• Keine Ergebnisse gefunden

Representation of classical solutions to a linear wave equation with pure delay

N/A
N/A
Protected

Academic year: 2022

Aktie "Representation of classical solutions to a linear wave equation with pure delay"

Copied!
13
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Universität Konstanz

Representation of classical solutions to a linear wave equation with pure delay

Denys Khusainov Michael Pokojovy Elvin Azizbayov

Konstanzer Schriften in Mathematik Nr. 322, November 2013

ISSN 1430-3558

© Fachbereich Mathematik und Statistik Universität Konstanz

Konstanzer Online-Publikations-System (KOPS)

URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-247552

(2)
(3)

with Pure Delay

Denys Ya. Khusainov

, Mihael Pokojovy

, Elvin I. Azizbayov

Otober3, 2013

Abstrat

Forawaveequationwithpuredelay,westudyaninhomogeneousinitial-boundaryvalueproblem

in abounded 1D domain. Under smoothnessassumptions, weproveuniqueexisteneof lassial

solutions foranygivennite time horizon and givetheir expliit representation. Continuousde-

pendeneonthedatainaweakextrapolatednormisalsoshown.

1 Introdution

The wave equation is a typial linear hyperboli seond-order partial dierential equationwhih nat-

urally arises when modeling phenomena ofontinuum mehanis suh assound, light, water or other

kind ofwavesinaoustis,(eletro)magnetis, elastiityanduiddynamis, et. (f. [6, 13℄). Provid-

ingaratheradequatedesriptionofphysialproesses,partialdierential equations,or equationswith

distributed parameters ingeneral,have foundnumerousappliations inmehanis, mediine,eology,

et. Introduing after-eets suh as delay into these equations has gained a lot of attention over

severalpastdeades. See e.g.,[2 ,3,7,8℄. Mathematialtreatment ofsuhsystemsrequiresadditional

arefulnesssine distributed systemswithdelayoften turnout to be even ill-posed(f. [4 ,5, 12℄).

Inthepresent paper,weonsideraninitial-boundaryvalueproblemfor agenerallinearwaveequation

withpuredelayand onstant oeientsina bounded intervalsubjetto non-homogeneous Dirihlet

boundary onditions. To solve the equation, we employ Fourier's separation method as well as the

speial funtions referred to as delay sine and osine funtions whih were introdued in [9 , 10℄. We

prove the existene of a unique lassial solution on any nite time interval, show its ontinuous

dependene on the dataina very weakextrapolated norm, give its representation asa Fourier series

and prove itsabsolute anduniform onvergene under ertainonditions onthedata.

2 Equation with pure delay

For

T > 0

,

l > 0

, we onsider the following linear wave equation in a bounded interval

(0, l)

with a

single delaybeinga seondorderpartial dierene-dierential equation foran unknown funtion

η

tt η(t, x) = a 2xx η(t − τ, x) + b∂ x η(t − τ, x) + dη(t − τ, x) + g(t, x)

for

(t, x) ∈ (0, T ) × (0, l)

(2.1)

DepartmentofCybernetis,KyivNationalTarasShevhenkoUniversity,Ukraine

DepartmentofMathematisandStatistis,UniversityofKonstanz,Germany

DepartmentofMehanisandMathematis,BakuStateUniversity,Azerbaijan

(4)

η(t, 0) = θ 1 (t), η(t, l) = θ 2 (t)

for

t > −τ,

η(t, x) = ψ(t, x)

for

(t, x) ∈ (−τ, 0) × (0, l).

(2.2)

Sine we are interested in studying lassial solutions, the following ompatibility onditions are re-

quired toassurefor smoothnessofthesolution on theboundary oftime-spae ylinder

ψ(t, 0) = θ 1 (t), ψ(t, l) = θ 2 (t)

for

t > −τ.

Denition 2.1. Under a lassial solution to the problem (2.1 ), (2.2) we understand a funtion

η ∈ C 0 [−τ, T ] × [0, l]

whih satises

tt η, ∂ tx η, ∂ xx η ∈ C 0 [−τ, 0] × [0, l]

aswell as

tt η, ∂ tx η, ∂ xx η ∈ C 0 [0, T ] × [0, l]

and,being pluggedinto Equations (2.1 ),(2.2 ), turnsthem into identity.

Remark 2.2. The previous denition does not impose any ontinuity of time derivatives in

t = 0

.

