• Keine Ergebnisse gefunden

Trace for Differential Pencils on a Star-Type Graph

N/A
N/A
Protected

Academic year: 2022

Aktie "Trace for Differential Pencils on a Star-Type Graph"

Copied!
6
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Trace for Differential Pencils on a Star-Type Graph

Chuan-Fu Yang

Department of Applied Mathematics, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, People’s Republic of China

Reprint requests to C.-F. Y.; E-mail:chuanfuyang@njust.edu.cn Z. Naturforsch.68a,421 – 426 (2013) / DOI: 10.5560/ZNA.2013-0020

Received October 19, 2012 / revised January 22, 2013 / published online May 1, 2013

In this work, we consider the spectral problem for differential pencils on a star-type graph with a Kirchhoff-type condition in the internal vertex. The regularized trace formula of this operator is established with the contour integration method in complex analysis.

Key words:Differential Pencils; Star-Type Graph; Trace Formula.

PACS numbers:03.65.Nk; 73.63.-b; 85.35.-p 1. Introduction

We consider the differential equations on a graph

−y00i(x) + [2ρpi(x) +qi(x)]yi(x) =ρ2yi(x), i=1,r; r≥2, r∈N, (1) whereρ is the spectral parameter, while the functions yi(x)andy0i(x)fori=1,rare absolutely continuous on [0,π]and satisfy the matching conditions

yi(π) =yj(π), i,j=1,r;

r i=1

y0i(π) +βy1(π) =0 (2) at the central vertex v0. We assume that real-valued functions pi(x)∈W22[0,π] with R0πpi(t)dt =0, i= 1,r, qi(x)∈W21[0,π]; β is a real constant given by (2). The real-valued functionsp(x) ={pi(x)}i=1,rand q(x) ={qi(x)}i=1,r on a graph are called potentials.

The matching conditions (2) are called the continuity condition together with a Kirchhoff-type condition.

We consider on a graph the boundary value problem for (1) with the matching conditions (2) and the fol- lowing boundary conditions at the boundary vertices v1, . . . ,vr:

y0i(0)−hiyi(0) =0, i=1,r, (3) wherehiare real numbers. Denote the problem (1), (2), and (3) byL=L(p,q,h,β), whereh={hi}i=1,r. Then (1) describes the wave propagation on a graph, where ρ is the wave number (momentum) andρ2the energy;

p(x)and q(x)describe the joint effect of absorption and generation of energy and the regeneration of the force density, respectively. Because of important ap- plications in quantum mechanics, it is interesting to investigate the spectral characteristics of the operator pencilL, and if at least one of the colliding particles is a fermion, it is relevant to solve the inverse problem in the presence of central and spin–orbital potentials.

The theory of regularized traces of ordinary dif- ferential operators has a long history. First, the trace formulas for the Sturm–Liouville operator with the Dirichlet boundary conditions and sufficiently smooth potential were established in [1]. Afterwards, these investigations were continued in many directions (see, [2–7], etc.). The trace formulas can be used for approximate calculation of the first eigenvalues of an operator, and in order to establish necessary and suffi- cient conditions for a set of complex numbers to be the spectrum of an operator.

Differential operators on graphs (networks and trees) often arise in natural sciences and technology.

The spectral problems of quantum graphs have been studied in [8–18], etc. Some results on trace formu- las for Laplacians on metric graphs have appeared in [10,14] and other articles.

Recently, the author considered the spectral problem for the Sturm–Liouville differential operator onr-star- type graph [16], and later found that by using a refined estimate for a fundamental pair of solutions to equa- tion (1) in [19], we can establish the trace formula for the operatorL, which extends the result of the previous work of the author [16].

© 2013 Verlag der Zeitschrift f¨ur Naturforschung, T¨ubingen·http://znaturforsch.com

(2)

2. Result

In [15], the author considered the spectral problem for the differential pencilLand gave asymptotics of the eigenvalues for L. The eigenvalue set Srj=1n(j)}−∞

for the differential pencilLbehaves asymptotically as follows (see Theorem 2.3 in [15]):

ρn(1)=n+ω+β rn +O

1 n2

and

ρn(j)=n+1 2+ cj

n+12+O 1

n2

, j=2,r, wherecj, j=2,r, are the solutions (all real but not necessarily different) of the equation forx

P(x)def= ∑r

i=1

Πl6=i(x−ωl) =0, where

ωi(x) =1 2

Z x 0

[p2i(t) +qi(t)]dt+hi, i=1,r, and

ω0= ∑r

i=1

(2−r)pi(π)+r pi(0)

2 , ω= ∑r

i=1

ωi(π).

