsfollowsbyapplyinganalgorithmbyDadushandVempala [6]

for solving convex IPs, which runs in time pO(p)

ˆ

LO(1), where p

=

N

(

d

+

D

)

is the dimension aswe can deletethe slack vari- ables and use the system of inequalities instead of the N-fold IP. For afixed-charge objective,we guess, for each i

∈ [ τ ]

where 0

Xi, a number

μ ¯

i

μ

i such that an optimal solution

λ

has

λ

0i

= μ

i

− ¯ μ

i.With thisguess athand, the objectiveis fullyde- terminedto be τ

i=1

μ ¯

ici andit remainsto verifywhetherthere existsacorrespondingdecompositionofnbysolvingConfIPwith thevector

μ ¯

insteadof

μ

andwithoutanyobjective.Finally,pick the bestamongall guesses whosecorresponding ConfIP is feasi- ble.There areatmost

NN guesses. ToprovePart2,we use

analgorithmbyCooketal. [4] toenumerateallverticesofthecor- respondingpolyhedronintime

(

log

·

M N

(

D

+

d

))

O(N(D+d))

ˆ

LO(1). Sinceaminimumofaconcavefunctionisalwaysattainedataver- tex,itsufficestoevaluatetheobjectiveoneach vertexandreturn thebest asthe output.Part 3is byapplying thefixed-parameter algorithmforhuge N-foldIPbyKnopetal. [23].

Thus,itremainstoprovePart4ofTheorem1thatisournext goal. Our proof builds on a Structure Theorem of Goemans and Rothvoß and the idea of the proof of their main theorem [12, Theorem 2.2]. The Structure Theorem applies to the single-type settingandimpliesthatforanysolution

λ

correspondingtoade- compositionofn,thereexists asolution

λ ˆ

whosesupportmostly lies within a precomputable and not-too-large set Y of “impor- tant” configurations. We first extend the Structure Theorem into themultitypesetting,andthenuseit asfollows.Foreachtype i, we compute the set of “important” configurations Yi, and then guessfromit a smallsubset ofconfigurations whichwill appear inthesolution.Usingthis,weconstructanILPinsmalldimension, solveit,andderivefromitanoptimalsolution

λ

.Wetakespecial caretoenforcethemultiplicityconstraint(i.e.,

λ

i

1

= μ

i,foreach i

∈ [ τ ]

)andarguehow toencode alinearanda fixed-chargeob- jective.LetusbeginwiththeStructureTheoremofGoemans and Rothvoß [12]:

Proposition3(StructureTheorem [12]).Let P

= {

x

|

Ax

b

} ⊆

Rd be a polytope with A

Zm×d and b

Zm such that all coeffi- cientsare bounded by

in absolute value. Thenthere exists a set Y

P

Zd ofsize

|

Y

| ≤

S

:=

mddO(d)

(

log

)

d thatcan becom- puted in time SO(1) with the following property. For every vector n

=

xP∩Zd

λ

xxwith

λ

NPZd,thereexistsavector

λ ˆ ∈

NPZd suchthatn

=

xP∩Zd

λ ˆ

xx,satisfyingthefollowingthreeconditions

λ ˆ

x

∈ {

0

,

1

} ∀

x

/

Y ,

|

supp

λ)

Y

| ≤

22d,

|

supp

λ) \

Y

| ≤

22d.

Next,weextendProposition3tothemultitypesetting.

Lemma4.LetP1

, . . . ,

bea P -representationofX1

, . . . ,

Xτ.Then, foreach i

∈ [ τ ]

,there exists a set Yi

Pi

Zd+di of size

|

Yi

| ≤

Si

:= (

mi

)

(d+di)

(

d

+

di

)

O(d+di)

(

log

)

d+dithatcanbecomputedintime

(

Si

)

O(1)withthefollowingproperty.Foreveryvector

n

=

τ i=1

(x,x)∈Pi∩Zd+di

λ

i(x,x)x

withnon-negativeintegral

λ

,thereexistsanon-negativeintegralvector

λ ˆ

suchthatn

=

τ

i=1

(x,x)∈Pi∩Zd+di

λ ˆ

i(x,x)x,and,foreachi

∈ [ τ ]

, a)

λ ˆ

i(x,x)

∈ {

0

,

1

} ∀ (

x

,

x

) /

Yi

,

b)

|

supp

( λ ˆ

i

)

Yi

| ≤

22(d+di)

,

c)

|

supp

λ

i

) \

Yi

| ≤

22(d+di)

,

d)

ˆ λ

i

1

= λ

i

1

.