If the ontinuity or even smoothness are desired, additional ompatibility onditions on the data,

inluding

g

,arerequired.

Let

k · k k,2 := k · k H k,2 ((0,l))

,

k ∈ N 0

, denote the standard Sobolev norm (f. [1℄) and

k · k −k,2 :=

k · k H −k,2 ((0,l))

denote the norm of orresponding negative Sobolev spae. We introdue the norm

k · k X :=

s ∞

P

k=0

k · k 2 −k,2

and dene the Hilbert spae

X

as a ompletion of

L 2 (0, l)

with respet

to

k · k X

. Obviously,

X ֒ → D (0, l) ′

, i.e.,

X

an be ontinuously embedded into the spae of distributions.

With this notation, we easily see that

A := a 2x 2 + b∂ x + d

(with

x

denoting the distributional derivative)is abounded linearoperatoron

X

sine

kAk L(X) = sup

kuk X =1

kAuk X = sup

kuk X =1

v u u t

X

k=0

ka 2x 2 u + b∂ x u + duk 2 −k,2

≤ sup

kuk X =1

X

k=0

a 2 kuk −k−2,2 + bkuk −k−1,2 + dkuk −k,2

≤ sup

kuk X =1

(a 2 + b + c)kuk X = a 2 + b + d.

Theorem 2.3. Thereexistsaonstant

C > 0

,dependentonly on

a, b, d, l, τ, T

,suhthattheestimate

t∈[0,T] max kη(·, t)k 2 X + kη t (·, t)k 2 X

≤ C kψ(0, ·)k 2 X + kψ t (0, ·)k 2 X + C

Z 0

−τ

kψ(s, ·)k 2 X + kψ t (s, ·)k 2 X dt+

C Z T

0

kg(s, ·)k 2 X + |θ 1 (s)| 2 + |θ 2 (s)| 2 ds

holds truefor anylassial solutionof Equations(2.1 ), (2.2 ).

Proof. Let

η

be the lassialsolution to Equations(2.1 ), (2.2 ). We dene

w(t, x) :=

( η(t, x)

for

(t, x) ∈ [−τ, 0] × [0, l],

η(t, x) − θ 1 (t) − x l2 (t) − θ 1 (t))

for

(t, x) ∈ (0, T ] × [0, l].

(5)

Then

w

satiseshomogeneous Dirihlet boundary onditions and solvestheequation

tt w(t, ·) = Aw(t − τ, ·) + f (t, ·)

(2.3)

inthe extrapolated spae

X

with

f(t, ·) = g(t, ·) + b (θ 2 (t) − θ 1 (t)) + θ 1 (t) + dx l (θ 2 (t) − θ 1 (t)) .

We multiply the equation with

w t (t, ·)

in thesalar produt of

X

and use Young's inequality to get

theestimate

t kw t (t, ·)k 2 X = hAw(t − τ, ·), w t (t, ·)i X + hf (t, ·), w t (t, ·)i X

≤ kw(t − τ, ·)k 2 X +

1 + kAk 2 L(X )

kw t (t, ·)k 2 X + kf (t, ·)k 2 X .

(2.4)

As in[11℄, we introdue thehistory variable

z(s, t, x) := w(t − s, x)

for

(s, t, x) ∈ [0, τ ] × [0, T ] × [0, l]

and obtain

z t (s, t, x) + z s (s, t, x) = 0

for

(s, t, x) ∈ (0, τ ) × (0, T ) × (0, l).

Multiplying these identities with

w(t, ·)

in

X

and performing apartial integration, we nd

t Z τ

0

kz(s, t, ·)k 2 X ds = − Z τ

0

s kz(s, t, ·)k 2 X ds = kw(t, ·)k 2 X − kw(t − τ, ·)k 2 X .

(2.5)

Addingequations (2.4 ) and (2.5 ) tothetrivial identity

t kw(t, ·)k 2 X ≤ kw(t, ·)k 2 X + kw t (t, ·)k 2 X ,

weobtain

t

kw(t, ·)k 2 X + kw t (t, ·)k 2 X + Z 0

−τ

kw(s, t, ·)k 2 X ds

≤ 2 + kAk L(X)

kw(t, ·)k 2 X +kw t (t, ·)k 2 X +kf (t, ·)k 2 X .