The trace formula is interesting and of significance for the inverse spectral problem. How is it possible to obtain the second-order trace formula for eigenvalues of the problemL? It was noted that the formula of the second-order trace comprises lots of information on the operator spectrum, the boundary condition param- eters, and the potential of a graph.

Before giving the main result, we need the following notations. Fori=1,r, denote

b1,i =1 2

Z π

0

[p2i(t) +qi(t)]dt, a1,i =1

2[pi(π) +pi(0)], c1,i =1

2[pi(0)−pi(π)], d2,i =1

8[5p2i(π)−2pi(0)pi(π)−3p2i(0) +2qi(π)−2qi(0)]−1

2b21,i, d1,i =−1

4[p0i(π) +p0i(0)] +1

2b1,i[pi(π) (4)

pi(0)] +1 2

Z π

0

pi(t)[p2i(t) +qi(t)]dt,

e1,i =1

4[p0i(π)−p0i(0)]−1

2b1,i[pi(π) +pi(0)]

+1 2

Z π

0

pi(t)[p2i(t) +qi(t)]dt, e2,i =1

8[3p2i(π)−2pi(0)pi(π) +3p2i(0) +2qi(π) +2qi(0)] +1

2b21,i,

A1={±0,±1,±2, . . .}, A2={0,±1,±2, . . .}, and

ρ−0(01)0(01)=0 ; ρn(01)=n, n∈Z\ {0}; ρn(0j)=n+1

2, n∈Z, j=2,r.

(5) The main result of this work reads as follows.

Theorem 1. For the eigenvalue setSrj=1n(j)}−∞for the differential pencil L, we have the trace formula

n∈A

1

h ρn(1)

2

− ρn(01)

2

− 2 πr

r

i=1

(b1,i+hi)−2β πr i

+

n∈A2

( r

i=2

h ρn(i)2

− ρ(0i

n )2i

−2(r−1) πr

r

i=1

(b1,i+hi) )

=− 2 πr

r

i=1

(b1,i+hi)−2β πr−

r i=1

(2d2,i+b21,i) (6) +2

r

r

i=1

(d2,i+e2,i)−

r

i=1

h2i−β2 r23, where

ω3= 1 r2

h r

i=1

(a1,ic1,i)i2

+2 r

r i=1

a1,ic1,i+r−2 r

r i=1

c21,i.

(7)

3. Proof of Theorem1

Denote byϕi(ρ,x),i=1,r, the solutions of (1) sat- isfying the conditions

ϕi(ρ,0) =0, ϕi0(ρ,0) =1, (8) and byψi(ρ,x), i=1,r, the solutions of (1) satisfying the conditions

ψi(ρ,0) =1, ψi0(ρ,0) =0. (9)

(3)

Thus, for the solutionssi(ρ,x), i=1,r, of (1) satisfy- ing the conditions

si(ρ,0) =1, s0i(ρ,0) =hi, we have

si(ρ,x) =ψi(ρ,x) +hiϕi(ρ,x),

s0i(ρ,x) =ψi0(ρ,x) +hiϕi0(ρ,x). (10) Then the solutions of (1) which satisfy the conditions (3) are

yi(ρ,x) =Ai(ρ)si(ρ,x), (11) whereAi(ρ)are constants. Substituting (11) into (2), we obtain the following equation for the eigenvalues of the problemL:

ϕ(ρ)def=φ(ρ) +β χ(ρ) =0, where

φ(ρ)def=

r

i=1

s0i(ρ,π)×

j6=i=1,2,...,r

sj(ρ,π) (12) and

χ(ρ)def=

r

i=1

si(ρ,π). (13)

Using a refined estimate for a fundamental pair of solutions of the equation (1) in [19], we get

si(ρ,π) =ψi(ρ,π) +hiϕi(ρ,π)

=cos(ρ π)−c1,i

cos(ρ π)

ρ + (b1,i+hi)sin(ρ π) ρ

+ (d2,ihib1,i)cos(ρ π)

ρ2 + (d1,i+hia1,i)sin(ρ π) ρ2

+o eτ π

ρ2

(14)

and

s0i(ρ,π) =ψi0(ρ,π) +hiϕi0(ρ,π)

=−ρsin(ρ π) + (b1,i+hi)cos(ρ π) +a1,isin(ρ π) + (e1,i+hic1,i)cos(ρ π)

ρ + (e2,i+hib1,i)sin(ρ π) ρ

+o eτ π

ρ

,

(15)

whereτ=|Imρ|.

