• Keine Ergebnisse gefunden

These cross section ratios are com ­ pared with previous determ inations

N/A
N/A
Protected

Academic year: 2022

Aktie "These cross section ratios are com ­ pared with previous determ inations"

Copied!
3
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Notizen 1111 Cross Section Ratios for the Electron Impact

Production of Singly and Multiply Ionized Rare Gas Ions

F . Egger and T. D. Mark

In stitu t für A tom p hysik der U n iversität Innsbruck, Österreich

Z. Naturforsch. 33a, 1 1 1 1 - 1 1 1 3 (1978);

received Ju ly 3, 1978

E lectron im pact ionization o f H e, N e, Ar, K r and X e has been studied w ith a double focussing m ass spectrom eter Varian MAT CH 5. R atios o f various m ultiple ionization cross sections w ith respect to single ionization cross sections for H e, Ne, Ar, K r and X e a t electron energies o f 50, 100 and 150eV are given . These cross section ratios are com ­ pared with previous determ inations.

E xperim ental d a ta on electron im p act ionization of gaseous species are of g reat in te re st for predicting a n d understanding th e properties of nonequilibrium plasm as, cf. e.g. ref. [1], H ow ever, even for th e rare gases discrepancies betw een published p a rtia l ion­

ization cross section ratios am o u n t to m ore th a n a factor of 2. The present p ap er is d ev o ted to precise m easurem ents of p a rtia l cross section ratios in H e, Ne, Ar, K r and Xe.

Experimental

The experim ental arrangem ent was identical w ith th a t previously described [2, 3]. In short, it con­

sists of a m olecular ty p e electron im p act source V arian MAT In te n sitro n M, a high resolution double focussing mass spectrom eter V arian MAT CH5, an d a gas handling system . The w orking conditions of th e ion source have been im proved, i.e.: The elec­

tro n tra p collector p otential was raised to 24 V to ensure sa tu ra tio n of electron currents a t all electron energies. The range of th e continuously selectable electron accelerating voltage was expanded u p to 185 eV and th e voltage of th e electron beam focus­

sing W ehnelt cylinder was m ain tain ed proportional to th e electron accelerating voltage in order to im ­ prove electron cu rren t collim ation over th e whole electron energy range. Thus s tra y electron currents could be reduced to < 2 0 % of th e electron tra p current and were allowed for in th e calibration.

Consistency checks necessary in electron im pact studies and th e energy scale calibration have been carried out a n d discussed previously [2, 3].

In order to o b tain th e relev an t inform ation for th e present stu d y , ionization efficiency curves have

been m easured as a function of applied ex tractio n a n d focussing potentials [4], I t has been found th a t these curves depend on th e ex tractio n p o ten tial applied, an d only a relatively small range of e x tra c ­ tio n potentials can be used [4], The m easured cross section ratios had a m axim um deviation from each o th er of ± 1 0 % in th is ex tractio n voltage range.

T he reported cross section ratios are averages over rep eated m easurem ents un d er various ex tractio n p otentials in th is range.

In all norm alization procedures th e ion currents have been m easured w ith a F a ra d a y collector cup, a n d electron currents of 50 fxA have been used.

T he gas tem p eratu re in th e collision cham ber has been stabilized a t 400 K during m easurem ents. The pusher electrode, which for m easurem ents of m ass spectra is usually operated positive w ith respect to th e collision cham ber p otential, was p u t a t th e sam e p o ten tial as th e collision cham ber. The rare gases used were obtained from Air R eduction Com­

p a n y an d Fa. Linde w ith a p u rity of b e tte r th a n 99.995% . The reproducibility of m easured ion c u r­

ren ts was in general b e tte r th a n ± 2 % . However, for very low ion currents, e.g. as in case of H e++, A r+++, Kr+++, and X e++++, th e statistical error could be as large as 5 to 10%. The estim ated m ax i­

m um possible error is for cross section ratios > 0.01 a b o u t 10 to 20% an d for cross section ratios < 0.01 ab o u t 20 to 40% .

In order to dem onstrate th e reliability of th e presently m easured cross section ratios it is interesting to m ake a com parison w ith tw o p re ­ vious studies [5, 6], in wich eith er b y v irtu e of th e ap p a ra tu s used [5] or by virtu e of th e m ethod a p ­ plied [6] reliable cross section ratios have been o b ­ tain ed . A dam czyk et al. [5] have used a cycloidal m ass spectrom eter, which does n o t suffer th e d raw ­ back of charge dependent collection efficiency, b e­

cause w ith o u t slits it is possible to a tta in com plete collection of all ions produced in th e source. Com­

parison of g'(He++/He)/gf(H e+/H e) a n d g,(Ne++/N e)/

<7(Ne+/Ne) reported by those au th o rs w ith th e p re ­ sent values (see Table I) shows fairly good agree­

m en t w ithin th e experim ental error bars. D rew itz [6] has used a m agnetic sector field mass sp ectro ­ m eter elim inating initial energy discrim ination by m eans of a deflection m ethod. Com parison of q ( Ar ++1 At) I q ( Ar+1 At) a t 100 eV rep o rted by D re­

w itz w ith th e present value also shows agreem ent w ithin th e experim ental error bars. Thus it is con-

(2)

1112 Notizen

Table I. Ion ization cross section ratios o f the electron im pact production o f m u ltip ly to singly ionized rare gas ions at three different electron energies.