Thus,we have shown

t E(t) ≤ 2 + kAk L(X)

E(t) + kf (t, ·)k 2 X ,

(2.6)

where

E(t) := kw(t, ·)k 2 X + kw t (t, ·)k 2 X + Z 0

−τ

kz(s, t, ·)k X ds.

FromEquation(2.6) we onlude

E(t) ≤ E(0) + 2 + kAk L(X ) Z t

0

E(s)ds + Z t

0

kf (t, ·)k 2 X ds.

Using nowtheintegralform ofGronwall's inequality, we obtain

E(t) ≤ E(0) + Z t

0

kf (t, ·)k 2 X ds + Z t

0

e ( 2+kAk L(X) ) (t−s) E(0) +

Z s 0

kf (ξ, ·)k 2 X

ds

≤ C ˜

E(0) + Z T

0

kf (s, ·)k 2 X ds

(2.7)

for ertain

C > ˜ 0

. Taking into aount

c 1 kw(t, ·)k 2 X + |θ 1 (t)| 2 + |θ 2 (t)| 2

≤ kη(t, ·)k 2 X ≤ C 1 kw(t, ·)k 2 X + |θ 1 (t)| 2 + |θ 2 (t)| 2 , c 2 kf (t, ·)k 2 X + |θ 1 (t)| 2 + |θ 2 (t)| 2

≤ kg(t, ·)k 2 X ≤ C 2 kf (t, ·)k 2 X + |θ 1 (t)| 2 + |θ 2 (t)| 2

for some onstants

c 1 , c 2 , C 1 , C 2 > 0

and exploitingthe denitionof

E(t)

,theproof is adiret onse-

quene of Equation(2.7 ).

(6)

(ψ, g, θ 1 , θ 2 ) 7→ η

is well-dened,linear andontinuous inthenorms fromTheorem 2.3 .

Remark 2.5. It was essential to onsider the weak spae

X

. If the spae orresponding to the usual wave equationisused, i.e.,

(η, η t ) ∈ H 0 1 (0, l)

× L 2 (0, l)

,there follows from[5℄ thatEquation

(2.1 ), (2.2 ) isan ill-posed problemdue to the lakof ontinuous dependene on thedata even in the

homogeneous ase.

Next, we want to establish onditions on the data allowing for the existene of a lassial solution.

Performing thesubstitution

ξ(t, x) := e 2a b 2 x η(t, x)

for

(t, x) ∈ [−τ, T ] × [0, l]

(2.8)

with a new unknown funtion

ξ

(p. [11℄), the initial boundary value problem (2.1 ), (2.2) an be

written inthefollowing simpliedform withaself-adjoint operator ontheright-handside

tt ξ(t, x) = a 2xx ξ(t − τ, x) + cξ(t − τ, x) + f (t, x)

for

(t, x) ∈ (0, T ) × (0, l)

(2.9)

with

c := d − 4a b 2 2

omplemented bythefollowing boundaryand initial onditions

ξ(t, 0) = µ 1 (t), ξ(t, l) = µ 2 (t)

for

t > −τ

with

µ 1 (t) := θ 1 (t), µ 2 (t) := e 2a b 2 l θ 2 ,

(2.10)

ξ(t, x) = ϕ(t, x)

for

(t, x) ∈ (−τ, 0) × (0, l)

with

ϕ(t, x) := e 2a b 2 x ψ(t, x)

(2.11)

and

f (t, x) := e 2a b 2 x g(t, x)

for

(t, x) ∈ [0, T ] × [0, l].

The solutionwill bedetermined intheform

ξ(t, x) = ξ 0 (t, x) + ξ 1 (t, x) + G(t, x).

Here,

G

is an arbitrary funtion with

tt G, ∂ tx G, ∂ xx G ∈ C 0 [−τ, T ] × [0, l]

satisfying theboundary

onditions

G(t, 0) = µ 1 (t), G(t, l) = µ 2 (t).

Assuming

µ 1 , µ 2 ∈ C 2 [−τ, T ]

,we let

G(t, x) := µ 1 (t) + x l2 (t) − µ 1 (t))

for

(t, x) ∈ [−τ, T ] × [0, l].

(2.12)

• ξ 0

solvesthe homogeneous equation

tt ξ 0 (t, x) = a 2xx ξ 0 (t − τ, x) + cξ 0 (t − τ, x)

(2.13)

subjetto homogeneousboundary andnon-homogeneous initial onditions

ξ 0 (t, 0) ≡ 0, ξ 0 (t, l) = 0

in

(−τ, T ),

ξ 0 (t, x) = Φ(t, x)

for

(t, x) ∈ (−τ, 0) × (0, l)

with

Φ(t, x) := ϕ(t, x) − G(t, x).