Proof. First,extendeach Pibyacoordinatewhichisalways1,i.e., replace Pi by

{(

1

,

x

,

x

) | (

x

,

x

)

Pi

}

.This only increases the di- mensionby1 andrequiresanadditionalequalityconstraint.Then, applyProposition3toeachPiindividually.Let

μ

i

= λ

i

1andN

= λ

1.Observethatif

(

N

,

n

) =

τ

i=1

(1,x,x)∈Pi∩Zd+di

λ

i(1,x,x)

(

1

,

x

)

, thenthereisadecompositionof

(

N

,

n

)

into

τ

summands

( μ

i

,

ni

) =

(1,x,x)Pi∩Zd+di

λ

i(1,x,x)

(

1

,

x

)

to which Proposition 3 applies di- rectly, and we obtain all points except for point d). To argue thislastpoint,notethatbothdecompositions

λ

i

, λ ˆ

idecompose ni into

μ

i points of Pi

Zd+di andtheclaim holds. Thus, foreach i

∈ [ τ ]

, Yi isobtained byapplying Proposition 3to theextended polytope Pi and then projecting out the first coordinate of each elementofthecomputedset.

(4)

WearenowreadytofinishtheproofofPart4ofthetheorem.

First,computethesetsY1

, . . . ,

fromLemma4.Ourgoalnowis to setup an ILP insmall dimension,whose solutioncorresponds toanoptimalsolution

λ

withthepropertiesofLemma4.Fixsuch an optimal

λ

. Foreachi

∈ [ τ ]

,guessa subset Zi

Yi whichsat- isfies

|

Zi

| ≤

22(d+di) and

|

supp

i

) \

Zi

| ≤

22(d+di).Alsoguess the number

μ ¯

i

= |

supp

i

\

Zi

) |

.There areτ

i=1

(

Si

)

O(22(d+D))choices.

Foreach guess, we apply the followingprocedure, andthen pick thebestobtainedvalue acrossallguesses andtransformitintoa solutionofConfIP.Introduceavariable

λ

i(z,z)foreachi

∈ [ τ ]

and each

(

z

,

z

)

Zi.Additionally,foreachi

∈ [ τ ]

,introduce

μ ¯

ivectors ofvariables

(

x

,

x

)

ij.Then,considerthefollowingconstraints:

Ai

(

x

,

x

)

ij

bi

i

∈ [ τ ] ,

j

∈ [ ¯ μ

i

]

(1)

τ

i=1

(z,z)∈Zi

λ

(iz,z)z

+

¯ μi

j=1 xij

⎦ =

n (2)

(z,z)Zi

λ

i(z,z)

= μ

i

− ¯ μ

i

i

∈ [ τ ]

with0

/

Xi (3)

(z,z)∈Zi

λ

i(z,z)

μ

i

− ¯ μ

i

i

∈ [ τ ]

with0

Xi (4)

λ

i(z,z)

∈ N ∀

i

∈ [ τ ], ∀(

z

,

z

)

Zi (5)

(

x

,

x

)

ij

∈ Z

d+di

i

∈ [ τ ], ∀

j

∈ [ ¯ μ

i

],

(6)

and,dependingontheobjectiveoftheConfIPinstance,solvewith oneoftheobjectives

linear

(λ,

x

,

x

) =

τ i=1

(z,z)Zi

λ

i(z,z)

(

wiz

) +

¯ μi

j=1

wixij

,

or

,

fixed-charge

(λ,

x

,

x

) =

τ i=1

(z,z)∈Zi

λ

i(z,z)ci

+ ¯ μ

ici

.

Constraints (1) and (6) ensurethatthevariablevectors

(

x

,

x

)

ijas- sumevaluesfrom Pi

Zd+di,foreachi

∈ [ τ ]

,enforcingthemean- ing that these variables represent the part of solution

λ ˆ

whose support does not lie in Yi.Constraint (2) ensures that the solu- tionindeedcorrespondstoadecompositionofnintopointsfrom

(

Pi

Zd+di

)

.Theconstraints (3)–(4) ensurethatthenumberof non-zeroconfigurationsoftype iisatmost

μ

i.

Let

(λ,

x

,

x

)

be an optimum of the ILP above, computed using an algorithm for ILP in small dimension (cf. [10,19]).

We construct a solution

λ

of ConfIP as follows. For each i

∈ [ τ ]

and each z

Zd such that z

π

i

(

Pi

)

, let

λ

(

i

,

z

) =

z∈Zdi:(z,z)∈Pi

λ(

i

,

z

,

z

) +

j∈[ ¯μi],(x,x)ij=(z,z)1

,andlet

λ

(

i

,

0

)

= μ

i

z(πi(Pi)\0)∩Zd

λ

(

i

,

z

)

. We argue that

λ

is an optimal solution.

First, consider a linearobjective.Observe that anysolution of ConfIPinducesadecompositionn

=

τ

i=1ni,andthatthisdecom- position fully determines the objective function, which becomes τ

i=1wini.Furthermore, Part d) ofLemma 4guarantees that we can (almost) restrict our attentionto thespecial sets Yi without ruling out anydecompositionof ninto ni.Second, considering a fixed-chargeobjective,observethattheconstraint (4) andoursep- aratehandlingof

λ

(

i

,

0

)

encodesthisobjectiveappropriately.