Denote

ϕ0(ρ) =−rρsin(ρ π)cosr−1(ρ π). (16) Here, we point out that ϕ0(ρ) is the characteris- tic equation for L(0,0,0) and its zeros, ρn(0j),j = 1,2, . . . ,r, are defined by

ρn(01)=n,nA1, and

ρn(0j)=n+1

2,nA2, j6=1.

Let the contourΓN, integerN=0,1,2, . . .→∞, de- note the following sequences of circular contours, tra- versed counterclockwise:

The contourΓN is the circle of radius(N+14)2with its center at the origin.

Obviously,ρn(0j)don’t lie on the contourΓN. Substi- tuting the expressions (14) and (15) into (12) and (13), we have on the contourΓN

φ(ρ) ϕ0(ρ)=1

r

r

i=1

1−b1,i+hi

ρ cot(ρ π)−a1,i

ρ

−(e1,i+hic1,i)cot(ρ π)

ρ2e2,i+hib1,i ρ2 +o

1 ρ2

·

l6=i

h 1+Tl

ρ +Vl ρ2+o

1 ρ2

i ,

where

Tl=−c1,l+ (hl+b1,l)tan(ρ π)

Vl=d2,lhlb1,l+ (d1,l+hla1,l)tan(ρ π). Moreover, by calculation, we obtain

φ(ρ) ϕ0(ρ)=1

r

r i=1

1−b1,i+hi

ρ cot(ρ π)−a1,i ρ

−(e1,i+hic1,i)cot(ρ π)

ρ2 −(e2,i+hib1,i) ρ2 +o

1 ρ2

·

1+∑l6=iTl ρ

+∑l6=iVl+∑i1<i26=iTi1Ti2

ρ2

+o 1

ρ2

=1−∑ri=1(b1,i+hi)

r ×cot(ρ π) ρ +r−1

r

r

i=1

Ti ρ

(17)

−1 r

r i=1

a1,i ρ +r−1

r

r i=1

Vi

ρ2+r−2

r

i1<i2

Ti1Ti2 ρ2

−∑ri=1(b1,i+hi)∑ri=1Ti−∑ri=1(b1,i+hi)Ti

r ·cot(ρ π)

ρ2

(4)

−∑ri=1a1,iri=1Ti−∑ri=1a1,iTi

r · 1

ρ2−∑ri=1(e1,i+hic1,i) r

·cot(ρ π)

ρ2 −∑ri=1(e2,i+hib1,i)

r · 1

ρ2 +o

1 ρ2

, where

r i=1

Ti=−

r i=1

c1,i+

r i=1

(b1,i+hi)tan(ρ π),

r i=1

Vi=

r i=1

(d2,i−hib1,i) +

r i=1

(d1,i+hia1,i)tan(ρ π),

i1

<i2

Ti1Ti2 =

i1<i2

[(b1,i1+hi1)(b1,i2+hi2)tan2(ρ π)

−(b1,i1+hi1)c1,i2tan(ρ π)−(b1,i2+hi2)c1,i1tan(ρ π) +c1,i1c1,i2],

r i=1

(b1,i+hi)Ti=

r i=1

[(b1,i+hi)2tan(ρ π)

−(b1,i+hi)c1,i], and

r

i=1

a1,iTi=

r

i=1

[a1,i(b1,i+hi)tan(ρ π)−a1,ic1,i]. Also, on the contourΓN, it yields

β χ(ρ) ϕ0(ρ) =−β

cot(ρ π)−c1,1cot(ρ π)

ρ +b1,1+h1 ρ

+O 1

ρ2

·

r

i=2

1−c1,i

ρ + (b1,i+hi)tan(ρ π) ρ

+O 1

ρ2

=−β

cot(ρ π) +β r

r

i=1

c1,i

cot(ρ π) ρ2

−β r

r i=1

b1,1+h1 ρ2 +O

1 ρ3

.