(2.14)

In partiular,withthe funtion

G

seleted asinEquation(2.12 ), we obtain

Φ(t, x) = ϕ(t, x) − µ 1 (t) − x l (µ 2 (t) − µ 1 (t))

for

(t, x) ∈ [−τ, 0] × [0, l].

(2.15)

• ξ 1

solvesthe non-homogeneous equation

tt ξ 1 (t, x) = a 2xx ξ 1 (t − τ, x) + cξ 1 (t − τ, x) + F (t, x)

for

(t, x) ∈ (0, T ) × (0, l)

(2.16)

with

F(t, x) := a 2xx G(t − τ, x) + cG(t − τ, x) − ∂ tt G(t, x)

for

(t, x) ∈ [0, T ] × [0, l]

(2.17)

subjetto homogeneousboundary andinitial onditions. For

G

fromEquation (2.12 ),we have

F(t, x) = f (t, x)+c µ 1 (t − τ ) + x l2 (t − τ ) − µ 1 (t − τ ))

− µ ¨ 1 (t) + x l (¨ µ 2 (t) − µ ¨ 1 (t))

.

(2.18)

(7)

In this setion, we obtain a formal solution to the initial-boundary value problem (2.13 ) with initial

and boundary onditionsgiveninEquations(2.10),(2.11 ). Weexploit Fourier's separationmethod to

determine

ξ 0

intheprodutform

ξ 0 (t, x) = T (t)X(x)

. Afterplugging thisansatzinto Equation(2.13),

wend

X(x) ¨ T (t) = a 2 X ′′ (x)T (t − τ ) + cX(x)T (t − τ ).

Hene,

X(x)

T ¨ (t) − cT (t − τ )

= a 2 X ′′ (x)T (t − τ ).

By formallyseparating the variables,we dedue

X ′′ (x)

X(x) = T ¨ (t) − cT (t − τ )

a 2 T (t − τ ) = −λ 2 .

Thus,theequation anbe deoupled asfollows

T ¨ (t) + a 2 λ 2 − c

T (t − τ ) = 0, X ′′ (x) + λ 2 X(x) = 0.

(3.1)

These arelinearseondorder ordinary(delay) dierential equations withonstant oeients.

Due to thezero boundary onditions for

ξ 0

,the boundary onditions for theseond equation in(3.1 )

will also be homogeneous, i.e.,

X(0) = 0, X(l) = 0.

Therefore, we obtain a Sturm &Liouville problem admitting non-trivial solutions only for the eigen-

numbers

λ 2 = λ 2 n = πn l n

for

n ∈ N

and theorresponding eigenfuntions

X n (x) = sin πn l x

for

n ∈ N .

Assuming

πa l

2

− c > 0,

wedenote

ω n = q

πn a

2

− c

for

n ∈ N

and onsiderthe rst equationin(3.1 ), i.e.,

T ¨ (t) + ω 2 n T (t − τ ) = 0

for

n ∈ N .

(3.2)

The initial onditions foreah of theequations in(3.2 ) an beobtained byexpanding theinitial data

into a Fourier series withrespet totheeigenfuntion basisof theseondequation in(3.1 )

Φ(t, ·) =

X

n=1

Φ n (t) sin πn l x

with

Φ n (t) = 2 l

Z l 0

(ϕ(t, s) − G(t, s)) sin πn l s ds,

t Φ(t, ·) =

X

n=1

˙Φ n (t) sin πn l x

with

Φ ˙ n (t) = 2 l

Z l 0

(∂ t ϕ(t, s) − ∂ t G(t, s)) sin πn l s ds

(3.3)

for

t ∈ [−τ, T ]

. Let us further determine the solution of theCauhy problem assoiated witheah of

theequations in(3.2 ) subjetto theinitial onditionsfrom Equation(3.3 ).

(8)

with pure delay obtained in [9 ℄. The authors onsidered a linear homogeneous seond order delay

dierential equation

¨

x(t) + ω 2 x(t − τ ) = 0

for

t ∈ (0, ∞), x(t) = β(t)

for

t ∈ [−τ, 0].