E nergy in eV 50 100 150 Author Apparatus

<7(He++/H e) 0,0025 B leakney et al. 1936 [7] not m entioned

q( H e+/H e) 0,0007 0,0031 Harrison 1956 [8] thesis n o t available

0,00037 0,0020 A dam czyk et al. 1966 [5] cycloidal m ass spectrom eter

0,0025 0,0040 Gaudin et al. 1967 [10] 90° m agnetic sector field m .s ., N ier ty p e ion source

0,0003 0,0023 present stu d y

<7(Ne++/N e) 0,017 0.041 B leakney 1930 [11] B leak ney ty p e m .s.

g,(N e+/N e) 0,010 0,034 A dam czyk e t al. 1966 [5] see above

0,022 0,039 Gaudin et al. 1967 [10] see above

0,013 0,038 present stu d y

q( Ar++/Ar) 0,014 0,101 0,113 Bleakney 1930 [11] see above

q( Ar+/Ar) 0,007 0,102 0,104 Stevenson et al. 1942 [12] 180° m agnetic sector field m .s.

0,009 0,101 0,087 F ox 1960 [13] 90° m agnetic sector field m .s.

0,079 M elton et al. 1967 [14] 60° m agnetic field m. s., dual

electron beam radiolysis source

0,050 0,066 Gaudin et al. 1967 [10] see above

0,004 0,050 Morrison et al. 1970 [15] quadrupole mass filter w ith

electron m ultiplier

0,005 0,070 0,073 Crowe et al. 1972 [16] quadrupole m ass filter w ith chaneltron multiplier pulse coun­

tin g, field free ion source

0,070 D rew itz 1975 [6] 60° m agnetic field m .s. in con­

nection w ith deflection m ethod

0,008 0,084 0,080 present stu d y

q(Ar+++/Ar) 0,0003 0,00144 F ox 1960 [13] see above

q(A i+JAr) 0,0035 Melton e t al. 1967 [14] see above

0,0009 0,0022 Gaudin et al. 1967 [10] see above

0,00028 D rew itz 1975 [6] see above

0,00059 0,0037 present stu d y

9(Kr++/Kr) q(K r+/iss)

0,03 0,125 0,125 T ate et al. 1934 [17] 180° m agnetic sector field m .s., B leak ney ty p e ion source

0,04 0,151 0,136 Fox 1960 [13] see above

0,03 0,130 0,120 Ziesel 1967 [18] not m entioned

0,030 0,118 0,114 present stu d y

<7(Kr+++/Kr) 0,0025 0,0102 Tate et al. 1934 [17] see above

?(Kr+/Kr) 0,0037 0,0132 F ox 1960 [13] see above

0,0025 0,0102 Ziesel 1967 [18] see above

0,0027 0,0103 present stu d y

q(Xe++/X e) 0,102 0,172 0,138 T a t e e t al. 1934 [17] see above

q(Xe+/X e) 0,076 0,146 0,155 present stu d y

q(X e+++/X e) 0,026 0,063 T ate et al. 1934 [17] see above

q(X e+/X e) 0,025 0,069 present stu d y

q(Xe++++/Xe) 0,004 T ate et al. 1934 [17] see above

q(Xe+/X e) 0,005 present stu d y

eluded th a t all of th e presently reported cross sec­

tio n ratios can be regarded as reliable d eterm in a­

tions w ithin th e experim ental error range discussed above.

Results

Table I gives th e ratio of th e m easured p artial cross section values of m ultiply to singly ionized

rare gas ions a t th re e different electron energies, 50, 100 a n d 150 eV. Also show n in Table I are all available lite ra tu re values as given in Ref. [4]. It can be seen th a t th e agreem ent betw een th e dif­

feren t au th o rs is generally q u ite poor. The big dif­

ferences for instance in case o f g,(H e++/H e)/g,(H e+/

He) a t 100 eV or g(Ar++ + /Ar)/g,(Ar+/Ar) a t 50 eV are pro b ab ly due to u n certain ties in th e electron

(3)

Notizen 1113 energy scales of th e different au th o rs. R esults of

S tuber [19] are n o t included in Table I, because a secondary electron m ultiplier was used to m easure th e ion signal.