(18)

Therefore, on the contour ΓN, the following equation holds:

ϕ(ρ)

ϕ0(ρ)=1+ω1

ρ +ω2

ρ2+o 1

ρ2

,

where

ω1=−∑ri=1(b1,i+hi)

r cot(ρ π) +r−1 r

r

i=1

Ti

−1 r

r

i=1

a1,i−β

r cot(ρ π)

and ω2=r−1

r

r i=1

Vi+r−2

r

i1<i2

Ti1Ti2

−∑ri=1(b1,i+hi)∑ri=1Ti

r cot(ρ π)

+∑ri=1(b1,i+hi)Ti

r cot(ρ π)

−∑ri=1a1,iri=1Ti−∑ri=1a1,iTi

r

−∑ri=1(e1,i+hic1,i)

r cot(ρ π)−∑ri=1(e2,i+hib1,i) r

r

r

i=1

c1,icot(ρ π)−β r

r

i=1

(b1,i+hi).

Next, the power series expansion implies lnϕ(ρ)

ϕ0(ρ)=ω1

ρ +ω212ω12 ρ2 +o

1 ρ2

, (19)

where

−1

12=−(∑ri=1(b1,i+hi))2

2r2 cot2(ρ π)

−β r2

r

i=1

(b1,i+hi)cot2(ρ π)−β2

2r2cot2(ρ π) +r−1

r2

r i=1

(b1,i+hi)

r i=1

Ticot(ρ π) +β(r−1)

r2

r i=1

Ticot(ρ π)−β r2

r

i=1

a1,icot(ρ π)

− 1 r2

r

i=1

a1,r r

i=1

(b1,i+hi)cot(ρ π)−(r−1)2 2r2

r

i=1

Ti2

−(r−1)2 r2

i1<i2

Ti1Ti2−(∑ri=1a1,i)2 2r2 +r−1

r2

r

i=1

Ti

r

i=1

a1,i.

(20)

The residue theorem in complex analysis tells us, on the contourΓN,

n∈A

N

h ρn(1)2

− ρn(01)2i +

n∈AN0

r

i=2

h ρn(i)2

− ρn(0i)2i

= 1 2πi

I

ΓN

ρ2 ϕ0(ρ)

ϕ(ρ) −ϕ00(ρ) ϕ0(ρ)

=− 1 2πi

I

ΓN

2ρlnϕ(ρ) ϕ0(ρ)dρ,

(21)

(5)

where ρn(i)n(0i) are the zeros of the entire functions ϕ(ρ),ϕ0(ρ) inside the contour ΓN listed with multi- plicity, respectively, and

AN={±0,±1,±2, . . . ,±N},

AN0={0,1,2, . . . ,N−1,−1,−2, . . . ,−N}. Direct calculations yield that

1 2πi

I

ΓN

tan(ρ π)

ρ dρ= 1 2πi

I

ΓN

cot(ρ π)

ρ dρ=0 (22) and

1 2πi

I

ΓN

tan(ρ π)dρ=−2N0 π , 1

2πi I

ΓN

cot(ρ π)dρ=2N+1 π .

(23)

Using (22), (23), and (19), we have

− 1 2πi

I

ΓN

2ρln ϕ(ρ) ϕ0(ρ)dρ

=− 1 2πi

I

ΓN

1+2ω2−ω12

ρ +o

1 ρ

(24)

=4Nr+2 πr

r i=1

(b1,i+hi) +4N0+2 r β−

r i=1

(2d2,i+b21,i)

+2 r

r

i=1

(d2,i+e2,i)−

r

i=1

h2i −β2

r23+o(1), where

ω3= 2 r2

i1<i2

c1,i1c1,i2+2 r

r

i=1

a1,ic1,i− 2 r2

r

i=1

a1,i

r

i=1

c1,i

+(r−1)2 r2

r i=1

c21,i+ 1 r2

r i=1

a1,i

!2

= 1 r2

h r

i=1

(a1,ic1,i)i2

+2 r

r

i=1

a1,ic1,i+r−2 r

r

i=1

c21,i. (25)

Substituting (24) into (21) yields

n∈A

N

h ρn(1)2

− ρn(01)2

− 2 πr

r i=1

(b1,i+hi)−2β πr i

+

n∈AN0

( r

i=2

h ρn(i)

2

− ρn(0i)

2i

−2(r−1) πr

r

i=1

(b1,i+hi) )

=−2 πr

r i=1

(b1,i+hi)−2β πr

r

i=1

2d2,i+b21,i +2

r

r

i=1

(d2,i+e2,i)−

r

i=1

h2i−β2

r23+o(1). (26) LettingN→∞in (26), we obtain

n∈A

1

h ρn(1)2

− ρ(01

n )2− 2

πr

r i=1

(b1,i+hi)−2β πr i

+

n∈A2

( r i=2

h ρn(i)2

− ρn(0i)2i

−2(r−1) πr

r

i=1

(b1,i+hi) )

=−2 πr

r i=1

(b1,i+hi)−2β πr

r

i=1

2d2,i+b21,i +2

r

r

i=1

(d2,i+e2,i)−

r

i=1

h2i−β2 r23. The proof of theorem is finished.