(3.4)

Theyintrodued two speialfuntionsreferredto asdelayosine and sinefuntions. Exploitingthese

funtions, a uniquesolution to the initial valueproblem(3.4 ) wasobtained.

Denition 3.1. Delayosine isthe funtion given as

cos τ (ω, t) =

 

 

 

 

 

 

0, −∞ < t < −τ,

1, −τ ≤ t < 0,

1 − ω 2 t 2! 2 , 0 ≤ t < τ,

.

.

.

.

.

.

1 − ω 2 t 2! 2 + ω 4 ( t−τ) 4! 4 − · · · + (−1) k ω 2k (t−(k−1)τ) (2k)! 2k , (k − 1)τ ≤ t < kτ

(3.5)

with

2k

-order polynomials on eah of the intervals

(k − 1)τ ≤ t < kτ

ontinuously adjusted at the nodes

t = kτ

,

k ∈ N 0

.

0 5 10 15

−1.5

−1

−0.5 0 0.5 1 1.5 2 2.5

t co s τ (0 . 5 , t )

τ = 0.1 τ = 0.05 τ = 0 . 5

0 5 10 15

−10

−5 0 5 10 15

t co s τ (1 , t )

τ = 0.1 τ = 0.05 τ = 0 . 5

0 5 10 15

−1000

−500 0 500 1000 1500 2000 2500

t co s τ (2 , t )

τ = 0.1 τ = 0.05 τ = 0 . 5

Figure1: Delayosine funtion

Denition 3.2. Delaysine isthe funtion givenas

cos τ (ω, t) =

 

 

 

 

 

 

0, −∞ < t < −τ,

ω(1 + τ ), −τ ≤ t < 0,

ω(1 + τ ) − ω 3 t 3! 3 , 0 ≤ t < τ,

.

.

.

.

.

.

ω(1 + τ ) − ω 3 t 3! 3 + · · · + (−1) k ω 2k+1 ( t−(k−1)τ) (2k+1)! 2k+1 , (k − 1)τ ≤ t < kτ

(3.6)

with

(2k + 1)

-order polynomials on eah of the intervals

(k − 1)τ ≤ t < kτ

ontinuously adjusted at thenodes

t = kτ

,

k ∈ N 0

.

(9)

0 5 10 15

−2

−1.5

−1

−0.5 0 0.5 1 1.5

t si n τ (0 . 5 , t )

τ = 0.1 τ = 0.05 τ = 0 . 5

0 5 10 15

−15

−10

−5 0 5 10

t si n τ (1 , t )

τ = 0.1 τ = 0.05 τ = 0.5

0 5 10 15

−2000

−1000 0 1000 2000 3000 4000 5000

t si n τ (2 , t )

τ = 0.1 τ = 0.05 τ = 0 . 5

Figure2: Delaysine funtion

There has furtherbeen provedthat delayosine uniquely solvesthelinearhomogeneous seondorder

ordinarydelaydierentialequationwithpuredelaysubjettotheunitinitialonditions

x ≡ 1

in

[−τ, 0]

and thedelaysine inits turnsolvesEquation(3.4) subjettotheinitial onditions

x(t) = ω(t + τ )

for

t ∈ [−τ, 0]

.

Using the fat above, the solution of the Cauhy problem was represented in the integral form. In

partiular,thesolution

x

tothehomogeneousdelaydierentialequation(3.4 )withtheinitialonditions

x ≡ β

in

[−τ, 0]

for anarbitrary

β ∈ C 2 ([−τ, 0])

wasshownto be given as

x(t) = β(−τ ) cos τ (ω, t) + ω 1 β(−τ ˙ ) sin τ (ω, t) + ω 1

Z 0

−τ

sin τ (ω, t − τ − s) ¨ β(s)ds.

(3.7)

Turning bak to the delaydierential equation (3.2) withtheinitial onditions (2.4 ), we obtain their

unique solution inthe form

T n (t) = Φ n (−τ ) cos τn , t) + ω 1

n ˙Φ n (−τ ) sin τn , t) + ω 1

n

Z 0

−τ

sin τn , t − τ − s) ¨ Φ(s)ds.