A detailed appraisal of th e previous d a ta is d if­

ficult, because of lack of experim ental detail given by some of th e authors. However, in general it can be sta te d th a t all d a ta reported from m easurem ents w ith a m agnetic sector field will suffer in accordance w ith Drewitz [6] from considerable initial-energy discrim ination even for th erm al ions leading to an overestim ation of m ultiply ionized species. As has

been found in th e present study, ex tractio n p o te n ­ tials in th e ion source m ay also strongly influence m easured cross section ratios, i.e. leading to sm aller fractions of m ultiply ionized particles a t too low or too high ex tractio n potentials [20],

Acknowledgement

The au th o rs are grateful to th e Ö sterreichischer Fonds zur F örderung der w issenschaftlichen F o r­

schung for financial assistance un d er P ro ject N r.

1490, 1727 an d 2781.

[1] F. Howorka, J. Chem. P hys. 67, 2919 (1977).

[2] T. D. Mark, J . Chem. P hys. 63, 3731 (1975).

[3] T. D. Mark and F. Egger, In t. J . Mass Spectrom . Ion Phys. 20, 89 (1976).

[4] F. Egger, Thesis, U n iversität Innsbruck, 1977.

[5] B. Adam czyk, A. J. H . Boerboom , B. L. Schram, and J . Kistem aker, J . Chem. P h ys. 44, 4640 (1966).

[6] H. J. Drew itz, In t. J . Mass Spectrom . Ion P h ys. 19, 313 (1975); and In t. J. Mass Spectrom . Ion P hys. 21, 212 (1976).

[7] W. Bleakney and L. G. Sm ith, P h ys. R ev. 49, 402 (1936).

[8] A. Harrison, Thesis, The Catholic U n iversity o f A m e­

rica, W ashington DC, 1956, data for Table I taken from reference [9].

[9] L. J . Kieffer, J IL A Inform ation Center R eport N o. 6, Boulder 1968.

[10] A. Gaudin and R. Hagem ann, J. Chem. P h ys. 64, 1209 (1967).

[11] W . B leakney, P hys. R ev. 36, 1303 (1930).

r 12] D. P. Stevenson and J. A. H ippie, P hys. R ev. 62, 237 (1942).

[13] R . E. F ox, J. Chem. P hys. 33, 200 (1960).

[14] C. E. M elton and P. S. R udolph, J. Chem. P hys. 47, 1771 (1967).

[15] J . D. Morrison and J. C. Traeger, J . Chem. P hvs. 53, 4053 (1970).

[16] A. Crowe, J. A. Preston, and J. W . M cConkey, J.

Chem. P hys. 57, 1620 (1972).

[17] J . T. Tate and P. T. Sm ith, P hys. R ev. 46, 773 (1934).

[18] J. P. Ziesel, J. Chim. P hys. 64, 695 (1967).

[19] F. A. Stuber. J. Chem. P hys. 42, 2639 (1965).

[20] K . Stephan, T. D. Märk, and H. H elm Proc. 1st. SA SP , Tirol 1978, p. 77.

Referenzen

ÄHNLICHE DOKUMENTE

Falls du kein Smartphone besitzt, kannst du stattdessen auch das Programm Xpert-Timer auf deinem Computer zu Hause verwenden!. Aufgabe 2: Google

Versuche nun bei den Fotos deiner Klassenkollegen über die Information des Bildes herauszufinden, von wem das Foto aufgenommen wurde!. Versuche auch Eigenschaften wie Größe,

Welche wichtigen Tipps auf der Suche nach Glück würden sie austauschen.. Gestalte dazu mit deiner Gruppe ein Comic oder eine Photostory

Voraussetzungen sind ein abgeschlossenes wissenschaftliches Hochschulstudium (Magister, Master oder Promotion) in einer kunst- oder kulturgeschichtlichen Fachrichtung sowie

Reinigungskraft (m/w/d) gesucht Der Hirschen in FR-Lehen sucht ab sofort eine Reinigungskraft (m/w/d) (in Teil- und Vollzeit) für die.. Reinigung der Hotelzimmer und der

den Wj-Gleichungen (4), (5) zeigen und wie bereits in [9] ausführlicher dargelegt wurde, bedarf die von B arb er [10] angegebene T em peraturabhängigkeit der

gations of a great num ber of binary and ternary amalgams containing transition metals we came upon this problem and decided to repeat the earlier experiments..

T ransport Reaction Coupling, Periodic C oncentration Profiles For autocatalysis coupled w ith diffusion the local periodic concentration profiles are influenced