Regardingruntime,thenumberoftimeswesolvetheILPcon- structed above is equalto the number of guesses ofthe sets Zi andthenumbers

μ ¯

i,whichisboundedby

τ i=1

(

Si

)

O(22(d+D))

(

M

)

(d+dmax)

(

d

+

D

)

O(d+D)

(

log

)

(d+D)

)

τ2O(d+D)

(

M

+

d

+

D

+

log

)

d+dmax

τ2O(d+D)

(

M

+

d

+

D

+

log

)

τ(d+D)O(

1)

.

TheILPwehaveconstructedhasdimensionatmostp

=

τ

i=1

( |

Zi

| + ¯ μ

i

(

d

+

di

))τ

22(d+D)

+

22(d+D)

(

d

+

D

)( τ +

d

+

D

)

22(d+D), andcanbe solvedintime pO(p)L

ˆ

O(1) byKannan’salgorithm [19]

forsolvingILPs(recallthat

ˆ

L

=

N

,

n

,

b1

, . . . ,

bτ

, ,

fmax

).Hence, the total runtime is bounded by

(

dD Mlog

)

τ(d+D)O

(1)

ˆ

LO(1). This concludestheproofofthelastpartofthetheorem;thus,wehave establishedTheorem1.

Remark.Goemans and Rothvoß prove a similar statement [12, Corollary5.1] to Part4ofTheorem 1,wheretheinputn andthe coefficients w have to be given in unary if one desires an FPT algorithm,whereas inour case they can be given inbinary. The difference is that they invoke the Structure Theorem on a poly- topeP whichisadisjunctiveformulationoftheunionofpolyhe- draP1

∪· · ·∪

Pτ.Thisdisjunctiveconstruction,however,introduces alargecoefficient,increasing

.Similarly,alinearobjectivecould be handledintheir setting byintroducing an extra variablexd+1 andsettingxd+1

=

wx,butthisconstraintwouldagainincrease

. We circumvent both of these limitations by using the Structure Theoremdirectly.

4. Hardnessof CONFIP

Proposition5.SolvingConfIP

1 isW

[

1

]

-hardparameterizedbyd only,evenif

isgiveninunaryand noobjectivefunction;

2 withafixed-chargeobjectiveisNP-hard evenwithd

=

1and

=

1 (butwithlargepenalties);

3 withaseparableconcavequadraticobjectiveisa)NP-hard evenwith d

=

2and

=

1,andb)W

[

1

]

-hardparameterizedbyd evenwhen thelargestcoefficientoftheobjectiveisgiveninunaryand

=

1.

Proof. Part1. Consider the UnaryBinPacking problem, which takesas inputn items ofsizes o1

, . . . ,

on

N withmaxi∈[n]oi

=

O

poly

(

n

)

,acapacity B

N,andanintegerk

N,andweask whethertheitemscanbepackedintokbinsofcapacityB.Jansen etal. [18] have shown that UnaryBinPacking is W

[

1

]

-hard pa- rameterizedbyk,evenfortightinstanceswheren

i=1oi

=

kB. Weshallconstructa ConfIP instancewithntypes.We let Pi, foreachi

∈ [

n

]

,bedefinedbythesystemofinequalitiesk

j=1xj

=

oi

,

k

j=1yj

=

1

,

xj

O yj

,

j

∈ [

k

] ,

x

0.Weletd

=

k, di

=

k, and

μ

i

=

1, for each i

∈ [

n

]

, and define the y variables to be the one which are discarded by the projection

π

i. Finally, welet nbeak-dimensionalvectorofall B.Itiseasy toseethat

π

i

(

Pi

)

Zk

= {(

oi

,

0

, . . . ,

0

), (

0

,

oi

,

0

, . . . ,

0

), . . . , (

0

, . . . ,

0

,

oi

)}

and eachelementencodesthebinintowhichitemi isassigned.Thus, theConfIPinstanceisfeasibleifandonlyifthereexistsanassign- mentofitemstobinssuchthatthesumofitemsizesofeach bin isB.

Part3b). We will continue working withthe ConfIP instance constructed above. Recall that minimizing a concave function is equivalenttomaximizingaconvexfunction,whichistheperspec- tive we shalltake here. Ourgoal nowis to modeltheconstraint

Referenzen

ÄHNLICHE DOKUMENTE

[r]

Users of the PACE TR-48 Analog Computer will find the High Speed Repetitive Operation Group a· valuable aid in the solution of a variety of computing

4. Nature of the linkages with the development and operational functions of the Regional System. Internal structure of the function. Analysis of the different relevant units and

Do this also by hand.. We see that the estimated variance between groups is substantially bigger then the estimated variance within groups. This could indicate an effect of diet

Yes it seems that the diet B results in clearly bigger coagulation. Furthermore the variance within group is smaller than the variance between group, thus the effect is expected to

Furthermore, if we want to do an analysis of variance we can not look at all the 1 and 2-way effects because otherwise we lose all the degrees of freedom for the

As expected (when the model is known), the partial autocorrelations at lags 1 and 2 show significant deviations from zero, indicating that we should fit an AR(2) model.. However,

Der Traininszustand (Variable “Exercise”) scheint gem¨ ass dem Plot etwas erstaunlicherweise keinen Einfluss auf die Herzfrequenz zu haben. Weiter scheint es, dass zwis- chen