(3.8)

Thus,assuming suient smoothnessof the datato be speied later,thesolution

ξ 0

tothehomoge-

neousequation(2.13 )satisfyinghomogeneousboundaryandnon-homogeneousinitialonditions

ξ ≡ Φ

in

[−τ, 0] × [0, l]

reads as

ξ 0 (t, x) =

X

n=1

Φ n (−τ ) cos τn , t) + ω 1

n

Φ ˙ n (−τ ) sin τn , t)+

1 ω n

Z 0

−τ

sin τ (ω n , t − τ − s) ¨ Φ n (s)ds

sin πn l x , Φ n (t) = 2

l Z l

0

(ϕ(t, s) − G(t, s)) sin πn l s

ds

for

n ∈ N .

(3.9)

(10)

Next,weonsiderthenon-homogeneous equation(2.16 )withtheright-handsidefromEquation(2.18 )

subjetto homogeneousinitial and boundaryonditions

tt ξ 1 (t, x) = a 2xx ξ 1 (t − τ, x) + cξ 1 (t − τ, x) + F (t, x)

for

(t, x) ∈ (0, T ) × (0, l),

where

F (t, x) = f (t, x) + c µ 1 (t − τ ) + x l2 (t − τ ) − µ 1 (t − τ ))

− µ ¨ 1 (t) − x l (¨ µ 2 (t) − µ ¨ 1 (t)) .

The solution will be onstruted as asFourier series with respet to theeigenfuntions of the Sturm

&Liouville problemfrom theprevious setion,i.e.,

ξ 1 (t, x) =

X

n=1

T n (t) sin πn l x

.

(4.1)

Plugging theansatz from (4.1) into Equation (2.6) and omparingthe time-dependent Fourier oe-

ients, we obtaina systemofountablymany seondorder delaydierential equations

T ¨ n (t) + ω n T n (t − τ ) = F n (t)

for

t ∈ (0, T )

with

F n (t) = 2 l

Z l 0

F (t, s) sin πn l x

ds.

(4.2)

In [9℄,theinitial valueproblemfor thenon-homogeneous delay dierential equation

¨

x(t) + ω 2 x(t − τ ) = f (t)

for

t ≥ 0

withhomogeneous initial onditions

x ≡ 0

in

[−τ, 0]

wasshownto be uniquely solved by

x(t) =

Z t 0

sin τ (ω, t − τ − s)f (s)ds.

(4.3)

Exploiting Equation(4.3 ),the equations in(4.2 ) subjetto zeroinitial onditions areuniquely solved

by

T n (t) = Z t

0

sin τn , t − τ − s)F n (s)ds.

(4.4)

Therefore, the non-homogeneous partial delay dierential equation with homogeneous initial and

boundary onditionformallyreads as

ξ 1 (t, x) =

X

n=1

Z t 0

sin τ (ω n , t − τ − s)F n (s)ds

sin πn l x

for

(t, x) ∈ [0, T ] × [0, l].

(4.5)

5 General ase solution

The solutioninthe general ase an thus formally be representedasthefollowing series

ξ(t, x) =

X

n=1

Φ n (−τ ) cos τn , t) + ω n 1 ˙Φ n (−τ ) sin τn , t)+

1 ω n

Z 0

−τ

sin τ (ω n , t − τ − s) ¨ Φ n (s)ds

sin πn l x +

X

n=1

Z t 0

sin τ (ω n , t − τ − s)F n (s)ds

sin πn l x

+ G(t, x).

(5.1)

(11)

Theorem 5.1. Let

T > 0

,

τ > 0

and

m := ⌈ T τ

. Further, let the datafuntions

ϕ

,

µ 1

,

µ 2

and

f

be

suhthattheir Fourier oeients

Φ n

and

F n

giveninEquations(3.3 )and(4.5 ) satisfytheonditions

n→∞ lim

n (−τ )| + | Φ ˙ n (−τ )|

n 2m+3+α = 0, lim

n→∞ max

s∈[−τ,0] | Φ ¨ n |n 2m+3+α = 0,

n→∞ lim max

k=1,...,m max

t∈[(k−1)τ,max{kτ,T }] |F n (t)|n 2k+3+α = 0

(5.2)

for an arbitrary,but xed

α > 0

. Let

π l a 2

> c.

Then thelassialsolutionto problem(2.9 )(2.11 ) anberepresentedasan absolutelyand uniformly

onvergent FourierseriesgiveninEquation(5.1 ). Thelatterseriesisatwieontinuouslydierentiable

funtion withrespetto both variables. Itsderivativesoforderlessorequal twowithrespetto

t

and

x

anbeobtainedbyaterm-wisedierentiationoftheseriesandtheresultingseriesarealsoabsolutely and uniformlyonvergent in

[0, T ] × [0, l]

.