Acknowledgement

The author would like to thank the referees for valuable comments. This work was supported by the National Natural Science Foundation of China (11171152/A010602), Natural Science Foundation of Jiangsu Province of China (BK 2010489), and the Outstanding Plan-Zijin Star Foundation of NUST (AB 41366).

[1] I. M. Gelfand and B. M. Levitan, Dokl. Akad. Nauk SSSR88, 593 (1953).

[2] F. Gesztesy and H. Holden, On trace formulas for Schr¨odinger-type operators, in: Multiparticle Quantum Scattering with Applications to Nuclear, Atomic and Molecular Physics, IMA Vol. Math. Appl. 89, Springer, New York 1977, pp. 121 – 145.

[3] G. S. Guseynov and B. M. Levitan, Vestnik MGU, Ser.

Mat-Mek.1, 40 (1978).

[4] P. D. Lax, Commun. Pure Appl. Math.47, 503 (1994).

[5] V. B. Lidskiy and V. A. Sadovniciy, Funks. Analizi Ego Pril.1, 52 (1967).

[6] V. A. Sadovnichii and V. E. Podolskii, Russian Math.

Surveys61, 885 (2006).

[7] V. A. Sadovnichii and V. E. Podol’skii, Diff. Eq.45, 477 (2009).

[8] M. I. Belishev, Inverse Problems20, 647 (2004).

[9] B. M. Brown and R. Weikard, Proc. R. Soc. Lond. Ser.

A Math. Phys. Eng. Sci.461, 3231 (2005).

[10] V. Kostrykin, J. Potthoff, and R. Schrader, arXiv:math- ph/0701009 (2007).

[11] Y. Pokornyi and A. Borovskikh, J. Math. Sci. (N.Y.) 119, 691 (2004).

(6)

[12] Y. Pokornyi and V. Pryadiev, J. Math. Sci. (N.Y.)119, 788 (2004).

[13] J.-P. Roth, Le spectre du laplacien sur un graph, in: The- orie du potential (Orsay, 1983), Lecture Notes in Math., Vol. 1096, Springer-Verlag, Berlin 1984, pp. 521 – 539.

[14] B. Winn, On the trace formula for quantum star graphs, in: Quantum Graphs and Their Applications, Con- temp. Math. Vol. 415, (Eds. G. Berkolaiko, R. Carl-

son, S. A. Fulling, and P. Kuchment), Amer. Math. Soc., Providence, RI 2006, pp. 293 – 307.

[15] C. F. Yang, Inverse Problems26, 085008 (2010).

[16] C. F. Yang, Complex Anal. Oper. Theory.

doi:10.1007/s11785-011-0193-7.

[17] V. A. Yurko, Inverse Problems21, 1075 (2005).

[18] V. A. Yurko, J. Differ. Equations244, 431 (2008).

[19] C. F. Yang, Z. Y. Huang, and Y. P. Wang, J. Phys. A:

Math. Theor.43, 415207 (2010).

Referenzen

ÄHNLICHE DOKUMENTE

In this schema, except the handle nodes which are labeled as handle, the label of nodes and relationships are the data types of the handle values, such as URL or Institute.. In

Li and Simha [6] introduced this N P-hard problem which was motivated by the wavelength routing and assignment in an optical network. In this context several approaches have

For the scalar Sturm–Liouville prob- lems, there is an enormous literature on estimates of large eigenvalues and regularized trace formulae which may often be computed explicitly

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361 Laxenburg, Austria... Kunhanski Program Leader System and Decision

The main purpose in this paper is t o explore ways and means of finding the kernel quasidifferentials in the sense of Demyanov and Rubinov for a certain

We state in section 2 the main theorem concerning the necessary conditions satisfied by an optimal solution to a... differential

in: Lecture notes in computer

We have to be not too enthusiastic about the large average variance reduction factors for ε = 1 3 and ε = 1 4 in the direct simplex optimization method. The crude least-squares