Proof. Weregroup the series fromEquation(5.1) into the following sum

ξ(t, x) = S 1 (t, x) + S 2 (t, x) + S 3 (t, x) + G(t, x),

where

S 1 (t, x) =

X

n=1

A n (t) sin πn l x

, S 2 (t, x) =

X

n=1

B n (t) sin πn l x

, S 3 (t, x) =

X

n=1

C n (t) sin πn l x , A n (t) = Φ n (−τ ) cos τn , t) + ω 1

n ˙Φ n (−τ ) sin τn , t), B n (t) = ω 1

n

Z 0

−τ

sin τn , t − τ − s) ¨ Φ n ds, C n (t) = ω 1

n

Z 0

−τ

sin τ (ω n , t − τ − s)F n (s)ds

and

ω n = q

πn l a 2

− c

for

n ∈ N .

1. First,weonsidertheoeient funtions

A n

. Foranarbitrary

t ∈ [0, T ]

with

(k − 1)τ ≤ t < kτ

,

we nd

A n (t) = Φ n (−τ ) cos τn , t) + ω 1

n ˙Φ n (−τ ) sin τn , t)

=

1 − πn l a 2 t 3

2! + · · · + (−1) k πn l a 2k (t−(k−1)τ) 2k (2k)!

Φ n (−τ )+

(1 + τ ) − πn l a 2 t 2

3! + · · · + (−1) k πn l a 2k (t−(k−1)τ ) 2k+1 (2k+1)!

Φ n (−τ ).

If

Φ n (−τ )

and

˙Φ n (−τ )

,

n ∈ N

,aresuhthat the ondition

n→∞ lim

n (−τ )| + | ˙Φ n (−τ )|

n 2k+3+α = 0

holdstrue, the series

S 1

aswellasits derivativesoforderlessorequal 2onvergeabsolutelyand

uniformly. Note thatasingledierentiation withrespetto

x

orresponds,roughlyspeaking, to a multipliationwith

n

.

(12)

2. Next, we onsider the oeients

B n

. For an arbitrary

t ∈ [0, T ]

with

(k − 1)τ ≤ t < kτ

, we

perform the substitution

t − τ − s = ξ

and exploitthe meanvaluetheoremto estimate

|B n (t)| =

1 ω n

Z t t−τ

sin τn , ξ) ¨ Φ n (t − τ − ξ)dξ

≤ τ max

−τ≤s≤0 | Φ ¨ n (s)| max

j=k−1,k max

t−τ≤s≤t

(s − τ ) − πn l a 2 s 3 3! + . . . +(−1) j πn l a 2j (s−(j−1)τ) 2j+1

(2j+1)!

.

Applying the theorem on dierentiation under the integral sign to

B n

and taking into aount

that

sin τ πn l a, ·

is twieweakly dierentiable in

[0, ∞)

,namely:

sin τ πn l a, ·

∈ W loc 2,∞ (0, ∞)

,

its derivatives are polynomials of order lower than those of

sin τ πn l a, ·

and their onvolution

with

Φ ¨ n

isontinuous, analogous estimates an be obtainedfor

˙Φ n

and

Φ ¨ n

whih,intheir turn,

also followto be ontinuousfuntions.

Now, ifthe ondition

n→∞ lim max

s∈[−τ,0] | Φ ¨ n |n 2m+3+α = 0

issatised,theseries

S 2

aswellasits derivativesoforderlessorequal2onvergeabsolutelyand

uniformly.

3. Finally,we lookat theFourier oeients

C n

. Again, for anarbitrary period of time

t ∈ [0, T ]

with

(k − 1)t ≤ t < kτ

,

0 ≤ k ≤ m

, we substitute

t − τ − ξ = s

. One again, using the mean

valuetheorem, we estimate

|C n (t)| =

1 ω n

Z t t−τ

sin τ πn l a, ξ

F n (t − τ − ξ)dξ

≤ τ max

t−τ≤s≤t | Φ ¨ n (s)| max

j=k−1,k max

t−τ≤s≤t

(s − τ ) − πn l a 2 s 3 3! + . . . +(−1) j πn l a 2j (s−(j−1)τ) 2j+1

(2j+1)!

.

Asbefore,

C n

an beshown to be twie ontinuouslydierentiable. If now

n→∞ lim max

k=1,...,m max

t∈[(k−1)τ,max{kτ,T }] |F n (t)|n 2k+3+α = 0

(5.3)

is satised, then both

S 3

and its derivatives of order less or equal 2 onverge absolutely and uniformly.

Sine all three onditions areguaranteed bythe assumptions of theTheorem due to thefat

k ≤ m

,

theproof isnished.

Remark 5.2. From the pratial point of view,the rapid deayondition onthe Fourier oeients

of thedata given in Equation(5.2 ) mean asuiently highSobolev regularityof thedata and orre-

sponding higherorder ompatibilityonditions at theboundaryof

(0, l)

(f. [11℄).

Referenes

[1℄ Adams, R.A. Sobolev spaes, Pure and Applied Mathematis, Vol. 65, New York-London: Aa-

demi Press,1975

(13)

ofTarasShevhenko National Universityof Kyiv,Series: Cybernetis,12, 2012, pp.414

[3℄ Bátkai, A.,Piazzera, S.Semigroups for DelayEquations,ResarhNotes inMathematis, 10,A.K.

Peters: Wellesley MA,2005

[4℄ Datko,R.Two examplesof ill-posedness withrespetto timedelays revisited.IEEE Trans. Auto-

matiControl, 50,1997, pp.1374 1379

[5℄ Dreher,M., Quintanilla,R., Rake,R.Ill-posedproblems inthermomehanis. Appl. Math.Lett.,

22(9),2009, pp.13741379

[6℄ Ek,Ch.,Garke,H.,Knabber,P.MathematisheModellierung.Springer-VerlagBerlinHeidelberg,

2008

[7℄ Els'gol'ts,L.E.,Norkin,S.B.IntrodutiontotheTheoryandAppliationofDierentialEquations

withDeviating Arguments. MathematisinSiene and Engineering, 105,AademiPress, 1973,

pp.1357

[8℄ Hale,J.K. Theoryof Funtional Dierential Equations, Applied Mathematial SienesSeries, 3,

1977,pp.1365

[9℄ Khusainov, D.Ya., Diblík, J., R·ºi£kova, M., Luká£ová, J. Representation of a solution of the

Cauhyproblemforan osillatingsystemwithpuredelay.NonlinearOsillations,11(2),2008, pp.

276285

[10℄ Khusainov, D.Ya., Ivanov, A.F., Kovarzh, I.V. The solution of wave equation with delay (in

Ukrainian with English summary), Bulletin of Taras Shevhenko National University of Kyiv.

Series: Physisand Mathematis, 4,2006, pp.243248

[11℄ Khusainov, D.Ya., Pokojovy, M., Azizbayov, E, On Classial Solvability for a Linear 1D Heat

EquationwithConstantDelay,toappearin: JournalofComputationalandApplied Mathematis,

2013

[12℄ Rake,R.Instabilityofoupledsystemswithdelay,Commun.Pure.Appl.Anal.,11(5),2012,pp.

17531773

[13℄ Tikhonov, A.N., Samarskii,A.A. Equations ofMathematial Physis. DoverPubliations, 1990,

pp.1765

Referenzen

ÄHNLICHE DOKUMENTE

Using a special function referred to as the delay exponential function, we give an explicit solution representation for the Cauchy problem associated with the linear oscillator

Slemrod, “Global existence, uniqueness, and asymptotic stability of classical smooth solutions in one-dimensional non- linear thermoelasticity,” Archive for Rational Mechanics

Indeed, it even coincides with the solution trajectory corresponding to an optimization horizon of length 2L/c = 2 which is needed in order to show finite time controllability..

At the same time, they sometimes fail when being used to model thermoelastic stresses in some other situations, in particular, in extremely small bodies exposed to heat pulses of

Azizbayov , Representation of classical solutions to a linear wave equation with pure delay, Bulletin of the Kyiv National University. Series: Cybernetics,

Here, we consider a general non-homogeneous one-dimensional heat equa- tion with delay in both higher and lower order terms subject to non- homogeneous initial and boundary

We prove an exat ontrollability result for a one-dimensional heat equation with delay in both.. lower and highest order terms and nonhomogeneous Dirihlet

The paper deals with approximate and exact controllability of the wave equation with interior pointwise control acting along the curve specified in advance in the